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ABSTRACT 
Curve-skeletons are thinned 1D representations of 3D 
objects useful for many visualization tasks including 
virtual navigation, reduced-model formulation, 
visualization improvement, animation, etc. There are 
many algorithms in the literature describing extraction 
methodologies for different applications; however, it is 
unclear how general and robust they are. In this paper, we 
provide an overview of many curve-skeleton applications 
and compile a set of desired properties of such 
representations. We also give a taxonomy of methods and 
analyze the advantages and drawbacks of each class of 
algorithms.  

 
CR Categories and Subject Descriptors: I.3.5 [Computer 

Graphics]: Computational Geometry and Object 
Modelling -- Curve, surface, solid, and object 
representations;  

Additional Keywords: curve-skeletons. 

1 INTRODUCTION 
3D models are common in many disciplines including 
computer aided design, medical imaging, computer 
graphics, scientific visualization, computational fluid 
dynamics, and remote sensing. While the 3D 
representation is invaluable, many applications require 
alternate “compact” representations of these models. One 
such representation is a line-like or stick-like 1D 
representation, which is sometimes referred to as a 
“skeletal representation” or “curve-skeleton” [120]. This 
is different from the skeletal-surface representation 
(medial surface), which is a higher dimensional structure. 
The curve-skeleton captures the essential topology of the 
underlying object in an easy to understand and very 
compact form. Examples of applications that use a curve-
skeleton include: virtual navigation, registration, 
animation, morphing, scientific analysis, shape 
recognition, and shape retrieval.  

One of the difficulties is that a “curve-skeleton” is an 
ill-defined object. This has led to a large number of 
algorithms and heuristics in the literature and many more 
constantly being proposed. Many of the algorithms in the 
literature    use    different    definitions,   parameters   and 
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thresholds and demonstrate their performance on a limited 
number of diverse 3D objects. Additionally, some are 
fine-tuned for a specific application. 

As a consequence, many of these algorithms can not be 
replicated and most major visualization and medical 
image processing packages do not use them. It is hard to 
decide which algorithm to choose since there are no 
criteria for evaluation, thereby causing a further 
proliferation of new algorithms. What is needed is an 
analysis of the desired properties of the curve-skeleton, as 
required by the various applications, and how the various 
existing curve-skeletonization methods satisfy these 
properties. 

In this paper, we present a list of properties for curve-
skeletons based upon numerous applications.  We also 
categorize many of the existing algorithms into classes 
based upon implementation, and we discuss how these 
classes achieve the various properties. In addition, one 
algorithm from each class has been implemented and 
tested on the same set of 3D shapes. The main goal of this 
paper is to provide an overview of curve-skeletonization 
applications and implementations to help guide 
visualization users and developers. 

This work is an extension of our previous conference 
paper [34] with the following additions: (1) several new 
applications are added: unorganized point cloud 
processing, implicit modelling, protein backbone 
modelling, (2) a new class of algorithms is included under 
the geometric methods based on Reeb graphs (3) extended 
discussion of the various curve-skeleton properties and (3) 
the discussion and experimental results sections are 
completely rewritten. 

2 DEFINITIONS – THE MEDIAL AXIS, MEDIAL 
SURFACE, SKELETON AND THE CURVE-SKELETON 

In 2D, the medial axis [21] of a shape is a set of curves 
defined as the locus of points that have at least two closest 
points on the boundary of the shape [72]. In the 3D case, 
the corresponding object is called the medial surface [48] 
because in addition to curves, it can also contain surface 
patches. A more illustrative definition of the medial 
axis/surface is given by the grass-fire analogy, where the 
boundary of a shape made entirely of dry grass is set on 
fire and the medial axis/surface consists of the loci where 
the fire fronts meet and quench each other. Figure 1 
shows the medial axis for a 2D shape and the medial 
surface of a 3D shape. Note that in Figure 1(c) only one 
patch  of  the  medial  surface  is  shaded,  but  in  fact  the  
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Figure 1. A medial axis in 2D (a and b) and a medial 

surface in 3D (c) and a few examples of inscribed discs 
(2D) and ball (3D). 

medial surface consists of many different patches 
bounded by the lines drawn in red and the edges of the 
box in black. The term medial is sometimes used to refer 
to the medial axis (in 2D) or the medial surface (in 3D). 

The skeleton is defined as the locus of centers of 
maximal inscribed (open) balls (or disks in 2D) [72]. 
More formally, let X ⊂  R3 be a 3D shape. An (open) ball 
of radius r centered at x ∈  X is defined as Sr(x) = {y ∈  
R3, d(x, y) < r}, where d(x, y) is the distance between 
two points x and y in R3. A ball Sr(x) ⊂  X is maximal if 
it is not completely included in any other ball included in 
X [62]. The skeleton is then the set of centers of all 
maximal balls included in X. The process of obtaining a 
skeleton is called skeletonization. 

Although the medial axis/surface and the skeleton are 
closely related, they are not exactly the same. Using the 
example given in [72], both the medial axis and the 
skeleton of a 2D ellipse are represented by a line segment 
but the segment’s end-points belong only to the skeleton 
and they do not belong to the medial axis. Given the small 
differences between the medial axis/surface and the 
skeleton, which only arise in the limit case, many authors 
use the terms medial axis/surface and skeleton 
interchangeably. 

A major disadvantage of the medial surface 
(axis)/skeleton is its intrinsic sensitivity to small changes 
in the object’s boundary due to the way it is defined 
[6][31]. An illustrative example in 2D is shown in Figure 
1(b) where it can be observed how a small change in the 
object’s boundary causes a large change in the skeleton.  

In many applications however, a concise representation 
of 3D objects with curve arcs or straight lines is desirable 
because of its simplicity. For example, animation 
traditionally uses an IK (inverse-kinematics) skeleton 
consisting of a small number of connected line segments 
representing for instance the torso, arms and legs. Other 
applications, such as virtual navigation, also require a set 
of curve paths. This line-like representation of a 3D object 
is often called the centerline or the curve-skeleton [120] 
and is a simplified 1D representation of the original 3D 
object, consisting only of curves [38]. Figure 2 shows 
curve-skeletons of several 3D objects.  

In spite of its simplicity, until recently there was no 
rigorous definition of a curve-skeleton. In a very recent 
work [38], Dey and Sun  propose  a  possible definition of 

 
Figure 2. Examples of curve-skeletons of different 3D 

objects. 

the curve-skeleton as a subset of the medial surface with 
the help of a medial geodesic function. However, as 
discussed in section 3 under “Centered”, defining the 
curve-skeleton as a subset of the medial axis may be too 
restrictive to be useful in some applications.  

In this paper, we do not attempt to give a precise 
definition of the curve-skeleton. Our goal is to provide an 
analysis of the different aspects of this structure and lay 
the foundation for further efforts to formulate such a 
definition. For the purpose of this work, the curve-
skeleton is defined as a simplified 1D representation of a 
3D object. 

2.1 The Discrete Case 
The above definitions were formulated in continuous 
space. However, many of the applications that need 
skeletonization have discrete 3D datasets, such as those 
acquired using medical scanners. In discrete space, the 
definitions are analogous to the continuous case, but 
problems may occur because of discretization. For 
example, a maximal ball may touch the discrete boundary 
of an object in a single point in cases other than the limit 
case, such as the case of an object whose width is an even 
number of voxels. Since the diameter of the ball is always 
an odd number of voxels (assuming the center of the ball 
must be one of the voxels), the ball will be maximal when 
it touches the boundary on only one side. As a result, in 
order to include all centers of maximal balls, the discrete 
skeleton may be more than one image element (pixel or 
voxel) thick. Furthermore, resolution can cause a loss of 
detail for certain objects such as merging or even 
disappearance of small features. 

Some skeletonization algorithms work on continuous 
geometric data, others deal with discrete objects only. 
Conversion between these two representations can be 
performed using well-known algorithms: continuous 
geometric data can be transformed into a discrete 
representation by voxelization [116], while voxelized data 
can be converted into a geometric representation using a 
surface extraction algorithm [75]. In this paper, we will 
consider mainly the discrete case, but for the sake of 
completeness we also include references to methods 
operating on continuous geometric data. 

In order to facilitate an easy understanding of some of 
the definitions below, we need to introduce a few 
concepts from digital topology. For a complete review of 
digital topology, please see [62]. 

(a) 

(b) 
(c) 
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2.2 Short review of digital topology 
Let us consider the discrete space Z3. Each point p in this 
space is called a voxel (from volume element) defined by 
its three integer coordinates (px, py, pz). A voxel can be 
viewed as a cube, having 6 faces, 12 edges and 8 corners. 
Two voxels p and q ∈  Z3 are 6-adjacent if they have a 
common face; they are 18-adjacent if they have a 
common face or edge, and 26-adjancent if they have a 
common face, edge or corner. The set of 6-adjacent 
voxels to a voxel p is also known as the 6-neighborhood 
of p denoted by N6(p). Similarly, N18(p) and N26(p) are 
the 18- and 26-neighborhoods of p. By N*

6(p) we denote 
N6(p) \ {p}; N*

18(p) and N*
26(p) are similarly defined. 

An n-path is a sequence of voxels p1, … pk with pi n-
adjacent to pi+1, where n could be 6, 18 or 26. An n-
connected component is then a set of voxels such that any 
two such voxels are connected by an n-path included in 
that component. 

A 3D binary digital picture is described by the 
quadruple P = (Z3, m, n, B), where B ⊆  Z3 is the set of 
black voxels representing the object in the picture (also 
known as object voxels), while Z3 \ B represents the 
background (white) voxels.  The pair (m, n) specifies the 
object and background connectivity respectively.  In order 
to avoid topological paradoxes such as objects being both 
connected and disconnected [62], different values must be 
chosen for m and n; common choices are (26,6) and (18, 
6). 

A cavity is a background connected component 
surrounded by an object component (an empty space 
inside the object). While a mathematical definition of a 
tunnel is difficult [62][105][121], we can turn to intuitive 
examples of tunnels in well-known objects. The center 
hole of a donut or the empty space between the handle of 
a teapot and its main body are examples of tunnels. 
Algorithms to detect and characterize cavities and tunnels 
in a 3D object are described in [121]. 

3 CURVE-SKELETON PROPERTIES 
In this section, we describe a set of desirable curve-
skeleton properties, which we compiled from analyzing 
the literature on the subject and a number of different 
applications of curve-skeletons in computer graphics and 
visualization. These applications will be presented in the 
Section 4. 

For the following discussion, we will consider the 
discrete 3D case unless otherwise specified. We will use 
Sk(O) to denote the curve-skeleton of a 3D object O. Our 
discussion includes the following curve-skeleton 
properties: homotopic, invariant under isometric 
transformations, reconstruction, thinness, centeredness, 
reliability, smoothness, component-wise differentiation, 
robustness, efficient to compute and hierarchic. 

Homotopic (topology preserving): The curve-skeleton 
should be topologically equivalent to the original object 
[62][72][105]. Preservation of topology can be stated 
simply as follows: Two objects have the same topology 
if they have the same number of connected 
components, tunnels and cavities. 

As pointed out in [62], the above formulation applied to 
an object O2 derived from an object O1: “object O2 
preserves the topology of object O1” is meaningful only if 
an additional constraint is added: object O2 is obtained 
from O1 by only removing object voxels (no adding). 
Otherwise, object O2 could end up having a completely 
new configuration, but still have the same topology. For 
example, by adding object voxels to O2, O2 may grow 
limbs where O1 did not have them, but still have the same 
number of connected components, tunnels and cavities. 
With this observation, the above definition of topology 
preserving is meaningful in the context of skeletonization, 
where the skeleton S is a subset of the original object O.  

Of course, we cannot have cavities in a 1D curve, so in 
a strict sense, a curve-skeleton cannot preserve the 
topology of an object with cavities. To accommodate 
objects with cavities, a relaxed definition of topology 
preserving can be formulated using the loops of a 1D 
curve [107]: the curve-skeleton should have at least one 
loop around each cavity of the original object. Think of a 
hollow sphere: the curve-skeleton can be just a circle – a 
single loop – or many circles in different orientations but 
all surrounding the same cavity. The latter version may 
better convey the true shape of the object as shown in 
Figure 3, but clearly, this is application dependent. 

 

 
Figure 3. Possible curve-skeletons of a hollow sphere. 

However, tunnels in the original object also create loops 
in the curve-skeleton. Thus, we will reformulate the 
relaxed definition as follows: The curve-skeleton S 
preserves the topology of the original object O in a 
relaxed sense if it has the same number of connected 
components and at least one loop for each tunnel and 
cavity in the original object.  

This formulation has the same constraint as the previous 
one with respect to configuration. Of course if the object 
does not have any tunnels or cavities, the curve-skeleton 
should have no loops at all.  

Such a definition could be useful for iconic/abstract 
representation of objects, where all topological features 
must be represented by the curve-skeleton. In addition, it 
could be used to develop an algorithm that checks the 
homotopy property of a curve-skeleton. The loops in a 

(a) (b) (c)
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curve-skeleton can easily be determined by performing a 
depth-first search on the curve-skeleton, while tunnels and 
cavities of a 3D object can be determined using the 
method described in [121]. 

Invariant under isometric transformations: Given an 
isometric transformation T (a transformation in which the 
distances between points are preserved), the curve-
skeleton of the transformed object T(O), denoted by 
Sk(T(O)), should be the same as the transformed curve-
skeleton of the original object. Formally, the invariance 
criterion is given by: T(Sk(O)) = Sk(T(O)). This 
property is important for matching applications where the 
curve-skeleton is used as a shape descriptor. In such 
applications it is common to have similar objects in 
different orientations that nevertheless still need to be 
matched and for this reason, the shape descriptor must be 
insensitive to object orientation. 

Reconstruction [43][88] refers to the ability to recover 
the original object from the curve-skeleton. Given the 
relation of curve-skeleton to the medial surface/skeleton 
and the definition of the skeleton as the set of centers of 
maximal inscribed balls, an obvious choice of 
reconstruction method is to compute the union of 
maximal inscribed balls centered at each curve-skeleton 
point (or discrete medial surface point) [21][44]. The 
radius of each ball is given by the “distance transform 
value”, which specifies the distance to the closest point on 
the boundary of the object. If we denote the 
reconstruction operation by Rec(skeleton), then accurate 
reconstruction means that Rec(Sk(O)) = O. 

A 3D object can be completely reconstructed from its 
medial surface/skeleton representation by computing the 
union of maximal inscribed balls. This property has an 
immediate application in shape compression and volume 
animation [44]. However, in general, when using the ball-
growing approach, accurate reconstruction is not possible 
from the curve-skeleton alone since it is only a subset of 
the medial surface. That is, in general, Rec(Sk(O)) ≠ O. 
To test the degree of reconstruction (accuracy) possible 
from a given curve-skeleton, every point must be 
equipped with the distance transform value determined in 
the original object. Then, the difference volume O–
Rec(Sk(O)) will provide a quantifiable measure of the 
ability to reconstruct the object. 

Reconstruction can be improved by storing more 
information in each curve-skeleton point and/or by 
increasing the number of branches in the curve-skeleton. 
For instance, one could store the three radii of a maximal 
inscribed ellipsoid and replace ball-growing with an 
ellipsoid-growing algorithm. Alternatively, one could 
simply extract a curve-skeleton with many more branches 
that should reconstruct more of the original object using 
the classic ball-growing approach. 

Intuitively, the ability to reconstruct an object from an 
abstraction, such as the curve-skeleton, might seem to be 

an indication of the quality of that shape abstraction for 
shape analysis tasks. After all, if the degree of 
reconstruction is very low, it means the curve-skeleton 
does not capture much of the original object. However, 
recent work has shown this is not the case. In [113], some 
of the best performing shape descriptors for shape 
matching cannot reconstruct the object at all. 
Additionally, in [33], the curve-skeleton showed good 
results for retrieving similar shapes from a large database 
of general 3D objects. 

Thin: Curve-skeletons should be one-dimensional, that 
is at most one voxel thick in all directions, except at joints 
where the curve-skeleton might become thicker to ensure 
connectivity between the different branches. 

We can distinguish three types of curve-skeleton points 
[22] regular points on a 1D curve that have exactly two 
neighbors, end-points of a curve that have exactly one 
neighbor, and junction points (where curves meet), which 
can have three or more neighbors. The thinness property 
can easily be checked if the junction points are known in 
advance. Some curve-skeletonization methods directly 
identify junction points [32][68]. If junction points are not 
known in advance, they have to be identified with another 
method. 

Thinness and reconstruction are two conflicting 
properties. Even for objects whose medial surface actually 
contains only curves (like tubular objects), a one-voxel 
thick curve-skeleton may not contain all the necessary 
maximal balls to accurately reconstruct the object 
(remember that a discrete medial surface/skeleton is 
usually more than one voxel thick owing to the discrete 
nature of the object). 

Centered: An important characteristic of a curve-
skeleton is its centeredness within the object. To achieve 
perfect centeredness, it is required for the curve-skeleton 
to lie on the medial surface since the medial surface is 
centered within the object. This criterion alone is not 
enough and in addition we require the curves to be 
centered within the medial surface patches they belong to 
[107][38]. In shape compression and some scientific 
applications such as vortex core extraction [11], exact 
centeredness of the curve-skeleton may be essential. 
However, in most cases, exact centeredness of the 
extracted curve-skeleton is not required or desired. Given 
the well known sensitivity of the medial surface to small 
perturbation on the boundary of the object [6][31], 
constraining the curve-skeleton to lie on the medial 
surface may make it sensitive to such changes as well. 

Instead of exact centeredness, an approximate 
centeredness (what we call relaxed centeredness) is 
probably enough for many applications such as virtual 
navigation or animation. For example, in a virtual 
colonoscopy application, reliability (see below) and 
smoothness of the navigation path are more important 
than exact centeredness [61]. We still want the navigation 
path to be close to the center of the object, but being one 
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or two voxels away from the exact center is not a big 
concern. 

One possible way to quantify the centeredness of a 
curve-skeleton is to seed a number of uniformly 
distributed radial rays in a plane normal to the direction of 
the curve-skeleton at each one of it’s points and measure 
the distance to the boundary along each of these rays. 
Centered points should have the same distance to the 
boundary along each pair of opposite rays. 

Reliable: Reliability [52][61] refers to the property of 
the curve-skeleton that every boundary point (point on 
objects surface) is visible from at least one curve-skeleton 
location. In other words, for any boundary point, there 
exists a straight line connecting it to a curve-skeleton 
point that does not cross any boundary. The term reliable 
is used in relation to virtual endoscopy where it ensures 
that the interior organ surface is fully (reliably) examined 
by the physician performing the virtual procedure.  

A brute-force algorithm to test the reliability of the 
curve-skeleton checks the visibility of each boundary 
point with a straight line to every curve-skeleton point. 
Boundary points that cannot be connected without 
intersecting the surface are not visible. Efficient visibility 
computation can be done following the solutions from 
[52]. 

Junction Detection and Component-wise 
Differentiation: The curve-skeleton should be able to 
distinguish the different components of the original 
object, reflecting its part/component structure. This says 
that the logical components of the object should have a 
one-to-one correspondence with the logical components 
of the curve-skeleton (which are curve arcs).  

There is no rigorous definition of logical components of 
a 3D shape, although several attempts have been made. 
For example in [122], meaningful components are defined 
as components that can be perceptually distinguished 
from the remaining object. In [60], the component 
structure of a 2D shape is defined using a combination of 
substance and connection measures computed around 
junction points of the medial axis using “visual 
conductance”.  The Reeb graph can also be used to 
identify object components (see Section 5.3) but its 
definition is dependent on the choice of the generating 
function. 

As long as the curve-skeleton has identifiable joints or 
junction points, a partitioning of the original object can be 
performed to produce a one-to-one correspondence 
between the different components in the object and the 
curve-skeleton (for use in animation or mesh 
decomposition for example). 

We would like to make a clear distinction between 
curve-skeletonization methods that can identify the joints 
or junction points before or during the extraction of the 
curve-skeleton and the methods that extract these joints 
after the curve-skeleton is produced. If the resulting 
curve-skeleton is only one voxel thick in all directions, 

detection of joints as a post-processing step is trivial: they 
are the points having more than two neighbors. It is much 
harder to identify these junction points before extracting 
the full curve-skeleton. When extracting joints as a post-
processing step, the identified joints are as good as the 
underlying curve-skeleton and no claims can be made 
about their significance or stability with respect to the 
original shape. Joints identified as a first step of the curve-
skeletonization process carry more significance simply 
because they must be related to some intrinsic property of 
the original object since the curve-skeleton is constructed 
afterwards. It is the difference between the joints being a 
by-product of the curve-skeleton or being its source. 

 Component-wise differentiation is different from 
homotopy in that it deals with logical perceptual 
components of a single connected object while the latter is 
concerned with geometrical connected components 
forming different objects. 

Checking whether a curve-skeleton satisfies this 
property is a difficult task because the definition of object 
component is not precise enough, involving human 
perception, which is inherently subjective. However, 
application specific definitions could be used for such 
purpose: for example, a curve-skeleton suitable for 
animation tasks would be one that has a separate branch 
for each of the limbs and/or parts of limbs of the model 
being animated. For simple models, the limbs can be 
easily defined manually or even automatically in special 
cases. A hierarchical skeleton (see below) could be useful 
here to produce levels of meaningful components. 

Connected: This is a consequence of homotopy. If the 
curve-skeleton corresponds to a single connected object, 
then by maintaining the topology of this object the curve-
skeleton would have to consist of a single connected 
component itself.  

Robust: As shown in Figure 1(b), the medial axis is 
very sensitive to small changes in the boundary. A 
desirable property of the curve-skeleton is to exhibit weak 
sensitivity to noise on the boundary of the object, that is, 
the curve-skeletons of a noise-free object and the curve-
skeleton of the same object with noise should be similar. 
A robust curve-skeleton cannot be perfectly centered. 
Exact centeredness would constrain the curve-skeleton to 
the medial surface, which is extremely sensitive to 
boundary perturbations. 

Smooth: Smoothness is not only an aesthetic property, 
but is actually useful in some applications. For example, 
in virtual navigation, which uses the curve-skeleton as a 
camera translation path, the path should be as smooth as 
possible to avoid abrupt changes in the displayed image. 

We can define smoothness of a curve segment as the 
variation of the curve tangent direction as we move along 
the curve. More precisely, we can measure the angles 
between tangent directions at successive locations along 
the curve and take the standard deviation of these values 
as a measure of variation. To ensure smooth navigation, 
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the variation in tangent directions as we move from one 
point to the next along a segment should be as small as 
possible. 

Hierarchy: Because the curve-skeleton is an 
approximation of the complex components of an object, 
the curve-skeletonization process and the curve-skeleton 
itself should reflect the natural hierarchy of these 
complexities [35][59]. A hierarchical approach is useful 
because it can generate a set of curve-skeletons of 
different complexities that could be used in many 
different applications. In a strict hierarchy, the curve-
skeleton at a certain level in the hierarchy contains all 
curve-skeletons from the layers below as subsets. Such a 
strict hierarchy is useful in applications using different 
resolutions during processing such as multi-resolution 
matching. 

A different kind of hierarchy, mostly useful in 
animation, consists in defining the hierarchical relations 
between parts of the same object. For example, the torso 
is the root of the hierarchy with the limbs and head as its 
children. This kind of definition is useful for animation as 
it allows a whole tree of object components to be 
manipulated by manipulating the root of the tree. For 
example, the entire arm tree (arm, forearm, hand and all 
fingers) can be moved by manipulating the shoulder joint. 

There are other two criteria that relate to the algorithm 
used to compute the curve-skeleton. First, the algorithm 
should be efficient: many applications need real-time 
computations.  Second, some algorithms can handle point 
sets (i.e., where the connectivity is not specified and there 
is no inside/outside information) or other object 
specifications, not just a voxelized representation. 

Not all properties described above are essential to all 
types of applications. Furthermore, some of the properties 
may be conflicting, such as thinness and reconstruction or 
robust and centered.  

As a result, various algorithms that extract curve-
skeletons usually satisfy only a subset of these properties, 
depending on the application. 

In the next section we describe a number of applications 
that use curve-skeletons. 

4 USES OF CURVE-SKELETONS IN VISUALIZATION  
Since they were first introduced, curve-skeletons have 
found uses in many areas (e.g., image processing, 
visualization, animation, etc.). In this section we present 
an overview of some of these applications. This overview 
is not comprehensive, many other applications exist. 

One of the first uses of the curve-skeleton was in 
virtual navigation [96][130], exploiting its centeredness 
property to generate collision-free paths through a scene 
or through an object. Given a scene composed of 3D 
objects, the curve-skeleton of the background gives a 
collision-free path through the scene. In virtual 
endoscopy, curve-skeletons are used to specify collision 
free paths for navigation through human organs. 

Traditional endoscopic methods are invasive and often 
uncomfortable to patients. A virtual endoscopy system 
can produce images similar to those obtained using the 
traditional technique but in a non-invasive way. After 
imaging, the organ is “skeletonized” and a virtual camera 
is translated along this curve-skeleton path allowing the 
inspection of the respective organ. Clinical applications 
include colonoscopy [54][61], bronchoscopy [96], 
angioscopy [12] and others. A reliable navigation path 
ensures the interior organ surface can be fully examined 
by the physician performing the virtual procedure 
[52][130]. 

In traditional computer graphics, skeletons are used 
extensively to specify animation [1][19][83]. These 
skeletons (sometimes referred to as IK-skeletons) control 
the polygonal representation of the character being 
animated. Surface polygons are attached to, and 
manipulated through, this simple stick-like figure. While 
most of the IK-skeletons are specified by an animator, 
recently, there have been methods to compute the skeleton 
and the “skinning” (polygon correspondence) 
automatically [20][73][122][129]. A simplification of the 
curve-skeleton can be successfully used as an IK skeleton 
by replacing curve arcs with straight lines. Volumetric 
objects can also be animated and manipulated using the 
same type of paradigm [44]. In [125] and [28] the IK 
skeleton is automatically detected from a sequence of 
volume datasets. 

Surgical planning and radiation treatment require 
accurate extraction (segmentation) and quantification of 
specific anatomical structures from CT (computed 
tomography), MRI (magnetic resonance imaging), MRA 
(magnetic resonance angiogram) or ultrasound data. This 
is especially true for blood vessels and nerve structures. 
Since these structures have a characteristic tubular shape, 
methods aimed specifically at extracting the centerline of 
such tubular objects from medical images have been 
developed [9][10][40][41] using field-specific knowledge 
(intensity variation of the blood vessels, connectivity), or 
simply the volumetric representation of the vessels [89]. 
The centerline can also be used to aid in other image 
processing operations such as edge detection and 
segmentation [98][99]. Other uses include curved planar 
reformation (flattening) [55][58], detection of stenosis 
[90][115], aneurisms or vessel wall  calcifications [117], 
deforming volumes: unwinding convoluted objects to 
allow a more efficient inspection of the overall structure 
or to remove occlusion  (e.g., colon straightening  [114]). 

A common operation in medical imaging is the 
registration of two images from the same patient taken 
with different modalities (MRI, CT, MRA). Registration 
is performed by aligning some structures that are visible 
in both images. One approach is to reduce the 
dimensionality of the problem by extracting the skeleton 
of the structure from both images and then aligning the 
skeletons [10][42][98]. 



7 

Another application is matching of 3D objects: given a 
query object, the task is to find similar or identical objects 
in a database by using the curve-skeleton 
[27][33][53][118]. If the curve-skeleton can differentiate 
the part structure of the original object, part matching is 
also possible, where only parts of the objects are matched 
against the query. In addition to matching, it directly 
provides registration of the part in the whole object 
[33][118].  

Shape metamorphosis (morphing) is the process of 
generating smooth transitions between two shapes, 
creating the impression that one object is being smoothly 
transformed into another. One of the most difficult tasks 
in generating a successful metamorphosis is determining 
the correspondences between the two shapes used to drive 
the interpolation process. Various trade-offs are made 
between allowing the user full control over the process 
(thus turning it into a mostly manual process) and 
completely automating the correspondence finding 
algorithm. The curve-skeleton can be used in this context 
for its simplicity, allowing the user to quickly specify 
correspondences on the skeletons or enabling matching 
algorithms to find correspondences more efficiently. 
Additionally, the interpolation process can be performed 
directly on the skeleton [18][64][136]. 

Decomposing a polygonal mesh into components is 
desirable for applications that treat objects as a sum of 
components. Such a decomposition can be assisted by 
using the curve-skeleton if it has the ability to distinguish 
the components of the original object [28][70]. In [59] an 
inverse approach is taken, where a 1D skeleton is 
extracted using the mesh decomposition results. Related 
geometric uses of skeletons include surface 
reconstruction [4][127] and mesh repair [68]. In [49] 
and [134], the more challenging problem of segmenting 
and quantifying an unorganized point cloud is 
approached using a curve-skeleton. 

In [119], the curve-skeleton is used to define a “skeletal 
dimensional reduction” for the CAD field. It is also 
shown how such a representation can be used to reduce 
boundary value problems over complex solids to lower-
dimensional problems over the skeleton. Skeletons have 
also been used to improve the efficiency of collision 
detection of volumetric objects [45] or in surgical 
simulations [131] and as a general data structure for 
graphical objects [100]. In [55], a curve-skeleton in 
combination with convolution surfaces is used for 
implicit modelling of 3D objects. 

In analysis of scientific data, curve-skeletons are used 
to make complex topologies more easily understandable. 
Furthermore, skeletons can be used for reduced modelling 
and to explain simple physical phenomena. Examples 
include plume visualization [108], vortex core 
extraction [11], feature tracking [128], protein 
backbone modelling [50][69], and many others. 

The previous discussion is by no means exhaustive, but 
gives a sample of popular uses of skeletons in 
visualization. Some applications have extra data available 
to help in the curve-skeletonization process such as 
velocity fields in the case of vortex core extraction [11] or 
blood flow data in the case of vessel tracking (e.g., 
[9][10][40]), while others use only the 3D object. In this 
paper, we concentrate on the more general problem where 
extra information is not available. 

5 ALGORITHM CLASSES 
There are many different skeletonization algorithms for 

both 2D and 3D. Although some of the 2D algorithms 
reportedly extend to 3D, we restrict our discussion to 
algorithms explicitly designed for 3D. The discussion 
below reviews general 3D curve-skeletonization 
algorithms, i.e., the generation of a 1D curve-like 
representation from a 3D object. However, for 
completeness we do include some medial surface 
algorithms since these medial surfaces could be further 
reduced to a curve-skeleton [120][107]. Unless otherwise 
stated, we consider the 3D objects to be represented by 
voxels on a regular grid.  

A commonly used classification scheme present in the 
literature divides the skeletonization algorithms into the 
following classes [80][123]: topological thinning 
(grassfire propagation), distance transform based (ridge 
detection) and  Voronoi diagram based. However, many 
of the surveyed methods that produce curve-skeletons use 
pieces from several classes listed above to obtain a curve-
skeleton. For example, there are thinning algorithms that 
use the distance field information to determine the 
thinning order, or some distance field methods which use 
thinning to prune the skeleton. Instead, we initially 
categorize the algorithms based on the underlying 
implementation of the initial step into the following 
classes: (1) thinning and boundary propagation (2) 
distance field based (3) geometric and (4) general-field 
functions.  

5.1 Thinning and Boundary Propagation 
Thinning methods attempt to produce a curve-skeleton by 
iteratively removing voxels from the boundary of an 
object until the required thinness is obtained. All thinning 
algorithms operate in the discrete (voxel) space and rely 
on the concept of simple point, introduced by 
Morgenthaler in 1981 [84]. A simple point [13][62][63] is 
an object point (voxel) that can be removed without 
changing the topology of the object (see [62] for a 
complete review of digital topology). An important 
property of simple points is that they can be locally 
characterized, that is, one can determine if a voxel is 
simple or not by only inspecting its local neighborhood, 
making thinning algorithms much more efficient. 

The thinning process starts from the object’s boundary 
and continues inward until no more simple points can be 
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removed. At every iteration, each boundary voxel is tested 
against a set of topology preserving conditions and 
possibly removed. The conditions are usually 
implemented as templates (or masks), of size 3x3x3 or 
larger. The center of a mask is placed on the voxel being 
tested and covers its entire local neighborhood. Each of 
the voxels in the mask has a value of “0”, “1” or “don’t 
care”. A value of “0” must match a background voxel, a 
value of “1” must match an object voxel, while a “don’t 
care” can match either a background or an object voxel. 

However, removing all simple points from the object 
produces excessive shortening of the curve-skeleton 
branches. This is because all the end-points of curve-
skeleton curves are simple points themselves (i.e., 
removing them will not change the topology of the 
object). Additional conditions are used to prevent removal 
of surface or curve endpoints in order to maintain the 
geometrical properties of the object.  

There are several subclasses of thinning methods based 
on how simple points are detected and considered for 
removal. 

Directional thinning methods remove voxels only 
from one particular direction in each pass (for example, 
North, South, Up, Down, East and West) using different 
numbers of directions and conditions to identify endpoints 
[28][48][66][74][94][95][126]. These methods are 
sensitive to the order in which the different directions are 
processed and the resulting skeletons may not be centered 
within the object.  

Subfield sequential thinning methods divide the 
discrete space into several subsets named subfields and at 
each sub-iteration only voxels belonging to a one of the 
subfields are considered for deletion. Different number of 
subfields can be used in 3D: 2 [77][78], 4 [76][79] or 8 
[13][104]. For example, in the 2-subfield approach [77], 
two voxels are in the same subfield if they share an edge. 

Fully parallel [24][39][76][82] algorithms consider all 
boundary points for deletion in a single thinning iteration. 
In order to maintain topology, the neighborhood that 
needs to be inspected when deciding whether a voxel is 
deletable or not must be extended past the immediate 26 
neighbors.  

Some thinning methods produce a surface-skeleton in 
the first stage and continue to thin until a one voxel thick 
curve-skeleton is obtained [24]; others directly produce a 
curve-skeleton and this usually involves using a different 
set of templates. Additionally, a 2.5D algorithm aimed 
specifically at reducing a surface skeleton to a curve-
skeleton by thinning is described in [120]. 

Figure 4 shows the thinning process on a 2D shape. At 
each iteration, the boundary points are marked with “B” 
and if they are simple points, they are removed before the 
start of the new iteration. At the last iteration, no points 
can be removed. 

 

 
Figure 4. The thinning process on an example 2D shape. 

Boundary points are marked “B” at the beginning of 
each iteration and then removed if they are simple. 

Most thinning algorithms are designed and proven 
correct for a specific (6, 8 or 26) connectivity (see Section 
2.2). The correctness proof deals with preservation of the 
original objects topology. 

5.2 Using a Distance Field 
The distance transform or distance field is defined for 
each interior point P of a 3D object O as the smallest 
distance from that point to the boundary B(O) of the 
object: 

)),((min)(
)(

QPdPD
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= , where d is some distance metric. 

Various distance functions can be used such as the 
Euclidean distance or an approximation such as the 
<3,4,5> chamfer metric [23]. A distance field can also be 
approximated using fast marching methods 
[103][111][123][124]. Figure 5 shows the color-coded 
distance field values on a slice of a 3D chess piece shape. 
The color map ranges from blue for small distance field 
values to red for large values.  

The ridges of this distance field correspond to voxels 
that are locally centered within the object. Most of the 
methods in this class attempt to find these voxels. These 
act as potential candidates (from the larger pool of object 
voxels) for curve-skeleton points. Several approaches are 
used to find candidate voxels: in distance ordered 
thinning approaches [36][44][101] a thinning algorithm 
uses a priority function computed over the distance field 
to select candidate voxels for removal, gradient 
searching [17] involves detecting neighborhoods of non-
uniform gradient and flagging those points as candidate 
voxels, divergence computation is used in [25] as the 
priority function and a user-defined threshold blocks the 
removal  of  simple  points  with  lower  divergence value,  

 

 
Figure 5. A color-coded slice of the distance field of a 3D 

shape. 
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parameter controlled thinning involves comparisons 
between the distance field value at a voxel and the 
average distance field value of its neighbors [43]. In the 
geodesic front propagation algorithm described in [96], 
candidate voxels are local maxima of the distance field 
detected on the geodesic front propagating from the root 
of the 3D object. Thresholding the bisector angle [81] or 
surface shrinking along the gradient of the distance field 
[109] are other methods for producing candidate voxels. 
In voxel coding approaches [138], the distance field, 
which measures the distance from the boundary, is 
combined with a distance-from-a-source field to generate 
a set if candidate voxels. In [103], the distance field is 
combined with several distance-from-a-source fields 
generated using fast marching fronts of various speeds. 

The set of candidate voxels is usually a fairly large set 
and the next step is to somehow prune it down to a 
manageable size. Various criteria can be used in this step 
to “weed out insignificant extreme points” [129], such as: 
sphere coverage of a path tree [129], boundary visibility 
from candidate voxels [52], thinning [123], or clustering 
[118].  

After the pruning step, the remaining voxels are usually 
disconnected and the final step involves re-connecting 
them in order to produce a set of 1D curves. For 
connectivity, most algorithms use minimum spanning 
trees [118][130], shortest paths [52][123][129] or other 
graph algorithms. In [137] an “LMpath” defines the 
connectivity of local maxima clusters, while in [17] the 
gradient of the distance field is used to connect new 
voxels to the already connected set. In [43], a recursive 
midpoint subdivision algorithm identifies the closest 
candidate in between two already selected voxels to build 
a 1D path between two user-selected end points. 

Most of the distance field-based algorithms have these 
three steps: (1) find ridge points (local maxima, saddles), 
(2) prune and (3) connect.  

Some methods may first connect the set of candidate 
voxels and then prune it by extracting shortest paths from 
the connected set [17], others explicitly maintain the 
connectivity while pruning, combining steps 2 and 3. An 
alternative is provided by the fixed topology skeleton, 
which is a set of a fixed number of connected active 
contours driven by the underlying distance field [47]. 

A 2.5D method presented in [107] starts from a medial 
surface representation of 3D objects and, for each surface 
point, it computes the distance to the boundary of the 
surface. The candidate voxels (centers of maximal 
geodesic discs) are connected using gradient guided path 
growing. 

The distance field based methods can accurately extract 
the medial surface; however they cannot extract a curve-
skeleton from arbitrary objects without employing 
additional techniques to prune the medial surface. For 
example all voxels on the medial sheet shaded in Figure 
1(c) have the same distance field value. Therefore, some 

sort of pruning must be used to simplify it to a set of 
curves. 

The main advantage of these methods is that 
computation of the distance field is very fast and it is 
usually needed by the application afterwards. 
Furthermore, for tubular objects, the distance field 
approach works very well. 

5.3 Geometric methods 
Geometric methods apply to objects represented by 
polygonal meshes or scattered point sets. 

A popular approach is to use the Voronoi diagram 
[26][92][91][93] generated by the vertices of the 3D 
polygonal representation or directly by a set of 
unorganized points [4][7][86]. The Voronoi diagram 
represents a subdivision of the space into regions that are 
closer to a generator element (a mesh vertex in the case of 
a 3D model) than to any other such element. The internal 
edges and faces of the Voronoi diagram can be used to 
extract an approximation of the medial surface (skeleton) 
of the shape. A curve-skeleton can be extracted from this 
medial surface approximation by pruning it to a 1D 
structure. In [132], a number of “domain balls” (non-
intersecting maximal inscribed balls) are detected, whose 
centers are later connected into a curve-skeleton using 
surface connectivity information. In [38], a curve-skeleton 
is computed by eroding the Voronoi diagram 
representation using the medial geodesic function as a 
priority function. 

Other methods attempt to directly identify the medial 
surface of a 3D polyhedral by tracing the seams of the 
medial surface: [37][102][110][112][135] 

Cores and M-reps [30][85][100][97]  are also medial-
axis/surface approaches. A core is a locus in a space 
whose coordinates are position, radius, and associated 
orientations. The location of the core represents the 
middle of the figure and the spread of the core represents 
the width of the figure. M-reps are a generalization of the 
Core concept. The M-rep models the medial surface using 
a “web” of connected atoms. Each atom has a position 
and additional information describing the shape locally, 
such as: width, a local figural frame (which implies the 
figural directions) and an object angle between opposing 
corresponding positions on the implied boundary. 

A similar structure is the shock scaffold, which relies 
on the concept of contact spheres [67][68] and represents 
the medial axis/surface by a set of shock curves, defined 
as the intersection of medial surface sheets (not the curve-
skeleton). 

The methods described above can be labeled as medial-
axis/surface based. The main disadvantage of medial-axis 
based geometric methods is their sensitivity to noise. For 
example, Amenta's power shape [4] contains a large 
number of unwanted branches that need to be pruned to 
extract a simpler skeleton [7]. Furthermore, the above 
described methods are more computationally intensive 
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than the thinning/distance field based methods and 
produce a medial surface, not a curve-skeleton. 
Nevertheless we mention these methods here because 
reducing a surface skeleton to a curve-skeleton is possible 
using the curve thinning algorithms [120][107]. 

There are other geometric methods that avoid the 
medial axis altogether, and produce a 1D skeleton 
directly.   

Reeb graph based shape descriptors, with roots in 
Morse theory, are 1D structures encoding the topology 
and geometry of the original shape.  The Reeb graph 
captures the topology of a compact manifold by following 
the evolution of the level sets of a real-valued function 
defined on the respective manifold. More formally [14]: 

Given a real-valued function f, defined on a 
compact manifold M, f: M → R, the Reeb graph 
is the quotient space of M × R defined by the 
equivalence relation ~ given by:  
• (x1, f(x1)) ~ (x2, f(x2)) iff f(x1) = f(x2) and  
• x1 and x2 are in the same connected component 

of f -1(f(x1)) (or f -1(f(x2))). 
In other words, the equivalence classes defined by ~ 

consist of the connected components of the level sets of f. 
Nodes in the Reeb graph correspond to the critical points 
of the function f, (i.e., points where the gradient of f is 
zero) and edges of the graph represent connections 
between critical points. According to Morse theory, the 
object changes its topology only in connection to the 
critical points of f, so the edges of the Reeb graph can be 
thought of as representing different components of the 
object and the nodes can be regarded as connections 
between these different components. 

The Reeb graph is not a curve-skeleton: it is not even 
defined in the same space as the original object. However, 
an embedding of the Reeb graph into 3D space can be 
attempted by mapping each edge into a sequence of 3D 
points defined for example as the centers of the successive 
level-set contours associated with the respective edge. 
This defines a curve-skeleton for the original object [65]. 
Figure 6 shows an example for a 2D shape. 

Extensions of the Reeb graph to polygonal meshes have 
been proposed such as the Extended Reeb Graph [8][14] 
or the Discrete Reeb Graph [134]. The choice of the real-
valued function f distinguishes the various algorithms. 
The height function used in [8][134] is sensitive to the 
object’s orientation. The Euclidean distance from a point 
in space, usually the barycenter of the mesh (used in 
[15][16]) does not depend on the orientation of the object, 
but it is affected by changes in the underlying mesh as a 
result of articulated motion. Using the geodesic distance 
instead of the Euclidean distance solves this problem but 
the source point must now be a vertex of the mesh. The 
shortest path distance to a given source point [65][127] is 
sensitive to the selection of the source point. 

 

 
Figure 6. An embedding of the Reeb graph into the 

original image space. Each node is taken to be the 
centroid of its corresponding contour. 

Alternatively, the integral of the geodesic distance to all 
the points on the surface [53] is less sensitive to small 
perturbations due to noise. Using the shortest geodesic 
distance to a set of curvature maxima on the surface [86] 
introduces the problem of robustly and automatically 
detecting relevant curvature maxima on the surface. A 
similar approach is given in [28], where curve-skeletons 
generated from multiple extremities are combined into a 
final one.  

Other geometric methods do not rely on a function 
defined on the manifold to produce a curve-skeleton. Li et 
al. [70] construct a line segment skeleton by collapsing 
edges in length order (shortest first). This method is 
sensitive to the mesh tessellation. Katz and Tal [59] first 
decompose a mesh surface into segments using clustering, 
and then use this segmentation to construct a skeleton 
(joints are represented by centered vertices at the 
boundary between different patches). In [71], the curve-
skeleton and the mesh decomposition processes are 
interrelated. The curve-skeleton of each component is 
obtained by connecting the principal axis with the 
centroid of each opening (connection to other 
components). In turn, the mesh decomposition process 
decides whether or not to further decompose an existing 
component by evaluating the quality of its curve-skeleton. 

5.4 General-Field Functions 
Various types of fields generated by functions other than 
the distance transform can also be used to extract curve-
skeletons. Included in this class are generalized potential 
field function [3][32][35] where the potential at a point 
interior to the object is determined as a sum of potentials 
generated by the boundary of the object. In the discrete 
case [35], the boundary voxels are considered point 
charges generating the potential field. The electrostatic 
field function is used in [2][51] to generate a potential 
inside the object. The visible repulsive force function 
presented in [73] and [133] is a special case of the 
generalized potential field function used in [3][32] and 
[35]: the Newtonian repulsive force. However, here the 
visibility of boundary elements from an interior point is 
taken into considerations by computing the intersection 
with a number of sampling rays originating at the current 
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position on the path. In [80], the combination of radial 
basis functions originating at the mesh vertices is used to 
define a field inside the object.  

The curve-skeleton is extracted by detecting the local 
extremes of the field and connecting them. A force 
following algorithm can be used for connectivity, using 
the mesh vertices [133], the convex corners of the mesh 
[3][32], the significant corners along equipotential 
contours [2], or the critical points of the vector field [35] 
as “seed” points. Another possibility is the use of an 
active contour to detect the final location of the curves 
connecting the extremes in the field [80][132].  

Detection of local extremes can be achieved explicitly 
by looking for critical points over the entire underlying 
vector field [35] or detecting the local maxima along 
equipotential contours [2]. The other methods directly use 
the force-following algorithms starting at other seed 
points, using the fact that the force-following algorithm 
stops when it reaches an extreme.  

The main advantage of these functions over the distance 
field is that they can produce nice curves on medial sheets 
where the distance field is constant. This is because they 
take into account larger boundary areas, not just the 
distance to the closest point on the boundary. This also 
creates an averaging effect that makes these algorithms 
less sensitive to boundary noise. However, they are much 
more expensive to compute. 

Resolution of the voxel grid also affects the field 
functions, which tend to be more sensitive to noise in thin 
regions of the object because significant contributions 
toward the final field value at an interior point come from 
fewer boundary voxels.  

Figure 7 shows the vectors of the repulsive force field 
of a 2D shape. 

Another disadvantage of the general field functions is 
their numerical instability since the computations usually 
involve first or even second order derivatives. 

6 DISCUSSION 
The classification proposed in the previous section was 
based on the first steps of the implementation, but we 
would like to emphasize that many methods use concepts 
from two or more different classes to finally produce a 
curve-skeleton. The distance field based thinning 
procedures described in [36][44][101] initially compute a 
distance field over the object, but then employ thinning to 
extract a curve-skeleton, using the distance field as a 
priority function to select voxels that will be removed 
next. In [132], a control skeleton named the domain 
connected graph (DCG) is extracted in several steps 
involving Voronoi diagrams, Reeb graphs and repulsive 
force fields. 

Additionally, note that concepts from different classes 
are actually closely related. For example, we could relate 
the single-source distance field (voxel-coding) algorithms 
[138][103]  with   the   Reeb-graph  approaches  [65][127] 

 
Figure 7. The repulsive force field of a 2D shape. The 

inset shows what region of the force field was 
magnified. 

since the minimum distance search employed in single-
source distance field methods actually involves the 
traversal of the level sets of a distance function defined on 
the object (in this case, on the full solid 3D object rather 
than only its surface). Surface shrinking along the 
gradient of the distance field [109] is also similar to 
surface thinning (removing layers from the boundary of 
the object until no more layers can be removed). 

In the remainder of this section we discuss the described 
curve-skeletonization methods in terms of the properties 
presented in Section 3. 

6.1 Homotopy 
Homotopy is ensured by the thinning methods because 
only voxels that do not change the object topology (the 
simple points) are removed. 

Since distance field methods do not produce a curve-
skeleton directly, topology preservation depends on the 
subsequent pruning and connectivity steps. Clearly, 
connectivity algorithms based on minimum spanning trees 
do not preserve topology because they are not able to 
create loops.  

The power shape [4] represents a topologically correct 
approximation of the medial axis. However, care must be 
taken in the subsequent simplification steps so the final 
curve-skeleton maintains the topology of the power shape. 
The Reeb graph is an accurate representation of the object 
topology. However, in the discrete case, an important 
factor is the sampling frequency used to construct the 
level sets. If the sampling is too sparse, small 
topologically relevant features may be lost, while a too 
dense sampling may take too long to compute. In [8], a 
solution for adaptive sampling is proposed. The edge-
contraction methods described in [70] specifically 
maintains the topology of the intermediate shapes. The 
curve-skeleton extraction method based on mesh 
decomposition described in [59] cannot preserve 
topology, because the extracted curve-skeleton is always a 
tree. This approach was taken because the curve-skeleton 
was used for animation where loops are generally not 
desirable. 
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Curve-skeletons produced by algorithms employing 
force-following on generalized fields could be 
disconnected even for objects with a single connected 
component, due to numerical errors affecting the 
integration steps in regions with insufficient resolution 
[35]. Using an active contour approach [32] can preserve 
connectivity of curve-skeleton segments, but the initial 
connectivity of the sinks based on minimum distance 
seems arbitrary and may not correspond to the topology of 
the original object. Furthermore, due to numerical errors 
and resolution of the voxel grid, potential field algorithms 
can create loops in the curve-skeleton that do not 
correspond to a tunnel or hole in the original object [35]. 

6.2 Invariant under isometric transformations 
Directional thinning methods are sensitive to the object 
orientation. The final result (end points, number of 
branches and their location) depends on the order in 
which the different directions are processed. Distance 
field, Voronoi-based and general field methods do not 
depend on object orientation.  

Reeb graph based methods can be sensitive to object 
orientation depending on the function chosen to extract 
the level sets. For example, the height function [8][134] is 
dependent on orientation, while the distance to the 
barycenter of the mesh [15][16] is not. 

In all cases involving discrete representations of objects, 
the finite resolution of the voxel grid produces small 
errors when objects are transformed. As a result, even 
though curve-skeletonization algorithms themselves are 
not sensitive to object orientation, the input data itself is 
already adversely affected by the transformation. Such 
small discretization errors show up on the boundary of the 
transformed object and their effect on the resulting curve-
skeleton is similar to that of surface noise. 

6.3 Reconstruction 
The skeleton (medial surface) of a 3D object captures 
local symmetries present in the object through different 
types of elements: surface patches in the skeleton 
represent symmetric plate-like regions of the original 
shape, while individual curves in the skeleton correspond 
to cylinder-like (tubular) shape regions. 

It should be obvious that regardless of the method used 
to compute it, a complete and accurate reconstruction of 
the original object is not possible from the information 
retained in a curve-skeleton alone when using the simple 
ball-growing approach. Since the curve-skeleton contains 
only curve-segments, flat object parts cannot be 
reconstructed from it. Cylindrical shapes, (i.e., shapes that 
can be accurately represented by generalized cylinders), 
represent a special class of objects that can be accurately 
reconstructed from the curve-skeleton alone. General 
shapes however, can only be approximated by a 
generalized cylinder reconstruction. Clearly, a denser 
curve-skeleton will generate a better reconstruction [43]. 

Reconstruction using the ball-growing approach [43] 
needs distance field information in order to determine the 
radius of the ball that will be grown from each curve-
skeleton point. In this respect, the distance field based 
methods have an advantage over the other methods 
because this information is already available. 

6.4 Thinness (1D) 
Thinning algorithms can either directly produce a curve-
skeleton (by using curve-thinning templates) or further 
thin a surface skeleton to a 1D representation. Parallel 
thinning algorithms, which remove all simple points at 
once, may not be able to achieve 1D skeletons due to 
homotopy constraints. An illustrative 2D example is the 
case of a rectangle whose width is an even number of 
voxels: in the last step of the thinning process, the middle 
section of the skeleton will be a curve of width 2. 
Although all points of this curve are simple points, 
removing them would completely remove the middle 
section. At this stage, no other simple points can be 
removed and the skeleton is not 1D. Directional thinning 
methods do not have this disadvantage: one row of voxels 
in the middle section will be removed when processing 
the up-down direction (for example), and the second row 
will be preserved in subsequent steps.  

Distance field methods and Voronoi-based geometric 
methods do not produce a 1D skeleton directly. Both 
require significant post-processing to reduce the candidate 
voxels (distance field) or the medial surface (Voronoi-
based methods) to a curve-skeleton. 

The Reeb graph based geometric methods and the mesh 
decomposition-based method of [59] directly produce 1D 
straight-line skeleton segments by connecting level-set or 
component junction centroids, although the representation 
is no longer voxel-based.  

Thinness is an implicit property of the general-field 
methods that use force-following or active contours to 
generate 1D skeleton branches. 

6.5 Centeredness 
Thinning and general field methods do not guarantee 
centeredness. In the case of directional thinning, this 
would depend on the order in which the different 
directions are applied. In the case of general field 
methods, since they are taking into account a larger 
surface area than the two closest points, centeredness is 
usually compromised. 

Methods using a distance field can better achieve 
centeredness because of the centeredness information 
included in the distance field. However, once clustering 
and spanning trees are used, centeredness may be lost (see 
for example [129]). Distance field methods using a 
distance to source (for example geodesic field 
propagation) do not generate centered curve-skeletons. 
The problem is described in detail in [96] and the solution 
provided there combines the distance-to-source field with 
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a global distance-to-boundary field to achieve 
centeredness. 

Geometric methods directly computing contact points 
(points where the maximal inscribed spheres touch the 
surface) [68] can also achieve centeredness since these 
points can be incorporated more easily into the pruning 
steps. Voronoi-based methods are dependent on the 
sampling density of the object’s surface: a denser 
sampling produces a more centered curve-skeleton [4] but 
the running time increases. Centeredness of level-set 
[127] and mesh decomposition-based [59] curve-skeletons 
is poor because centroids are directly connected with 
straight-line segments, regardless of the configuration of 
the object between these points. Centeredness problems 
arise especially in regions where the topology of the 
object changes between successive level sets. It is also 
influenced by the resolution (the distance between two 
successive level sets). 

Resolution affects any centeredness measurement in the 
discrete domain. Using the same example of a shape 
whose width is an even number of voxels, if this shape is 
reduced to a 1D skeleton, at the grid’s resolution, the 
curve-skeleton must be one voxel closer to one of the 
sides than to the other. 

6.6 Reliability 
Reliability is an application specific property important 
for virtual navigation (each boundary point must be 
visible from at least one curve-skeleton location). For this 
reason, this property is only guaranteed by those 
algorithms developed specifically for that particular 
purpose (see for example [52][61]).  

Regardless of the algorithm used to compute the curve-
skeleton, reliability can be easily checked using the 
visibility test for each boundary location on the original 
object. If necessary, more branches can be added to the 
curve-skeleton in a post-processing step. 

6.7 Junction Detection and Component-wise 
Differentiation 

The ability to distinguish the different components of the 
curve-skeleton depends on the ability to detect the 
junction points, i.e., the points where two or more curves 
meet. From this decomposition, one can infer the 
corresponding part structure of the original object. 

Some thinning algorithms directly classify the skeleton 
points as junctions, either during thinning [120] or as a 
post-processing step [28]. Distance field methods must 
test for joints after significant pruning and clustering 
[129]. However, junction placement for these classes of 
methods is sensitive to noise. 

From the geometric algorithm class, level-set methods 
directly identify the joints as the centroids of level-sets. 
Joint locations depend on the function used to define the 
level sets. Similarly, the joints of the mesh decomposition 
based curve-skeleton, identified as the mesh component 

junctions, depend on the coarseness of the decomposition. 
The edge-contraction method can easily identify junctions 
by inspecting the vertices of the skeleton, as a post-
processing step. 

General-field methods can identify joints directly before 
extracting the curve-skeleton by locating the critical 
points of the underlying vector field [35], during 
extraction as the local extrema where the force-following 
algorithm stops [32], or the points where a previously 
visited location is encountered. Joint placement depends 
on the function used to define the underlying field. 

6.8 Connectivity 
Connectivity is usually checked by all the algorithms. 
Some algorithms (e.g., thinning, level-set based geometric 
methods) explicitly maintain connectivity during 
computation, while other methods check and enforce 
connectivity in a post-processing step. 

6.9 Robustness 
Thinning, distance field and Voronoi-based geometric 
methods are sensitive to noise, generating unnecessary 
branches in the skeleton as a result. Several methods have 
been proposed to filter the resulting skeletons [7][36]. 

Level-set based geometric methods are affected by 
noise in different ways. While the location of the level-set 
centroids should not be affected by noise because of the 
averaging effect involved in computing the centroid, noise 
can adversely affect the number of contours in a level set, 
thus generating undesirable branches in the resulting 
skeleton. 

General field approaches are less susceptible to noise 
because of the large amount of averaging included in the 
underlying computation. These methods are more 
sensitive to resolution because thin regions in the objects 
can cause numerical instabilities in the computations. 

Many of the algorithms described in the literature are 
usually illustrated with only a few examples and are not 
tested on a large database of general 3D objects (for 
example the Princeton Shape Benchmark [113], a 
database of 1814 3D models). Thus it is unclear how 
robust and general these algorithms are with respect to the 
choice of their parameters. 

6.10 Smoothness 
Due to their discrete nature, thinning algorithms do not 
produce smooth curve-skeletons. Boundary irregularities 
propagate all the way to the curve-skeleton during the 
thinning process.  

Distance field methods have the same disadvantage 
because there is no averaging involved in the computation 
of the distance field values. However, the subsequent 
pruning and reconnection steps can incorporate some 
smoothing constraints. Voronoi-based geometric methods 
behave in a similar way.  
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Level-set geometric methods introduce smoothing in the 
computation of level-set centroids, but topology changes 
in the evolution of level sets are not handled in a way that 
preserves smoothness. The same is true for methods based 
on mesh decomposition. 

In the case of general field methods, extensive 
averaging is employed during the computation of the 
vector field and the effect is improved smoothness of the 
extracted curve-skeleton. 

Although some algorithms may produce smoother 
curve-skeletons than others, smoothing can be performed 
in a post-processing step, regardless of the extraction 
algorithm used to compute the initial curve-skeleton. 

6.11 Hierarchy 
Hierarchy (the ability to create a family of curve-
skeletons of increased complexity) is not achievable using 
thinning algorithms because when processing a voxel 
there are only two choices: keep it, or remove it. A curve-
skeleton is obtained only after the last iteration of the 
algorithm. 

Distance field methods can produce a hierarchy of 
curve-skeletons by varying the number of candidate 
voxels selected in the pruning step. In order to obtain a 
strict hierarchy (i.e., the curve-skeleton at one level is 
included in the next level curve-skeleton), the 
reconnection step must take into account the previous 
level curve-skeleton. Similar to distance field, Voronoi-
based geometric methods can produce hierarchic curve-
skeletons by pruning the surface skeleton at different 
thresholds and reconnecting the candidate voxels into a 
hierarchy of curve-skeletons. In the case of mesh 
decomposition based methods, if the decomposition 
process is a hierarchical one [59], the produced curve-
skeletons will also form a hierarchy. Reeb graph based 
geometric methods are not hierarchic. 

General field methods produce hierarchic curve-
skeletons by varying the number of seed points used to 
construct individual curve-skeleton segments. Additional 
segments added to a curve-skeleton do not affect the 
existing segments, creating a strict hierarchy [35].  

6.12 Efficiency 
Thinning is practically a linear process in the number of 
object voxels. Most of the voxels of the input object are 
removed when they are first processed (they are simple 
points). The non-simple points are processed again at 
every subsequent thinning step until they are finally 
removed or the algorithm terminates. An exact 
complexity analysis of such algorithms is difficult since 
they are data dependent. 

The Euclidean distance field of a 3D object can be 
computed in linear time using the algorithm of Saito and 
Toriwaki [106]. The subsequent steps of filtering and 
reconnecting the curve-skeleton may, however, have a 

higher complexity (but they usually operate on a greatly 
reduced set of voxels).  

Computation of the Voronoi diagram of a set of n points 
in 3D is O(n2) in the worst case, although in practice it is 
almost linear [4]. As in the distance field case, additional 
processing is necessary to get a curve-skeleton, but the 
number of input elements is reduced. The computational 
complexity of the level-set based geometric methods 
depends on the kind of function computed over the object. 
The height function can be computed in linear time, while 
the exact integral of the geodesic function is O(n2) [53] (n 
is the number of mesh vertices). The following steps, 
detecting connected components in each level set and 
computing their centroids, are linear in n.  

The complexity of potential field computation is O(n2) 
[35], where n is the number of object voxels. These 
methods are computationally more intensive than distance 
field methods because they take into consideration larger 
boundary areas, not just the closest point. 

6.13 Handle Point Sets 
Objects represented by a set of points on the boundary can 
be converted to a voxelized point representation by 
mapping each sample point to the closest voxel. Note that 
this transformation is different from voxelizing a polygon 
mesh. In the later case, the interior of the mesh is 
completely filled with object voxels, while in the former 
case, the interior and the full boundary of the object are 
still unknown. Thinning algorithms cannot operate on 
such representation since they need to know the complete 
interior and boundary of the object. 

Distance fields can be computed using the known 
boundary points as sources, but the field will extend 
outside the object since the distinction inside/outside is 
not known. The resulting curve-skeleton will also have 
branches outside, as well as inside the object, and it may 
be difficult to distinguish between them. 

Voronoi-based geometric methods directly work with 
objects represented by a set of samples on the boundary 
[4]. Level-set based geometric methods can also handle 
such representations as demonstrated in [127]. Mesh 
decomposition based geometric methods however, cannot 
handle this case. 

Point samples on the objects boundary can be used as 
sources for the general field methods. As for the distance 
field, the field will also extend outside the object. 
However, the curve-skeleton segments outside the objects 
can be easily identified and removed if using a force-
following algorithm since they will be touching the 
bounding box of the volume (see [35]). 

6.14 Discussion Summary 
In Table 1 we list, for each algorithm class, the properties 
it can achieve, as discussed in this section. A “Y” 
signifies that the algorithm class guarantees that particular 
property. An “N” is used if the algorithm class cannot 
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achieve a given property.  Finally,  an empty space is used 
if a property can be achieved by some but not all the 
algorithms in a class, or if a property is difficult but not 
impossible to achieve using this class of algorithms (as 
per the detailed discussion above). 

 
Table 1. Summary of properties achievable by the 

various algorithm classes. 
 Thinning Distance 

Field 
Geometric General 

Field 
Homotopic Y  Y N 
Transf. Invariance  Y  Y 
Reconstruction N  N N 
Thin    Y 
Centered     
Reliable     
Junction Detection   Y Y 
Connected Y    
Robust N N N Y 
Smooth    Y 
Hierarchic N   Y 
Efficiency Y Y Y N 
Handle Point Sets N  Y Y 

7 IMPLEMENTATION 
In Section 5, four classes for the curve-skeletonization 
algorithms were described. The classes are divided into a 
“core” part and a “post-core” step, which is necessary to 
prune, cluster, connect or smooth the curve-skeleton. In 
this section, we describe the results of comparing one 
algorithm from each class on several test objects, 
including one “real” object (a colon dataset) and one 
object with noise (the chess piece). Because many of the 
algorithms described in the literature are difficult to 
implement (typically not all of the implementation details 
are given, e.g., specific thresholds, epsilon values and 
cluster parameters), we have only implemented the “core” 
part of the algorithms (i.e., the first step(s)). 

For the distance field and the Voronoi diagram based 
geometric methods, a curve-skeleton is more difficult to 
obtain directly. The fist step of these methods generates a 
structure closer to a medial surface, so additional 
processing is required to obtain a 1D curve-skeleton. To 
illustrate, we used the parameter controlled filtering of the 
distance function described by Gagvani and Silver in [43] 
for distance field based methods and Amenta’s 
implementation of the power shape (Voronoi diagram 
based approximation of the skeleton) [4]. Note that for the 
power shape algorithm, only the surface voxels were 
given as input to the program and the results shown in the 
figure are the inside poles determined by the algorithm 
[4]. A comparison of the resulting structures for several 
objects is shown in Figure 8. The purpose of this 
comparison is to give the reader a sense of how much 
additional processing would be required in order to 
extract a curve-skeleton from these structures. Note that 
the additional processing has to rely on some other 

information, not given by the underlying method used in 
the first step. For example, pruning the medial surface 
patch of the box cannot take advantage of the distance 
field values since they are the same for all voxels on it. 

In our previous work [34], we compared the different 
algorithms using the implementations described above for 
the distance field and the geometric classes. However, we 
felt that the comparison was not fair because these 
implementations did not extract a 1D curve-skeleton 
directly, while the thinning and potential field methods 
did. In order to make the comparison fairer, in this paper 
we attempt to modify the distance field and geometric 
implementations to extract a 1D curve-skeleton.  

In the distance field case, we extended the 
implementation with two additional steps performed by 
most algorithms in this class (see Section 5.2): pruning 
the candidate voxels and connecting them. Specifically, 
we used clustering to reduce the number of candidate 
voxels and a minimum spanning tree algorithm to connect 
the centroids of the clusters.  

To represent the geometric methods, we changed our 
implementation to a Reeb graph based one, which does 
produce a curve-skeleton in the first step of processing. 
We have chosen the height function because of its 
straight-forward implementation. We detect connected 
components in each level-set of the height function, select 
the centroid of each connected component as its 
representative, and add it to the curve-skeleton. When  the  
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Figure 8. The candidate voxels selected from a distance 
field using [43] and the Voronoi diagram based power 
shape [4] give a sense of how much additional post-
processing is required to get a 1D curve-skeleton. 
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topology of the level sets changes, we connect the 
centroids of neighboring components in two adjacent 
level sets with a straight line. 

From the thinning class, we implemented the 12-
subiteration curve thinning algorithm described by 
Palágyi and Kuba in [95].  

We implemented the potential field method described in 
[35] to illustrate the general field methods. Since this is a 
hierarchical method, which produces curve-skeletons of 
various complexities, for this comparison we only used 
the first level of the hierarchy (level 0), i.e., the curve-
skeleton generated in the first step by connecting the 
critical points of the vector field. Both the thinning 
method and the potential field method directly produce a 
1D curve-skeleton.  

The results of our implementations on a set of test 
objects are shown in Figure 10. Note that for these results, 
no attempt was made to tweak the parameters of the 
programs in order to obtain a better curve-skeleton for one 
object or another. The distance-field based curve-skeleton 
was obtained using a thinness threshold of 0.6 for all 
objects (see [43]). This threshold was selected for one 
object (the horse) to remove most of the extra branches 
but still maintain most of the characteristics of the horse 
shape. Then this value was used for all the other objects. 
For the potential field implementation, we used a field 
strength parameter value of 6 since in our experience this 
value produced good curve-skeletons, and no additional 
seed points besides the critical points were used.  For the 
Reeb graph based geometric implementation the height 
function sampled the objects in the “up” direction 
(increasing Y values) at every discrete value of Y. There 
were no parameters for the thinning implementation.  

Most of the test objects, except the colon and the knight 
chess piece, were voxelized from models downloaded 
from the Princeton Shape Benchmark Database [113]. 
The grid resolution was chosen such that its largest 
dimension is 300 voxels and the aspect ratio of the object 
is maintained. The colon dataset has a resolution of 
204x132x260 and the knight chess piece is 40x39x87. 
The source code for our implementations and all models 
used in the experimental section can be downloaded from 
[139]. 

From these results, it is clear that the potential field 
method yields the cleanest and smoothest curve-skeleton 
at the initial stage. This is due to the “global averaging” 
effect of the potential field. For objects with thin, flat 
regions, like the ears of the bunny, the algorithm identifies 
too many critical points, creating a large number of curve-
skeleton branches in that area, very similar to a medial 
surface. This is because the algorithm is resolution 
dependent, a disadvantage identified in [35]. Also note 
that we are using only the first level (level 0) of the curve-
skeleton hierarchy presented in [35]. While this simple 
curve-skeleton is good enough for some objects, for 
others certain parts are not represented in the curve-

skeleton at all: the tail of the dinosaur and two of the hand 
fingers are missing, for example. By using different 
values for the field strength parameter (fixed at 6 for the 
purpose of this comparison for all objects), or with the use 
of additional seed points (detected automatically), the 
resulting curve-skeleton can be improved. 

The thinning algorithm performs well in all cases, but 
the resulting curve-skeletons are not smooth, since all 
irregularities of the surface propagate to the curve-
skeleton through the erosion process. This also makes it 
more sensitive to noise. Furthermore, this noise 
propagation problem affects the location of the joints, 
which can be identified in a post-processing step because 
the resulting curve-skeletons are one voxel thick in all 
directions. As there are no parameters to set for this 
algorithm, one can only improve the curve-skeleton in a 
post-processing step, using smoothing and possibly 
branch pruning to remove extraneous branches. 

The distance field-based algorithm produces curve-
skeletons with a large number of extra branches. They are 
generated by the relatively large number of candidate 
voxels selected using the thinness heuristic. The centroids 
of the clusters are connected using straight lines, so the 
centeredness property is not always satisfied. In fact some 
curve-skeleton segments can go outside the object entirely 
as for the spider and the dinosaur. Clearly, the resulting 
curve-skeleton can be improved by using more 
sophisticated algorithms for selecting candidate voxels or 
for connecting them, but they come at a cost: more effort 
from the implementer and possibly longer running times. 

The Reeb graph based geometric algorithm produces 
strange results for some objects because the objects were 
not always oriented in the natural “up-down” direction as 
they are presented in the figure. For example, for the 
dinosaur and commercial airplane shapes, the slicing 
direction corresponds to the front-to-back direction in the 
figure. This aspect can be improved upon by using 
different slicing directions for each object. A better 
alternative is to use an orientation independent function to 
define the level sets, such as the geodesic distance. Since 
the centroids of adjacent connected components are 
connected using straight lines, the centeredness property 
is compromised, especially when the topology of the level 
sets changes. As in the distance field case, some segments 
are outside the object, as we can see for the dinosaur or 
the commercial airplane objects. This problem is difficult 
to fix regardless of the function used to define the level 
sets. 

Although the implementations directly produce a curve-
skeleton for each class of methods, the comparison is still 
not completely fair. We cannot claim that each of our 
implementations is fully representative for an entire class 
of algorithms, as many improvements to the resulting 
curve-skeletons can surely be made. However, we believe 
that general characteristics of each class of methods 
transpire from these results as discussed in this section. 
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In terms of running time, the potential field method is 
the slowest. In Figure 9 we show a comparison of the 
running times (in milliseconds, on a logarithmic scale) 
recorded for each method as a function of the total 
number of object voxels (note that no optimizations were 
done for the implementations). 

 

 
Figure 9. Running time (log scale) vs. number of object 

voxels.  

As mentioned in the beginning of the paper, the various 
algorithms presented here operate either on discrete 
voxelized datasets or on continuous polygonal 
representations of 3D object. Since conversion between 
these representations can be done using well-known 
algorithms (voxelization or surface extraction), the 
availability of one representation or the other should not 
be a deciding factor in choosing the curve-skeletonization 
algorithm.  

8 SUMMARY 
A plethora of different curve-skeletonization algorithms 
have been described in the literature. In this paper, we 
have given an overview of the visualization applications 
that use curve-skeletons and have distilled a list of curve-
skeleton properties necessary for these applications. We 
have then classified the algorithms for computing the 
curve-skeleton based on their implementations and have 
discussed to what extent each methodology achieves the 
different curve-skeleton properties. To illustrate this, we 
implemented a “core” curve-skeletonization algorithm 
from each class and compared the results on the same set 
of test objects.  
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Figure 10. Skeletons of various objects obtained using different curve-skeletonization algorithms. The comparisons 

are on the first steps of all of the algorithms. Note: our implementations are not fully featured and the resultant curve-
skeletons may be improved. See text for details about each implementation. All of the objects and algorithm 

implementations are also available for download at [139]. 
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