
1

Curve-Skeleton Properties, Applications and Algorithms

Nicu D. Cornea1, Deborah Silver1
Rutgers University, New Jersey, USA

Patrick Min2
American University of Rome, Italy

ABSTRACT
Curve-skeletons are thinned 1D representations of 3D
objects useful for many visualization tasks including
virtual navigation, reduced-model formulation,
visualization improvement, animation, etc. There are
many algorithms in the literature describing extraction
methodologies for different applications; however, it is
unclear how general and robust they are. In this paper, we
provide an overview of many curve-skeleton applications
and compile a set of desired properties of such
representations. We also give a taxonomy of methods and
analyze the advantages and drawbacks of each class of
algorithms.

CR Categories and Subject Descriptors: I.3.5 [Computer

Graphics]: Computational Geometry and Object
Modelling -- Curve, surface, solid, and object
representations;

Additional Keywords: curve-skeletons.

1 INTRODUCTION
3D models are common in many disciplines including
computer aided design, medical imaging, computer
graphics, scientific visualization, computational fluid
dynamics, and remote sensing. While the 3D
representation is invaluable, many applications require
alternate “compact” representations of these models. One
such representation is a line-like or stick-like 1D
representation, which is sometimes referred to as a
“skeletal representation” or “curve-skeleton” [120]. This
is different from the skeletal-surface representation
(medial surface), which is a higher dimensional structure.
The curve-skeleton captures the essential topology of the
underlying object in an easy to understand and very
compact form. Examples of applications that use a curve-
skeleton include: virtual navigation, registration,
animation, morphing, scientific analysis, shape
recognition, and shape retrieval.

One of the difficulties is that a “curve-skeleton” is an
ill-defined object. This has led to a large number of
algorithms and heuristics in the literature and many more
constantly being proposed. Many of the algorithms in the
literature use different definitions, parameters and

1 cornea, silver @ece.rutgers.edu
2 p.min@aur.edu

thresholds and demonstrate their performance on a limited
number of diverse 3D objects. Additionally, some are
fine-tuned for a specific application.

As a consequence, many of these algorithms can not be
replicated and most major visualization and medical
image processing packages do not use them. It is hard to
decide which algorithm to choose since there are no
criteria for evaluation, thereby causing a further
proliferation of new algorithms. What is needed is an
analysis of the desired properties of the curve-skeleton, as
required by the various applications, and how the various
existing curve-skeletonization methods satisfy these
properties.

In this paper, we present a list of properties for curve-
skeletons based upon numerous applications. We also
categorize many of the existing algorithms into classes
based upon implementation, and we discuss how these
classes achieve the various properties. In addition, one
algorithm from each class has been implemented and
tested on the same set of 3D shapes. The main goal of this
paper is to provide an overview of curve-skeletonization
applications and implementations to help guide
visualization users and developers.

This work is an extension of our previous conference
paper [34] with the following additions: (1) several new
applications are added: unorganized point cloud
processing, implicit modelling, protein backbone
modelling, (2) a new class of algorithms is included under
the geometric methods based on Reeb graphs (3) extended
discussion of the various curve-skeleton properties and (3)
the discussion and experimental results sections are
completely rewritten.

2 DEFINITIONS – THE MEDIAL AXIS, MEDIAL
SURFACE, SKELETON AND THE CURVE-SKELETON

In 2D, the medial axis [21] of a shape is a set of curves
defined as the locus of points that have at least two closest
points on the boundary of the shape [72]. In the 3D case,
the corresponding object is called the medial surface [48]
because in addition to curves, it can also contain surface
patches. A more illustrative definition of the medial
axis/surface is given by the grass-fire analogy, where the
boundary of a shape made entirely of dry grass is set on
fire and the medial axis/surface consists of the loci where
the fire fronts meet and quench each other. Figure 1
shows the medial axis for a 2D shape and the medial
surface of a 3D shape. Note that in Figure 1(c) only one
patch of the medial surface is shaded, but in fact the

2

Figure 1. A medial axis in 2D (a and b) and a medial

surface in 3D (c) and a few examples of inscribed discs
(2D) and ball (3D).

medial surface consists of many different patches
bounded by the lines drawn in red and the edges of the
box in black. The term medial is sometimes used to refer
to the medial axis (in 2D) or the medial surface (in 3D).

The skeleton is defined as the locus of centers of
maximal inscribed (open) balls (or disks in 2D) [72].
More formally, let X ⊂ R3 be a 3D shape. An (open) ball
of radius r centered at x ∈ X is defined as Sr(x) = {y ∈
R3, d(x, y) < r}, where d(x, y) is the distance between
two points x and y in R3. A ball Sr(x) ⊂ X is maximal if
it is not completely included in any other ball included in
X [62]. The skeleton is then the set of centers of all
maximal balls included in X. The process of obtaining a
skeleton is called skeletonization.

Although the medial axis/surface and the skeleton are
closely related, they are not exactly the same. Using the
example given in [72], both the medial axis and the
skeleton of a 2D ellipse are represented by a line segment
but the segment’s end-points belong only to the skeleton
and they do not belong to the medial axis. Given the small
differences between the medial axis/surface and the
skeleton, which only arise in the limit case, many authors
use the terms medial axis/surface and skeleton
interchangeably.

A major disadvantage of the medial surface
(axis)/skeleton is its intrinsic sensitivity to small changes
in the object’s boundary due to the way it is defined
[6][31]. An illustrative example in 2D is shown in Figure
1(b) where it can be observed how a small change in the
object’s boundary causes a large change in the skeleton.

In many applications however, a concise representation
of 3D objects with curve arcs or straight lines is desirable
because of its simplicity. For example, animation
traditionally uses an IK (inverse-kinematics) skeleton
consisting of a small number of connected line segments
representing for instance the torso, arms and legs. Other
applications, such as virtual navigation, also require a set
of curve paths. This line-like representation of a 3D object
is often called the centerline or the curve-skeleton [120]
and is a simplified 1D representation of the original 3D
object, consisting only of curves [38]. Figure 2 shows
curve-skeletons of several 3D objects.

In spite of its simplicity, until recently there was no
rigorous definition of a curve-skeleton. In a very recent
work [38], Dey and Sun propose a possible definition of

Figure 2. Examples of curve-skeletons of different 3D

objects.

the curve-skeleton as a subset of the medial surface with
the help of a medial geodesic function. However, as
discussed in section 3 under “Centered”, defining the
curve-skeleton as a subset of the medial axis may be too
restrictive to be useful in some applications.

In this paper, we do not attempt to give a precise
definition of the curve-skeleton. Our goal is to provide an
analysis of the different aspects of this structure and lay
the foundation for further efforts to formulate such a
definition. For the purpose of this work, the curve-
skeleton is defined as a simplified 1D representation of a
3D object.

2.1 The Discrete Case
The above definitions were formulated in continuous
space. However, many of the applications that need
skeletonization have discrete 3D datasets, such as those
acquired using medical scanners. In discrete space, the
definitions are analogous to the continuous case, but
problems may occur because of discretization. For
example, a maximal ball may touch the discrete boundary
of an object in a single point in cases other than the limit
case, such as the case of an object whose width is an even
number of voxels. Since the diameter of the ball is always
an odd number of voxels (assuming the center of the ball
must be one of the voxels), the ball will be maximal when
it touches the boundary on only one side. As a result, in
order to include all centers of maximal balls, the discrete
skeleton may be more than one image element (pixel or
voxel) thick. Furthermore, resolution can cause a loss of
detail for certain objects such as merging or even
disappearance of small features.

Some skeletonization algorithms work on continuous
geometric data, others deal with discrete objects only.
Conversion between these two representations can be
performed using well-known algorithms: continuous
geometric data can be transformed into a discrete
representation by voxelization [116], while voxelized data
can be converted into a geometric representation using a
surface extraction algorithm [75]. In this paper, we will
consider mainly the discrete case, but for the sake of
completeness we also include references to methods
operating on continuous geometric data.

In order to facilitate an easy understanding of some of
the definitions below, we need to introduce a few
concepts from digital topology. For a complete review of
digital topology, please see [62].

(a)

(b)
(c)

3

2.2 Short review of digital topology
Let us consider the discrete space Z3. Each point p in this
space is called a voxel (from volume element) defined by
its three integer coordinates (px, py, pz). A voxel can be
viewed as a cube, having 6 faces, 12 edges and 8 corners.
Two voxels p and q ∈ Z3 are 6-adjacent if they have a
common face; they are 18-adjacent if they have a
common face or edge, and 26-adjancent if they have a
common face, edge or corner. The set of 6-adjacent
voxels to a voxel p is also known as the 6-neighborhood
of p denoted by N6(p). Similarly, N18(p) and N26(p) are
the 18- and 26-neighborhoods of p. By N*

6(p) we denote
N6(p) \ {p}; N*

18(p) and N*
26(p) are similarly defined.

An n-path is a sequence of voxels p1, … pk with pi n-
adjacent to pi+1, where n could be 6, 18 or 26. An n-
connected component is then a set of voxels such that any
two such voxels are connected by an n-path included in
that component.

A 3D binary digital picture is described by the
quadruple P = (Z3, m, n, B), where B ⊆ Z3 is the set of
black voxels representing the object in the picture (also
known as object voxels), while Z3 \ B represents the
background (white) voxels. The pair (m, n) specifies the
object and background connectivity respectively. In order
to avoid topological paradoxes such as objects being both
connected and disconnected [62], different values must be
chosen for m and n; common choices are (26,6) and (18,
6).

A cavity is a background connected component
surrounded by an object component (an empty space
inside the object). While a mathematical definition of a
tunnel is difficult [62][105][121], we can turn to intuitive
examples of tunnels in well-known objects. The center
hole of a donut or the empty space between the handle of
a teapot and its main body are examples of tunnels.
Algorithms to detect and characterize cavities and tunnels
in a 3D object are described in [121].

3 CURVE-SKELETON PROPERTIES
In this section, we describe a set of desirable curve-
skeleton properties, which we compiled from analyzing
the literature on the subject and a number of different
applications of curve-skeletons in computer graphics and
visualization. These applications will be presented in the
Section 4.

For the following discussion, we will consider the
discrete 3D case unless otherwise specified. We will use
Sk(O) to denote the curve-skeleton of a 3D object O. Our
discussion includes the following curve-skeleton
properties: homotopic, invariant under isometric
transformations, reconstruction, thinness, centeredness,
reliability, smoothness, component-wise differentiation,
robustness, efficient to compute and hierarchic.

Homotopic (topology preserving): The curve-skeleton
should be topologically equivalent to the original object
[62][72][105]. Preservation of topology can be stated
simply as follows: Two objects have the same topology
if they have the same number of connected
components, tunnels and cavities.

As pointed out in [62], the above formulation applied to
an object O2 derived from an object O1: “object O2
preserves the topology of object O1” is meaningful only if
an additional constraint is added: object O2 is obtained
from O1 by only removing object voxels (no adding).
Otherwise, object O2 could end up having a completely
new configuration, but still have the same topology. For
example, by adding object voxels to O2, O2 may grow
limbs where O1 did not have them, but still have the same
number of connected components, tunnels and cavities.
With this observation, the above definition of topology
preserving is meaningful in the context of skeletonization,
where the skeleton S is a subset of the original object O.

Of course, we cannot have cavities in a 1D curve, so in
a strict sense, a curve-skeleton cannot preserve the
topology of an object with cavities. To accommodate
objects with cavities, a relaxed definition of topology
preserving can be formulated using the loops of a 1D
curve [107]: the curve-skeleton should have at least one
loop around each cavity of the original object. Think of a
hollow sphere: the curve-skeleton can be just a circle – a
single loop – or many circles in different orientations but
all surrounding the same cavity. The latter version may
better convey the true shape of the object as shown in
Figure 3, but clearly, this is application dependent.

Figure 3. Possible curve-skeletons of a hollow sphere.

However, tunnels in the original object also create loops
in the curve-skeleton. Thus, we will reformulate the
relaxed definition as follows: The curve-skeleton S
preserves the topology of the original object O in a
relaxed sense if it has the same number of connected
components and at least one loop for each tunnel and
cavity in the original object.

This formulation has the same constraint as the previous
one with respect to configuration. Of course if the object
does not have any tunnels or cavities, the curve-skeleton
should have no loops at all.

Such a definition could be useful for iconic/abstract
representation of objects, where all topological features
must be represented by the curve-skeleton. In addition, it
could be used to develop an algorithm that checks the
homotopy property of a curve-skeleton. The loops in a

(a) (b) (c)

4

curve-skeleton can easily be determined by performing a
depth-first search on the curve-skeleton, while tunnels and
cavities of a 3D object can be determined using the
method described in [121].

Invariant under isometric transformations: Given an
isometric transformation T (a transformation in which the
distances between points are preserved), the curve-
skeleton of the transformed object T(O), denoted by
Sk(T(O)), should be the same as the transformed curve-
skeleton of the original object. Formally, the invariance
criterion is given by: T(Sk(O)) = Sk(T(O)). This
property is important for matching applications where the
curve-skeleton is used as a shape descriptor. In such
applications it is common to have similar objects in
different orientations that nevertheless still need to be
matched and for this reason, the shape descriptor must be
insensitive to object orientation.

Reconstruction [43][88] refers to the ability to recover
the original object from the curve-skeleton. Given the
relation of curve-skeleton to the medial surface/skeleton
and the definition of the skeleton as the set of centers of
maximal inscribed balls, an obvious choice of
reconstruction method is to compute the union of
maximal inscribed balls centered at each curve-skeleton
point (or discrete medial surface point) [21][44]. The
radius of each ball is given by the “distance transform
value”, which specifies the distance to the closest point on
the boundary of the object. If we denote the
reconstruction operation by Rec(skeleton), then accurate
reconstruction means that Rec(Sk(O)) = O.

A 3D object can be completely reconstructed from its
medial surface/skeleton representation by computing the
union of maximal inscribed balls. This property has an
immediate application in shape compression and volume
animation [44]. However, in general, when using the ball-
growing approach, accurate reconstruction is not possible
from the curve-skeleton alone since it is only a subset of
the medial surface. That is, in general, Rec(Sk(O)) ≠ O.
To test the degree of reconstruction (accuracy) possible
from a given curve-skeleton, every point must be
equipped with the distance transform value determined in
the original object. Then, the difference volume O–
Rec(Sk(O)) will provide a quantifiable measure of the
ability to reconstruct the object.

Reconstruction can be improved by storing more
information in each curve-skeleton point and/or by
increasing the number of branches in the curve-skeleton.
For instance, one could store the three radii of a maximal
inscribed ellipsoid and replace ball-growing with an
ellipsoid-growing algorithm. Alternatively, one could
simply extract a curve-skeleton with many more branches
that should reconstruct more of the original object using
the classic ball-growing approach.

Intuitively, the ability to reconstruct an object from an
abstraction, such as the curve-skeleton, might seem to be

an indication of the quality of that shape abstraction for
shape analysis tasks. After all, if the degree of
reconstruction is very low, it means the curve-skeleton
does not capture much of the original object. However,
recent work has shown this is not the case. In [113], some
of the best performing shape descriptors for shape
matching cannot reconstruct the object at all.
Additionally, in [33], the curve-skeleton showed good
results for retrieving similar shapes from a large database
of general 3D objects.

Thin: Curve-skeletons should be one-dimensional, that
is at most one voxel thick in all directions, except at joints
where the curve-skeleton might become thicker to ensure
connectivity between the different branches.

We can distinguish three types of curve-skeleton points
[22] regular points on a 1D curve that have exactly two
neighbors, end-points of a curve that have exactly one
neighbor, and junction points (where curves meet), which
can have three or more neighbors. The thinness property
can easily be checked if the junction points are known in
advance. Some curve-skeletonization methods directly
identify junction points [32][68]. If junction points are not
known in advance, they have to be identified with another
method.

Thinness and reconstruction are two conflicting
properties. Even for objects whose medial surface actually
contains only curves (like tubular objects), a one-voxel
thick curve-skeleton may not contain all the necessary
maximal balls to accurately reconstruct the object
(remember that a discrete medial surface/skeleton is
usually more than one voxel thick owing to the discrete
nature of the object).

Centered: An important characteristic of a curve-
skeleton is its centeredness within the object. To achieve
perfect centeredness, it is required for the curve-skeleton
to lie on the medial surface since the medial surface is
centered within the object. This criterion alone is not
enough and in addition we require the curves to be
centered within the medial surface patches they belong to
[107][38]. In shape compression and some scientific
applications such as vortex core extraction [11], exact
centeredness of the curve-skeleton may be essential.
However, in most cases, exact centeredness of the
extracted curve-skeleton is not required or desired. Given
the well known sensitivity of the medial surface to small
perturbation on the boundary of the object [6][31],
constraining the curve-skeleton to lie on the medial
surface may make it sensitive to such changes as well.

Instead of exact centeredness, an approximate
centeredness (what we call relaxed centeredness) is
probably enough for many applications such as virtual
navigation or animation. For example, in a virtual
colonoscopy application, reliability (see below) and
smoothness of the navigation path are more important
than exact centeredness [61]. We still want the navigation
path to be close to the center of the object, but being one

5

or two voxels away from the exact center is not a big
concern.

One possible way to quantify the centeredness of a
curve-skeleton is to seed a number of uniformly
distributed radial rays in a plane normal to the direction of
the curve-skeleton at each one of it’s points and measure
the distance to the boundary along each of these rays.
Centered points should have the same distance to the
boundary along each pair of opposite rays.

Reliable: Reliability [52][61] refers to the property of
the curve-skeleton that every boundary point (point on
objects surface) is visible from at least one curve-skeleton
location. In other words, for any boundary point, there
exists a straight line connecting it to a curve-skeleton
point that does not cross any boundary. The term reliable
is used in relation to virtual endoscopy where it ensures
that the interior organ surface is fully (reliably) examined
by the physician performing the virtual procedure.

A brute-force algorithm to test the reliability of the
curve-skeleton checks the visibility of each boundary
point with a straight line to every curve-skeleton point.
Boundary points that cannot be connected without
intersecting the surface are not visible. Efficient visibility
computation can be done following the solutions from
[52].

Junction Detection and Component-wise
Differentiation: The curve-skeleton should be able to
distinguish the different components of the original
object, reflecting its part/component structure. This says
that the logical components of the object should have a
one-to-one correspondence with the logical components
of the curve-skeleton (which are curve arcs).

There is no rigorous definition of logical components of
a 3D shape, although several attempts have been made.
For example in [122], meaningful components are defined
as components that can be perceptually distinguished
from the remaining object. In [60], the component
structure of a 2D shape is defined using a combination of
substance and connection measures computed around
junction points of the medial axis using “visual
conductance”. The Reeb graph can also be used to
identify object components (see Section 5.3) but its
definition is dependent on the choice of the generating
function.

As long as the curve-skeleton has identifiable joints or
junction points, a partitioning of the original object can be
performed to produce a one-to-one correspondence
between the different components in the object and the
curve-skeleton (for use in animation or mesh
decomposition for example).

We would like to make a clear distinction between
curve-skeletonization methods that can identify the joints
or junction points before or during the extraction of the
curve-skeleton and the methods that extract these joints
after the curve-skeleton is produced. If the resulting
curve-skeleton is only one voxel thick in all directions,

detection of joints as a post-processing step is trivial: they
are the points having more than two neighbors. It is much
harder to identify these junction points before extracting
the full curve-skeleton. When extracting joints as a post-
processing step, the identified joints are as good as the
underlying curve-skeleton and no claims can be made
about their significance or stability with respect to the
original shape. Joints identified as a first step of the curve-
skeletonization process carry more significance simply
because they must be related to some intrinsic property of
the original object since the curve-skeleton is constructed
afterwards. It is the difference between the joints being a
by-product of the curve-skeleton or being its source.

 Component-wise differentiation is different from
homotopy in that it deals with logical perceptual
components of a single connected object while the latter is
concerned with geometrical connected components
forming different objects.

Checking whether a curve-skeleton satisfies this
property is a difficult task because the definition of object
component is not precise enough, involving human
perception, which is inherently subjective. However,
application specific definitions could be used for such
purpose: for example, a curve-skeleton suitable for
animation tasks would be one that has a separate branch
for each of the limbs and/or parts of limbs of the model
being animated. For simple models, the limbs can be
easily defined manually or even automatically in special
cases. A hierarchical skeleton (see below) could be useful
here to produce levels of meaningful components.

Connected: This is a consequence of homotopy. If the
curve-skeleton corresponds to a single connected object,
then by maintaining the topology of this object the curve-
skeleton would have to consist of a single connected
component itself.

Robust: As shown in Figure 1(b), the medial axis is
very sensitive to small changes in the boundary. A
desirable property of the curve-skeleton is to exhibit weak
sensitivity to noise on the boundary of the object, that is,
the curve-skeletons of a noise-free object and the curve-
skeleton of the same object with noise should be similar.
A robust curve-skeleton cannot be perfectly centered.
Exact centeredness would constrain the curve-skeleton to
the medial surface, which is extremely sensitive to
boundary perturbations.

Smooth: Smoothness is not only an aesthetic property,
but is actually useful in some applications. For example,
in virtual navigation, which uses the curve-skeleton as a
camera translation path, the path should be as smooth as
possible to avoid abrupt changes in the displayed image.

We can define smoothness of a curve segment as the
variation of the curve tangent direction as we move along
the curve. More precisely, we can measure the angles
between tangent directions at successive locations along
the curve and take the standard deviation of these values
as a measure of variation. To ensure smooth navigation,

6

the variation in tangent directions as we move from one
point to the next along a segment should be as small as
possible.

Hierarchy: Because the curve-skeleton is an
approximation of the complex components of an object,
the curve-skeletonization process and the curve-skeleton
itself should reflect the natural hierarchy of these
complexities [35][59]. A hierarchical approach is useful
because it can generate a set of curve-skeletons of
different complexities that could be used in many
different applications. In a strict hierarchy, the curve-
skeleton at a certain level in the hierarchy contains all
curve-skeletons from the layers below as subsets. Such a
strict hierarchy is useful in applications using different
resolutions during processing such as multi-resolution
matching.

A different kind of hierarchy, mostly useful in
animation, consists in defining the hierarchical relations
between parts of the same object. For example, the torso
is the root of the hierarchy with the limbs and head as its
children. This kind of definition is useful for animation as
it allows a whole tree of object components to be
manipulated by manipulating the root of the tree. For
example, the entire arm tree (arm, forearm, hand and all
fingers) can be moved by manipulating the shoulder joint.

There are other two criteria that relate to the algorithm
used to compute the curve-skeleton. First, the algorithm
should be efficient: many applications need real-time
computations. Second, some algorithms can handle point
sets (i.e., where the connectivity is not specified and there
is no inside/outside information) or other object
specifications, not just a voxelized representation.

Not all properties described above are essential to all
types of applications. Furthermore, some of the properties
may be conflicting, such as thinness and reconstruction or
robust and centered.

As a result, various algorithms that extract curve-
skeletons usually satisfy only a subset of these properties,
depending on the application.

In the next section we describe a number of applications
that use curve-skeletons.

4 USES OF CURVE-SKELETONS IN VISUALIZATION
Since they were first introduced, curve-skeletons have
found uses in many areas (e.g., image processing,
visualization, animation, etc.). In this section we present
an overview of some of these applications. This overview
is not comprehensive, many other applications exist.

One of the first uses of the curve-skeleton was in
virtual navigation [96][130], exploiting its centeredness
property to generate collision-free paths through a scene
or through an object. Given a scene composed of 3D
objects, the curve-skeleton of the background gives a
collision-free path through the scene. In virtual
endoscopy, curve-skeletons are used to specify collision
free paths for navigation through human organs.

Traditional endoscopic methods are invasive and often
uncomfortable to patients. A virtual endoscopy system
can produce images similar to those obtained using the
traditional technique but in a non-invasive way. After
imaging, the organ is “skeletonized” and a virtual camera
is translated along this curve-skeleton path allowing the
inspection of the respective organ. Clinical applications
include colonoscopy [54][61], bronchoscopy [96],
angioscopy [12] and others. A reliable navigation path
ensures the interior organ surface can be fully examined
by the physician performing the virtual procedure
[52][130].

In traditional computer graphics, skeletons are used
extensively to specify animation [1][19][83]. These
skeletons (sometimes referred to as IK-skeletons) control
the polygonal representation of the character being
animated. Surface polygons are attached to, and
manipulated through, this simple stick-like figure. While
most of the IK-skeletons are specified by an animator,
recently, there have been methods to compute the skeleton
and the “skinning” (polygon correspondence)
automatically [20][73][122][129]. A simplification of the
curve-skeleton can be successfully used as an IK skeleton
by replacing curve arcs with straight lines. Volumetric
objects can also be animated and manipulated using the
same type of paradigm [44]. In [125] and [28] the IK
skeleton is automatically detected from a sequence of
volume datasets.

Surgical planning and radiation treatment require
accurate extraction (segmentation) and quantification of
specific anatomical structures from CT (computed
tomography), MRI (magnetic resonance imaging), MRA
(magnetic resonance angiogram) or ultrasound data. This
is especially true for blood vessels and nerve structures.
Since these structures have a characteristic tubular shape,
methods aimed specifically at extracting the centerline of
such tubular objects from medical images have been
developed [9][10][40][41] using field-specific knowledge
(intensity variation of the blood vessels, connectivity), or
simply the volumetric representation of the vessels [89].
The centerline can also be used to aid in other image
processing operations such as edge detection and
segmentation [98][99]. Other uses include curved planar
reformation (flattening) [55][58], detection of stenosis
[90][115], aneurisms or vessel wall calcifications [117],
deforming volumes: unwinding convoluted objects to
allow a more efficient inspection of the overall structure
or to remove occlusion (e.g., colon straightening [114]).

A common operation in medical imaging is the
registration of two images from the same patient taken
with different modalities (MRI, CT, MRA). Registration
is performed by aligning some structures that are visible
in both images. One approach is to reduce the
dimensionality of the problem by extracting the skeleton
of the structure from both images and then aligning the
skeletons [10][42][98].

7

Another application is matching of 3D objects: given a
query object, the task is to find similar or identical objects
in a database by using the curve-skeleton
[27][33][53][118]. If the curve-skeleton can differentiate
the part structure of the original object, part matching is
also possible, where only parts of the objects are matched
against the query. In addition to matching, it directly
provides registration of the part in the whole object
[33][118].

Shape metamorphosis (morphing) is the process of
generating smooth transitions between two shapes,
creating the impression that one object is being smoothly
transformed into another. One of the most difficult tasks
in generating a successful metamorphosis is determining
the correspondences between the two shapes used to drive
the interpolation process. Various trade-offs are made
between allowing the user full control over the process
(thus turning it into a mostly manual process) and
completely automating the correspondence finding
algorithm. The curve-skeleton can be used in this context
for its simplicity, allowing the user to quickly specify
correspondences on the skeletons or enabling matching
algorithms to find correspondences more efficiently.
Additionally, the interpolation process can be performed
directly on the skeleton [18][64][136].

Decomposing a polygonal mesh into components is
desirable for applications that treat objects as a sum of
components. Such a decomposition can be assisted by
using the curve-skeleton if it has the ability to distinguish
the components of the original object [28][70]. In [59] an
inverse approach is taken, where a 1D skeleton is
extracted using the mesh decomposition results. Related
geometric uses of skeletons include surface
reconstruction [4][127] and mesh repair [68]. In [49]
and [134], the more challenging problem of segmenting
and quantifying an unorganized point cloud is
approached using a curve-skeleton.

In [119], the curve-skeleton is used to define a “skeletal
dimensional reduction” for the CAD field. It is also
shown how such a representation can be used to reduce
boundary value problems over complex solids to lower-
dimensional problems over the skeleton. Skeletons have
also been used to improve the efficiency of collision
detection of volumetric objects [45] or in surgical
simulations [131] and as a general data structure for
graphical objects [100]. In [55], a curve-skeleton in
combination with convolution surfaces is used for
implicit modelling of 3D objects.

In analysis of scientific data, curve-skeletons are used
to make complex topologies more easily understandable.
Furthermore, skeletons can be used for reduced modelling
and to explain simple physical phenomena. Examples
include plume visualization [108], vortex core
extraction [11], feature tracking [128], protein
backbone modelling [50][69], and many others.

The previous discussion is by no means exhaustive, but
gives a sample of popular uses of skeletons in
visualization. Some applications have extra data available
to help in the curve-skeletonization process such as
velocity fields in the case of vortex core extraction [11] or
blood flow data in the case of vessel tracking (e.g.,
[9][10][40]), while others use only the 3D object. In this
paper, we concentrate on the more general problem where
extra information is not available.

5 ALGORITHM CLASSES
There are many different skeletonization algorithms for

both 2D and 3D. Although some of the 2D algorithms
reportedly extend to 3D, we restrict our discussion to
algorithms explicitly designed for 3D. The discussion
below reviews general 3D curve-skeletonization
algorithms, i.e., the generation of a 1D curve-like
representation from a 3D object. However, for
completeness we do include some medial surface
algorithms since these medial surfaces could be further
reduced to a curve-skeleton [120][107]. Unless otherwise
stated, we consider the 3D objects to be represented by
voxels on a regular grid.

A commonly used classification scheme present in the
literature divides the skeletonization algorithms into the
following classes [80][123]: topological thinning
(grassfire propagation), distance transform based (ridge
detection) and Voronoi diagram based. However, many
of the surveyed methods that produce curve-skeletons use
pieces from several classes listed above to obtain a curve-
skeleton. For example, there are thinning algorithms that
use the distance field information to determine the
thinning order, or some distance field methods which use
thinning to prune the skeleton. Instead, we initially
categorize the algorithms based on the underlying
implementation of the initial step into the following
classes: (1) thinning and boundary propagation (2)
distance field based (3) geometric and (4) general-field
functions.

5.1 Thinning and Boundary Propagation
Thinning methods attempt to produce a curve-skeleton by
iteratively removing voxels from the boundary of an
object until the required thinness is obtained. All thinning
algorithms operate in the discrete (voxel) space and rely
on the concept of simple point, introduced by
Morgenthaler in 1981 [84]. A simple point [13][62][63] is
an object point (voxel) that can be removed without
changing the topology of the object (see [62] for a
complete review of digital topology). An important
property of simple points is that they can be locally
characterized, that is, one can determine if a voxel is
simple or not by only inspecting its local neighborhood,
making thinning algorithms much more efficient.

The thinning process starts from the object’s boundary
and continues inward until no more simple points can be

8

removed. At every iteration, each boundary voxel is tested
against a set of topology preserving conditions and
possibly removed. The conditions are usually
implemented as templates (or masks), of size 3x3x3 or
larger. The center of a mask is placed on the voxel being
tested and covers its entire local neighborhood. Each of
the voxels in the mask has a value of “0”, “1” or “don’t
care”. A value of “0” must match a background voxel, a
value of “1” must match an object voxel, while a “don’t
care” can match either a background or an object voxel.

However, removing all simple points from the object
produces excessive shortening of the curve-skeleton
branches. This is because all the end-points of curve-
skeleton curves are simple points themselves (i.e.,
removing them will not change the topology of the
object). Additional conditions are used to prevent removal
of surface or curve endpoints in order to maintain the
geometrical properties of the object.

There are several subclasses of thinning methods based
on how simple points are detected and considered for
removal.

Directional thinning methods remove voxels only
from one particular direction in each pass (for example,
North, South, Up, Down, East and West) using different
numbers of directions and conditions to identify endpoints
[28][48][66][74][94][95][126]. These methods are
sensitive to the order in which the different directions are
processed and the resulting skeletons may not be centered
within the object.

Subfield sequential thinning methods divide the
discrete space into several subsets named subfields and at
each sub-iteration only voxels belonging to a one of the
subfields are considered for deletion. Different number of
subfields can be used in 3D: 2 [77][78], 4 [76][79] or 8
[13][104]. For example, in the 2-subfield approach [77],
two voxels are in the same subfield if they share an edge.

Fully parallel [24][39][76][82] algorithms consider all
boundary points for deletion in a single thinning iteration.
In order to maintain topology, the neighborhood that
needs to be inspected when deciding whether a voxel is
deletable or not must be extended past the immediate 26
neighbors.

Some thinning methods produce a surface-skeleton in
the first stage and continue to thin until a one voxel thick
curve-skeleton is obtained [24]; others directly produce a
curve-skeleton and this usually involves using a different
set of templates. Additionally, a 2.5D algorithm aimed
specifically at reducing a surface skeleton to a curve-
skeleton by thinning is described in [120].

Figure 4 shows the thinning process on a 2D shape. At
each iteration, the boundary points are marked with “B”
and if they are simple points, they are removed before the
start of the new iteration. At the last iteration, no points
can be removed.

Figure 4. The thinning process on an example 2D shape.

Boundary points are marked “B” at the beginning of
each iteration and then removed if they are simple.

Most thinning algorithms are designed and proven
correct for a specific (6, 8 or 26) connectivity (see Section
2.2). The correctness proof deals with preservation of the
original objects topology.

5.2 Using a Distance Field
The distance transform or distance field is defined for
each interior point P of a 3D object O as the smallest
distance from that point to the boundary B(O) of the
object:

)),((min)(
)(

QPdPD
OBQOP ∈∈

= , where d is some distance metric.

Various distance functions can be used such as the
Euclidean distance or an approximation such as the
<3,4,5> chamfer metric [23]. A distance field can also be
approximated using fast marching methods
[103][111][123][124]. Figure 5 shows the color-coded
distance field values on a slice of a 3D chess piece shape.
The color map ranges from blue for small distance field
values to red for large values.

The ridges of this distance field correspond to voxels
that are locally centered within the object. Most of the
methods in this class attempt to find these voxels. These
act as potential candidates (from the larger pool of object
voxels) for curve-skeleton points. Several approaches are
used to find candidate voxels: in distance ordered
thinning approaches [36][44][101] a thinning algorithm
uses a priority function computed over the distance field
to select candidate voxels for removal, gradient
searching [17] involves detecting neighborhoods of non-
uniform gradient and flagging those points as candidate
voxels, divergence computation is used in [25] as the
priority function and a user-defined threshold blocks the
removal of simple points with lower divergence value,

Figure 5. A color-coded slice of the distance field of a 3D

shape.

9

parameter controlled thinning involves comparisons
between the distance field value at a voxel and the
average distance field value of its neighbors [43]. In the
geodesic front propagation algorithm described in [96],
candidate voxels are local maxima of the distance field
detected on the geodesic front propagating from the root
of the 3D object. Thresholding the bisector angle [81] or
surface shrinking along the gradient of the distance field
[109] are other methods for producing candidate voxels.
In voxel coding approaches [138], the distance field,
which measures the distance from the boundary, is
combined with a distance-from-a-source field to generate
a set if candidate voxels. In [103], the distance field is
combined with several distance-from-a-source fields
generated using fast marching fronts of various speeds.

The set of candidate voxels is usually a fairly large set
and the next step is to somehow prune it down to a
manageable size. Various criteria can be used in this step
to “weed out insignificant extreme points” [129], such as:
sphere coverage of a path tree [129], boundary visibility
from candidate voxels [52], thinning [123], or clustering
[118].

After the pruning step, the remaining voxels are usually
disconnected and the final step involves re-connecting
them in order to produce a set of 1D curves. For
connectivity, most algorithms use minimum spanning
trees [118][130], shortest paths [52][123][129] or other
graph algorithms. In [137] an “LMpath” defines the
connectivity of local maxima clusters, while in [17] the
gradient of the distance field is used to connect new
voxels to the already connected set. In [43], a recursive
midpoint subdivision algorithm identifies the closest
candidate in between two already selected voxels to build
a 1D path between two user-selected end points.

Most of the distance field-based algorithms have these
three steps: (1) find ridge points (local maxima, saddles),
(2) prune and (3) connect.

Some methods may first connect the set of candidate
voxels and then prune it by extracting shortest paths from
the connected set [17], others explicitly maintain the
connectivity while pruning, combining steps 2 and 3. An
alternative is provided by the fixed topology skeleton,
which is a set of a fixed number of connected active
contours driven by the underlying distance field [47].

A 2.5D method presented in [107] starts from a medial
surface representation of 3D objects and, for each surface
point, it computes the distance to the boundary of the
surface. The candidate voxels (centers of maximal
geodesic discs) are connected using gradient guided path
growing.

The distance field based methods can accurately extract
the medial surface; however they cannot extract a curve-
skeleton from arbitrary objects without employing
additional techniques to prune the medial surface. For
example all voxels on the medial sheet shaded in Figure
1(c) have the same distance field value. Therefore, some

sort of pruning must be used to simplify it to a set of
curves.

The main advantage of these methods is that
computation of the distance field is very fast and it is
usually needed by the application afterwards.
Furthermore, for tubular objects, the distance field
approach works very well.

5.3 Geometric methods
Geometric methods apply to objects represented by
polygonal meshes or scattered point sets.

A popular approach is to use the Voronoi diagram
[26][92][91][93] generated by the vertices of the 3D
polygonal representation or directly by a set of
unorganized points [4][7][86]. The Voronoi diagram
represents a subdivision of the space into regions that are
closer to a generator element (a mesh vertex in the case of
a 3D model) than to any other such element. The internal
edges and faces of the Voronoi diagram can be used to
extract an approximation of the medial surface (skeleton)
of the shape. A curve-skeleton can be extracted from this
medial surface approximation by pruning it to a 1D
structure. In [132], a number of “domain balls” (non-
intersecting maximal inscribed balls) are detected, whose
centers are later connected into a curve-skeleton using
surface connectivity information. In [38], a curve-skeleton
is computed by eroding the Voronoi diagram
representation using the medial geodesic function as a
priority function.

Other methods attempt to directly identify the medial
surface of a 3D polyhedral by tracing the seams of the
medial surface: [37][102][110][112][135]

Cores and M-reps [30][85][100][97] are also medial-
axis/surface approaches. A core is a locus in a space
whose coordinates are position, radius, and associated
orientations. The location of the core represents the
middle of the figure and the spread of the core represents
the width of the figure. M-reps are a generalization of the
Core concept. The M-rep models the medial surface using
a “web” of connected atoms. Each atom has a position
and additional information describing the shape locally,
such as: width, a local figural frame (which implies the
figural directions) and an object angle between opposing
corresponding positions on the implied boundary.

A similar structure is the shock scaffold, which relies
on the concept of contact spheres [67][68] and represents
the medial axis/surface by a set of shock curves, defined
as the intersection of medial surface sheets (not the curve-
skeleton).

The methods described above can be labeled as medial-
axis/surface based. The main disadvantage of medial-axis
based geometric methods is their sensitivity to noise. For
example, Amenta's power shape [4] contains a large
number of unwanted branches that need to be pruned to
extract a simpler skeleton [7]. Furthermore, the above
described methods are more computationally intensive

10

than the thinning/distance field based methods and
produce a medial surface, not a curve-skeleton.
Nevertheless we mention these methods here because
reducing a surface skeleton to a curve-skeleton is possible
using the curve thinning algorithms [120][107].

There are other geometric methods that avoid the
medial axis altogether, and produce a 1D skeleton
directly.

Reeb graph based shape descriptors, with roots in
Morse theory, are 1D structures encoding the topology
and geometry of the original shape. The Reeb graph
captures the topology of a compact manifold by following
the evolution of the level sets of a real-valued function
defined on the respective manifold. More formally [14]:

Given a real-valued function f, defined on a
compact manifold M, f: M → R, the Reeb graph
is the quotient space of M × R defined by the
equivalence relation ~ given by:
• (x1, f(x1)) ~ (x2, f(x2)) iff f(x1) = f(x2) and
• x1 and x2 are in the same connected component

of f -1(f(x1)) (or f -1(f(x2))).
In other words, the equivalence classes defined by ~

consist of the connected components of the level sets of f.
Nodes in the Reeb graph correspond to the critical points
of the function f, (i.e., points where the gradient of f is
zero) and edges of the graph represent connections
between critical points. According to Morse theory, the
object changes its topology only in connection to the
critical points of f, so the edges of the Reeb graph can be
thought of as representing different components of the
object and the nodes can be regarded as connections
between these different components.

The Reeb graph is not a curve-skeleton: it is not even
defined in the same space as the original object. However,
an embedding of the Reeb graph into 3D space can be
attempted by mapping each edge into a sequence of 3D
points defined for example as the centers of the successive
level-set contours associated with the respective edge.
This defines a curve-skeleton for the original object [65].
Figure 6 shows an example for a 2D shape.

Extensions of the Reeb graph to polygonal meshes have
been proposed such as the Extended Reeb Graph [8][14]
or the Discrete Reeb Graph [134]. The choice of the real-
valued function f distinguishes the various algorithms.
The height function used in [8][134] is sensitive to the
object’s orientation. The Euclidean distance from a point
in space, usually the barycenter of the mesh (used in
[15][16]) does not depend on the orientation of the object,
but it is affected by changes in the underlying mesh as a
result of articulated motion. Using the geodesic distance
instead of the Euclidean distance solves this problem but
the source point must now be a vertex of the mesh. The
shortest path distance to a given source point [65][127] is
sensitive to the selection of the source point.

Figure 6. An embedding of the Reeb graph into the

original image space. Each node is taken to be the
centroid of its corresponding contour.

Alternatively, the integral of the geodesic distance to all
the points on the surface [53] is less sensitive to small
perturbations due to noise. Using the shortest geodesic
distance to a set of curvature maxima on the surface [86]
introduces the problem of robustly and automatically
detecting relevant curvature maxima on the surface. A
similar approach is given in [28], where curve-skeletons
generated from multiple extremities are combined into a
final one.

Other geometric methods do not rely on a function
defined on the manifold to produce a curve-skeleton. Li et
al. [70] construct a line segment skeleton by collapsing
edges in length order (shortest first). This method is
sensitive to the mesh tessellation. Katz and Tal [59] first
decompose a mesh surface into segments using clustering,
and then use this segmentation to construct a skeleton
(joints are represented by centered vertices at the
boundary between different patches). In [71], the curve-
skeleton and the mesh decomposition processes are
interrelated. The curve-skeleton of each component is
obtained by connecting the principal axis with the
centroid of each opening (connection to other
components). In turn, the mesh decomposition process
decides whether or not to further decompose an existing
component by evaluating the quality of its curve-skeleton.

5.4 General-Field Functions
Various types of fields generated by functions other than
the distance transform can also be used to extract curve-
skeletons. Included in this class are generalized potential
field function [3][32][35] where the potential at a point
interior to the object is determined as a sum of potentials
generated by the boundary of the object. In the discrete
case [35], the boundary voxels are considered point
charges generating the potential field. The electrostatic
field function is used in [2][51] to generate a potential
inside the object. The visible repulsive force function
presented in [73] and [133] is a special case of the
generalized potential field function used in [3][32] and
[35]: the Newtonian repulsive force. However, here the
visibility of boundary elements from an interior point is
taken into considerations by computing the intersection
with a number of sampling rays originating at the current

he
ig

ht

11

position on the path. In [80], the combination of radial
basis functions originating at the mesh vertices is used to
define a field inside the object.

The curve-skeleton is extracted by detecting the local
extremes of the field and connecting them. A force
following algorithm can be used for connectivity, using
the mesh vertices [133], the convex corners of the mesh
[3][32], the significant corners along equipotential
contours [2], or the critical points of the vector field [35]
as “seed” points. Another possibility is the use of an
active contour to detect the final location of the curves
connecting the extremes in the field [80][132].

Detection of local extremes can be achieved explicitly
by looking for critical points over the entire underlying
vector field [35] or detecting the local maxima along
equipotential contours [2]. The other methods directly use
the force-following algorithms starting at other seed
points, using the fact that the force-following algorithm
stops when it reaches an extreme.

The main advantage of these functions over the distance
field is that they can produce nice curves on medial sheets
where the distance field is constant. This is because they
take into account larger boundary areas, not just the
distance to the closest point on the boundary. This also
creates an averaging effect that makes these algorithms
less sensitive to boundary noise. However, they are much
more expensive to compute.

Resolution of the voxel grid also affects the field
functions, which tend to be more sensitive to noise in thin
regions of the object because significant contributions
toward the final field value at an interior point come from
fewer boundary voxels.

Figure 7 shows the vectors of the repulsive force field
of a 2D shape.

Another disadvantage of the general field functions is
their numerical instability since the computations usually
involve first or even second order derivatives.

6 DISCUSSION
The classification proposed in the previous section was
based on the first steps of the implementation, but we
would like to emphasize that many methods use concepts
from two or more different classes to finally produce a
curve-skeleton. The distance field based thinning
procedures described in [36][44][101] initially compute a
distance field over the object, but then employ thinning to
extract a curve-skeleton, using the distance field as a
priority function to select voxels that will be removed
next. In [132], a control skeleton named the domain
connected graph (DCG) is extracted in several steps
involving Voronoi diagrams, Reeb graphs and repulsive
force fields.

Additionally, note that concepts from different classes
are actually closely related. For example, we could relate
the single-source distance field (voxel-coding) algorithms
[138][103] with the Reeb-graph approaches [65][127]

Figure 7. The repulsive force field of a 2D shape. The

inset shows what region of the force field was
magnified.

since the minimum distance search employed in single-
source distance field methods actually involves the
traversal of the level sets of a distance function defined on
the object (in this case, on the full solid 3D object rather
than only its surface). Surface shrinking along the
gradient of the distance field [109] is also similar to
surface thinning (removing layers from the boundary of
the object until no more layers can be removed).

In the remainder of this section we discuss the described
curve-skeletonization methods in terms of the properties
presented in Section 3.

6.1 Homotopy
Homotopy is ensured by the thinning methods because
only voxels that do not change the object topology (the
simple points) are removed.

Since distance field methods do not produce a curve-
skeleton directly, topology preservation depends on the
subsequent pruning and connectivity steps. Clearly,
connectivity algorithms based on minimum spanning trees
do not preserve topology because they are not able to
create loops.

The power shape [4] represents a topologically correct
approximation of the medial axis. However, care must be
taken in the subsequent simplification steps so the final
curve-skeleton maintains the topology of the power shape.
The Reeb graph is an accurate representation of the object
topology. However, in the discrete case, an important
factor is the sampling frequency used to construct the
level sets. If the sampling is too sparse, small
topologically relevant features may be lost, while a too
dense sampling may take too long to compute. In [8], a
solution for adaptive sampling is proposed. The edge-
contraction methods described in [70] specifically
maintains the topology of the intermediate shapes. The
curve-skeleton extraction method based on mesh
decomposition described in [59] cannot preserve
topology, because the extracted curve-skeleton is always a
tree. This approach was taken because the curve-skeleton
was used for animation where loops are generally not
desirable.

12

Curve-skeletons produced by algorithms employing
force-following on generalized fields could be
disconnected even for objects with a single connected
component, due to numerical errors affecting the
integration steps in regions with insufficient resolution
[35]. Using an active contour approach [32] can preserve
connectivity of curve-skeleton segments, but the initial
connectivity of the sinks based on minimum distance
seems arbitrary and may not correspond to the topology of
the original object. Furthermore, due to numerical errors
and resolution of the voxel grid, potential field algorithms
can create loops in the curve-skeleton that do not
correspond to a tunnel or hole in the original object [35].

6.2 Invariant under isometric transformations
Directional thinning methods are sensitive to the object
orientation. The final result (end points, number of
branches and their location) depends on the order in
which the different directions are processed. Distance
field, Voronoi-based and general field methods do not
depend on object orientation.

Reeb graph based methods can be sensitive to object
orientation depending on the function chosen to extract
the level sets. For example, the height function [8][134] is
dependent on orientation, while the distance to the
barycenter of the mesh [15][16] is not.

In all cases involving discrete representations of objects,
the finite resolution of the voxel grid produces small
errors when objects are transformed. As a result, even
though curve-skeletonization algorithms themselves are
not sensitive to object orientation, the input data itself is
already adversely affected by the transformation. Such
small discretization errors show up on the boundary of the
transformed object and their effect on the resulting curve-
skeleton is similar to that of surface noise.

6.3 Reconstruction
The skeleton (medial surface) of a 3D object captures
local symmetries present in the object through different
types of elements: surface patches in the skeleton
represent symmetric plate-like regions of the original
shape, while individual curves in the skeleton correspond
to cylinder-like (tubular) shape regions.

It should be obvious that regardless of the method used
to compute it, a complete and accurate reconstruction of
the original object is not possible from the information
retained in a curve-skeleton alone when using the simple
ball-growing approach. Since the curve-skeleton contains
only curve-segments, flat object parts cannot be
reconstructed from it. Cylindrical shapes, (i.e., shapes that
can be accurately represented by generalized cylinders),
represent a special class of objects that can be accurately
reconstructed from the curve-skeleton alone. General
shapes however, can only be approximated by a
generalized cylinder reconstruction. Clearly, a denser
curve-skeleton will generate a better reconstruction [43].

Reconstruction using the ball-growing approach [43]
needs distance field information in order to determine the
radius of the ball that will be grown from each curve-
skeleton point. In this respect, the distance field based
methods have an advantage over the other methods
because this information is already available.

6.4 Thinness (1D)
Thinning algorithms can either directly produce a curve-
skeleton (by using curve-thinning templates) or further
thin a surface skeleton to a 1D representation. Parallel
thinning algorithms, which remove all simple points at
once, may not be able to achieve 1D skeletons due to
homotopy constraints. An illustrative 2D example is the
case of a rectangle whose width is an even number of
voxels: in the last step of the thinning process, the middle
section of the skeleton will be a curve of width 2.
Although all points of this curve are simple points,
removing them would completely remove the middle
section. At this stage, no other simple points can be
removed and the skeleton is not 1D. Directional thinning
methods do not have this disadvantage: one row of voxels
in the middle section will be removed when processing
the up-down direction (for example), and the second row
will be preserved in subsequent steps.

Distance field methods and Voronoi-based geometric
methods do not produce a 1D skeleton directly. Both
require significant post-processing to reduce the candidate
voxels (distance field) or the medial surface (Voronoi-
based methods) to a curve-skeleton.

The Reeb graph based geometric methods and the mesh
decomposition-based method of [59] directly produce 1D
straight-line skeleton segments by connecting level-set or
component junction centroids, although the representation
is no longer voxel-based.

Thinness is an implicit property of the general-field
methods that use force-following or active contours to
generate 1D skeleton branches.

6.5 Centeredness
Thinning and general field methods do not guarantee
centeredness. In the case of directional thinning, this
would depend on the order in which the different
directions are applied. In the case of general field
methods, since they are taking into account a larger
surface area than the two closest points, centeredness is
usually compromised.

Methods using a distance field can better achieve
centeredness because of the centeredness information
included in the distance field. However, once clustering
and spanning trees are used, centeredness may be lost (see
for example [129]). Distance field methods using a
distance to source (for example geodesic field
propagation) do not generate centered curve-skeletons.
The problem is described in detail in [96] and the solution
provided there combines the distance-to-source field with

13

a global distance-to-boundary field to achieve
centeredness.

Geometric methods directly computing contact points
(points where the maximal inscribed spheres touch the
surface) [68] can also achieve centeredness since these
points can be incorporated more easily into the pruning
steps. Voronoi-based methods are dependent on the
sampling density of the object’s surface: a denser
sampling produces a more centered curve-skeleton [4] but
the running time increases. Centeredness of level-set
[127] and mesh decomposition-based [59] curve-skeletons
is poor because centroids are directly connected with
straight-line segments, regardless of the configuration of
the object between these points. Centeredness problems
arise especially in regions where the topology of the
object changes between successive level sets. It is also
influenced by the resolution (the distance between two
successive level sets).

Resolution affects any centeredness measurement in the
discrete domain. Using the same example of a shape
whose width is an even number of voxels, if this shape is
reduced to a 1D skeleton, at the grid’s resolution, the
curve-skeleton must be one voxel closer to one of the
sides than to the other.

6.6 Reliability
Reliability is an application specific property important
for virtual navigation (each boundary point must be
visible from at least one curve-skeleton location). For this
reason, this property is only guaranteed by those
algorithms developed specifically for that particular
purpose (see for example [52][61]).

Regardless of the algorithm used to compute the curve-
skeleton, reliability can be easily checked using the
visibility test for each boundary location on the original
object. If necessary, more branches can be added to the
curve-skeleton in a post-processing step.

6.7 Junction Detection and Component-wise
Differentiation

The ability to distinguish the different components of the
curve-skeleton depends on the ability to detect the
junction points, i.e., the points where two or more curves
meet. From this decomposition, one can infer the
corresponding part structure of the original object.

Some thinning algorithms directly classify the skeleton
points as junctions, either during thinning [120] or as a
post-processing step [28]. Distance field methods must
test for joints after significant pruning and clustering
[129]. However, junction placement for these classes of
methods is sensitive to noise.

From the geometric algorithm class, level-set methods
directly identify the joints as the centroids of level-sets.
Joint locations depend on the function used to define the
level sets. Similarly, the joints of the mesh decomposition
based curve-skeleton, identified as the mesh component

junctions, depend on the coarseness of the decomposition.
The edge-contraction method can easily identify junctions
by inspecting the vertices of the skeleton, as a post-
processing step.

General-field methods can identify joints directly before
extracting the curve-skeleton by locating the critical
points of the underlying vector field [35], during
extraction as the local extrema where the force-following
algorithm stops [32], or the points where a previously
visited location is encountered. Joint placement depends
on the function used to define the underlying field.

6.8 Connectivity
Connectivity is usually checked by all the algorithms.
Some algorithms (e.g., thinning, level-set based geometric
methods) explicitly maintain connectivity during
computation, while other methods check and enforce
connectivity in a post-processing step.

6.9 Robustness
Thinning, distance field and Voronoi-based geometric
methods are sensitive to noise, generating unnecessary
branches in the skeleton as a result. Several methods have
been proposed to filter the resulting skeletons [7][36].

Level-set based geometric methods are affected by
noise in different ways. While the location of the level-set
centroids should not be affected by noise because of the
averaging effect involved in computing the centroid, noise
can adversely affect the number of contours in a level set,
thus generating undesirable branches in the resulting
skeleton.

General field approaches are less susceptible to noise
because of the large amount of averaging included in the
underlying computation. These methods are more
sensitive to resolution because thin regions in the objects
can cause numerical instabilities in the computations.

Many of the algorithms described in the literature are
usually illustrated with only a few examples and are not
tested on a large database of general 3D objects (for
example the Princeton Shape Benchmark [113], a
database of 1814 3D models). Thus it is unclear how
robust and general these algorithms are with respect to the
choice of their parameters.

6.10 Smoothness
Due to their discrete nature, thinning algorithms do not
produce smooth curve-skeletons. Boundary irregularities
propagate all the way to the curve-skeleton during the
thinning process.

Distance field methods have the same disadvantage
because there is no averaging involved in the computation
of the distance field values. However, the subsequent
pruning and reconnection steps can incorporate some
smoothing constraints. Voronoi-based geometric methods
behave in a similar way.

14

Level-set geometric methods introduce smoothing in the
computation of level-set centroids, but topology changes
in the evolution of level sets are not handled in a way that
preserves smoothness. The same is true for methods based
on mesh decomposition.

In the case of general field methods, extensive
averaging is employed during the computation of the
vector field and the effect is improved smoothness of the
extracted curve-skeleton.

Although some algorithms may produce smoother
curve-skeletons than others, smoothing can be performed
in a post-processing step, regardless of the extraction
algorithm used to compute the initial curve-skeleton.

6.11 Hierarchy
Hierarchy (the ability to create a family of curve-
skeletons of increased complexity) is not achievable using
thinning algorithms because when processing a voxel
there are only two choices: keep it, or remove it. A curve-
skeleton is obtained only after the last iteration of the
algorithm.

Distance field methods can produce a hierarchy of
curve-skeletons by varying the number of candidate
voxels selected in the pruning step. In order to obtain a
strict hierarchy (i.e., the curve-skeleton at one level is
included in the next level curve-skeleton), the
reconnection step must take into account the previous
level curve-skeleton. Similar to distance field, Voronoi-
based geometric methods can produce hierarchic curve-
skeletons by pruning the surface skeleton at different
thresholds and reconnecting the candidate voxels into a
hierarchy of curve-skeletons. In the case of mesh
decomposition based methods, if the decomposition
process is a hierarchical one [59], the produced curve-
skeletons will also form a hierarchy. Reeb graph based
geometric methods are not hierarchic.

General field methods produce hierarchic curve-
skeletons by varying the number of seed points used to
construct individual curve-skeleton segments. Additional
segments added to a curve-skeleton do not affect the
existing segments, creating a strict hierarchy [35].

6.12 Efficiency
Thinning is practically a linear process in the number of
object voxels. Most of the voxels of the input object are
removed when they are first processed (they are simple
points). The non-simple points are processed again at
every subsequent thinning step until they are finally
removed or the algorithm terminates. An exact
complexity analysis of such algorithms is difficult since
they are data dependent.

The Euclidean distance field of a 3D object can be
computed in linear time using the algorithm of Saito and
Toriwaki [106]. The subsequent steps of filtering and
reconnecting the curve-skeleton may, however, have a

higher complexity (but they usually operate on a greatly
reduced set of voxels).

Computation of the Voronoi diagram of a set of n points
in 3D is O(n2) in the worst case, although in practice it is
almost linear [4]. As in the distance field case, additional
processing is necessary to get a curve-skeleton, but the
number of input elements is reduced. The computational
complexity of the level-set based geometric methods
depends on the kind of function computed over the object.
The height function can be computed in linear time, while
the exact integral of the geodesic function is O(n2) [53] (n
is the number of mesh vertices). The following steps,
detecting connected components in each level set and
computing their centroids, are linear in n.

The complexity of potential field computation is O(n2)
[35], where n is the number of object voxels. These
methods are computationally more intensive than distance
field methods because they take into consideration larger
boundary areas, not just the closest point.

6.13 Handle Point Sets
Objects represented by a set of points on the boundary can
be converted to a voxelized point representation by
mapping each sample point to the closest voxel. Note that
this transformation is different from voxelizing a polygon
mesh. In the later case, the interior of the mesh is
completely filled with object voxels, while in the former
case, the interior and the full boundary of the object are
still unknown. Thinning algorithms cannot operate on
such representation since they need to know the complete
interior and boundary of the object.

Distance fields can be computed using the known
boundary points as sources, but the field will extend
outside the object since the distinction inside/outside is
not known. The resulting curve-skeleton will also have
branches outside, as well as inside the object, and it may
be difficult to distinguish between them.

Voronoi-based geometric methods directly work with
objects represented by a set of samples on the boundary
[4]. Level-set based geometric methods can also handle
such representations as demonstrated in [127]. Mesh
decomposition based geometric methods however, cannot
handle this case.

Point samples on the objects boundary can be used as
sources for the general field methods. As for the distance
field, the field will also extend outside the object.
However, the curve-skeleton segments outside the objects
can be easily identified and removed if using a force-
following algorithm since they will be touching the
bounding box of the volume (see [35]).

6.14 Discussion Summary
In Table 1 we list, for each algorithm class, the properties
it can achieve, as discussed in this section. A “Y”
signifies that the algorithm class guarantees that particular
property. An “N” is used if the algorithm class cannot

15

achieve a given property. Finally, an empty space is used
if a property can be achieved by some but not all the
algorithms in a class, or if a property is difficult but not
impossible to achieve using this class of algorithms (as
per the detailed discussion above).

Table 1. Summary of properties achievable by the

various algorithm classes.
 Thinning Distance

Field
Geometric General

Field
Homotopic Y Y N
Transf. Invariance Y Y
Reconstruction N N N
Thin Y
Centered
Reliable
Junction Detection Y Y
Connected Y
Robust N N N Y
Smooth Y
Hierarchic N Y
Efficiency Y Y Y N
Handle Point Sets N Y Y

7 IMPLEMENTATION
In Section 5, four classes for the curve-skeletonization
algorithms were described. The classes are divided into a
“core” part and a “post-core” step, which is necessary to
prune, cluster, connect or smooth the curve-skeleton. In
this section, we describe the results of comparing one
algorithm from each class on several test objects,
including one “real” object (a colon dataset) and one
object with noise (the chess piece). Because many of the
algorithms described in the literature are difficult to
implement (typically not all of the implementation details
are given, e.g., specific thresholds, epsilon values and
cluster parameters), we have only implemented the “core”
part of the algorithms (i.e., the first step(s)).

For the distance field and the Voronoi diagram based
geometric methods, a curve-skeleton is more difficult to
obtain directly. The fist step of these methods generates a
structure closer to a medial surface, so additional
processing is required to obtain a 1D curve-skeleton. To
illustrate, we used the parameter controlled filtering of the
distance function described by Gagvani and Silver in [43]
for distance field based methods and Amenta’s
implementation of the power shape (Voronoi diagram
based approximation of the skeleton) [4]. Note that for the
power shape algorithm, only the surface voxels were
given as input to the program and the results shown in the
figure are the inside poles determined by the algorithm
[4]. A comparison of the resulting structures for several
objects is shown in Figure 8. The purpose of this
comparison is to give the reader a sense of how much
additional processing would be required in order to
extract a curve-skeleton from these structures. Note that
the additional processing has to rely on some other

information, not given by the underlying method used in
the first step. For example, pruning the medial surface
patch of the box cannot take advantage of the distance
field values since they are the same for all voxels on it.

In our previous work [34], we compared the different
algorithms using the implementations described above for
the distance field and the geometric classes. However, we
felt that the comparison was not fair because these
implementations did not extract a 1D curve-skeleton
directly, while the thinning and potential field methods
did. In order to make the comparison fairer, in this paper
we attempt to modify the distance field and geometric
implementations to extract a 1D curve-skeleton.

In the distance field case, we extended the
implementation with two additional steps performed by
most algorithms in this class (see Section 5.2): pruning
the candidate voxels and connecting them. Specifically,
we used clustering to reduce the number of candidate
voxels and a minimum spanning tree algorithm to connect
the centroids of the clusters.

To represent the geometric methods, we changed our
implementation to a Reeb graph based one, which does
produce a curve-skeleton in the first step of processing.
We have chosen the height function because of its
straight-forward implementation. We detect connected
components in each level-set of the height function, select
the centroid of each connected component as its
representative, and add it to the curve-skeleton. When the

Object Distance Field Power Shape

Thin Block

Monster

Mushroom

Twist

Figure 8. The candidate voxels selected from a distance
field using [43] and the Voronoi diagram based power
shape [4] give a sense of how much additional post-
processing is required to get a 1D curve-skeleton.

16

topology of the level sets changes, we connect the
centroids of neighboring components in two adjacent
level sets with a straight line.

From the thinning class, we implemented the 12-
subiteration curve thinning algorithm described by
Palágyi and Kuba in [95].

We implemented the potential field method described in
[35] to illustrate the general field methods. Since this is a
hierarchical method, which produces curve-skeletons of
various complexities, for this comparison we only used
the first level of the hierarchy (level 0), i.e., the curve-
skeleton generated in the first step by connecting the
critical points of the vector field. Both the thinning
method and the potential field method directly produce a
1D curve-skeleton.

The results of our implementations on a set of test
objects are shown in Figure 10. Note that for these results,
no attempt was made to tweak the parameters of the
programs in order to obtain a better curve-skeleton for one
object or another. The distance-field based curve-skeleton
was obtained using a thinness threshold of 0.6 for all
objects (see [43]). This threshold was selected for one
object (the horse) to remove most of the extra branches
but still maintain most of the characteristics of the horse
shape. Then this value was used for all the other objects.
For the potential field implementation, we used a field
strength parameter value of 6 since in our experience this
value produced good curve-skeletons, and no additional
seed points besides the critical points were used. For the
Reeb graph based geometric implementation the height
function sampled the objects in the “up” direction
(increasing Y values) at every discrete value of Y. There
were no parameters for the thinning implementation.

Most of the test objects, except the colon and the knight
chess piece, were voxelized from models downloaded
from the Princeton Shape Benchmark Database [113].
The grid resolution was chosen such that its largest
dimension is 300 voxels and the aspect ratio of the object
is maintained. The colon dataset has a resolution of
204x132x260 and the knight chess piece is 40x39x87.
The source code for our implementations and all models
used in the experimental section can be downloaded from
[139].

From these results, it is clear that the potential field
method yields the cleanest and smoothest curve-skeleton
at the initial stage. This is due to the “global averaging”
effect of the potential field. For objects with thin, flat
regions, like the ears of the bunny, the algorithm identifies
too many critical points, creating a large number of curve-
skeleton branches in that area, very similar to a medial
surface. This is because the algorithm is resolution
dependent, a disadvantage identified in [35]. Also note
that we are using only the first level (level 0) of the curve-
skeleton hierarchy presented in [35]. While this simple
curve-skeleton is good enough for some objects, for
others certain parts are not represented in the curve-

skeleton at all: the tail of the dinosaur and two of the hand
fingers are missing, for example. By using different
values for the field strength parameter (fixed at 6 for the
purpose of this comparison for all objects), or with the use
of additional seed points (detected automatically), the
resulting curve-skeleton can be improved.

The thinning algorithm performs well in all cases, but
the resulting curve-skeletons are not smooth, since all
irregularities of the surface propagate to the curve-
skeleton through the erosion process. This also makes it
more sensitive to noise. Furthermore, this noise
propagation problem affects the location of the joints,
which can be identified in a post-processing step because
the resulting curve-skeletons are one voxel thick in all
directions. As there are no parameters to set for this
algorithm, one can only improve the curve-skeleton in a
post-processing step, using smoothing and possibly
branch pruning to remove extraneous branches.

The distance field-based algorithm produces curve-
skeletons with a large number of extra branches. They are
generated by the relatively large number of candidate
voxels selected using the thinness heuristic. The centroids
of the clusters are connected using straight lines, so the
centeredness property is not always satisfied. In fact some
curve-skeleton segments can go outside the object entirely
as for the spider and the dinosaur. Clearly, the resulting
curve-skeleton can be improved by using more
sophisticated algorithms for selecting candidate voxels or
for connecting them, but they come at a cost: more effort
from the implementer and possibly longer running times.

The Reeb graph based geometric algorithm produces
strange results for some objects because the objects were
not always oriented in the natural “up-down” direction as
they are presented in the figure. For example, for the
dinosaur and commercial airplane shapes, the slicing
direction corresponds to the front-to-back direction in the
figure. This aspect can be improved upon by using
different slicing directions for each object. A better
alternative is to use an orientation independent function to
define the level sets, such as the geodesic distance. Since
the centroids of adjacent connected components are
connected using straight lines, the centeredness property
is compromised, especially when the topology of the level
sets changes. As in the distance field case, some segments
are outside the object, as we can see for the dinosaur or
the commercial airplane objects. This problem is difficult
to fix regardless of the function used to define the level
sets.

Although the implementations directly produce a curve-
skeleton for each class of methods, the comparison is still
not completely fair. We cannot claim that each of our
implementations is fully representative for an entire class
of algorithms, as many improvements to the resulting
curve-skeletons can surely be made. However, we believe
that general characteristics of each class of methods
transpire from these results as discussed in this section.

17

In terms of running time, the potential field method is
the slowest. In Figure 9 we show a comparison of the
running times (in milliseconds, on a logarithmic scale)
recorded for each method as a function of the total
number of object voxels (note that no optimizations were
done for the implementations).

Figure 9. Running time (log scale) vs. number of object

voxels.

As mentioned in the beginning of the paper, the various
algorithms presented here operate either on discrete
voxelized datasets or on continuous polygonal
representations of 3D object. Since conversion between
these representations can be done using well-known
algorithms (voxelization or surface extraction), the
availability of one representation or the other should not
be a deciding factor in choosing the curve-skeletonization
algorithm.

8 SUMMARY
A plethora of different curve-skeletonization algorithms
have been described in the literature. In this paper, we
have given an overview of the visualization applications
that use curve-skeletons and have distilled a list of curve-
skeleton properties necessary for these applications. We
have then classified the algorithms for computing the
curve-skeleton based on their implementations and have
discussed to what extent each methodology achieves the
different curve-skeleton properties. To illustrate this, we
implemented a “core” curve-skeletonization algorithm
from each class and compared the results on the same set
of test objects.

9 ACKNOWLEDGEMENTS
This work is supported in part by NSF 0118760 and NSF
EIA-0205178. We would like to thank Dr. Raman
Balasubramanian and Xiaosong Yuan for their initial
help. We would also like to thank the reviewers for their
useful comments and suggestions.

The source code and all models used in the
experimental section can be downloaded from [139].

REFERENCES
[1] 3D Studio Max, Discreet, (http://www4.discreet.com/3dsmax/).
[2] G.H. Abdel-Hamid, Y.-H. Yang. Multiresolution skeletonization: an

electrostatic field-based approach, Proc. IEEE ICIP, pp. 949-953, 1994.
[3] N. Ahuja, J. Chuang. Shape Representation Using a Generalized Potential

Field Model, IEEE PAMI, 19(2): 169-176, 1997.
[4] N. Amenta, S. Choi, R. Kolluri. The Power Crust, Proceedings of 6th

ACM Symposium on Solid Modeling, 249-260, 2001.
[5] N. Amenta, S. Choi, R. Kolluri. The power crust, unions of balls, and the

medial axis transform, Comp. Geometry: Theory and Applications, 19(2-
3):127-153, 2001.

[6] D. Attali, J.-D. Boissonnat, H. Edelsbrunner. Stability and Computation of
the medial axis - a State-of-the-Art Report, Mathematical Foundations of
Scientific Visualization, Computer Graphics, and Massive Data
Exploration, Springer-Verlag, 2004.

[7] D. Attali J.-O. Lachaud. Delaunay Conforming Iso-surface, Skeleton
Extraction and Noise Removal, Comp. Geometry, 19(2-3):175-189, 2001.

[8] M. Attene, S. Biasotti, M. Spagnuolo. Shape understanding by contour-
driven retiling, The Visual Computer, 19(2-3):127, 2003.

[9] S.R. Aylward, E. Bullitt. Initialization, Noise, Singularities, and Scale in
Height Ridge Traversal for Tubular Object Centerline Extraction, IEEE
Trans. on Medical Imaging 21(2), 2002.

[10] S.R. Aylward, J. Jomier, S. Weeks and E. Bullitt, Registration and
Analysis of Vascular Images, IJCV, 55(2-3), 2003.

[11] D.C. Banks, B.A. Singer. Vortex tubes in turbulent flows: identification,
representation, reconstruction, IEEE Visualization, 1994.

[12] D. Bartz, W. Straßer, M. Skalej, D. Welte. Interactive Exploration of
Extra- and Intracranial Blood Vessels, IEEE Visualization, 1999.

[13] G. Bertrand and Z. Aktouf. A three-dimensional thinning algorithm using
subfields, Vision Geometry III, 2356:113-124. SPIE, 1994.

[14] S. Biasotti, B. Falcidieno, M. Spagnuolo. Extended Reeb Graphs for
Surface Understanding and Description, Proc. Int. Conf. on Discrete
Geometry for Computer Imagery, pp. 185, 2000.

[15] S. Biasotti, S. Marini, M. Mortara, G. Patane. An overview on properties
and efficacy of topological skeletons in shape modeling, Proc. SMI, 2003.

[16] S. Biasotti, S. Marini, M. Mortara, G. Patanè, M. Spagnuolo, B.
Falcidieno. 3D Shape Matching through Topological Structures, Lecture
Notes in Computer Science 2886:23, 2003.

[17] I. Bitter, A.E. Kaufman, M. Sato. Penalized-Distance Volumetric Skeleton
Algorithm, IEEE TVCG, 7(3), 2001.

[18] R.L. Blanding, G.M. Turkiyyah, D.W. Storti and M.A. Ganter. Skeleton-
based Three-Dimensional Geometric Morphing, Computational Geometry,
15:129-148, 2000.

[19] J. Bloomenthal. Medial Based Vertex Deformation, SIGGRAPH/
Eurographics Symp. On Computer Animation, 147-151, 2002.

[20] J. Bloomenthal, C. Lim. Skeletal Methods of Shape Manipulation, Shape
Modeling Int'l, 1999.

[21] H. Blum. A Transformation for Extraction New Descriptors of Shape,
Models for the Perception of Speech and Visual Form, MIT Press, 1967.

[22] H. Blum, R.N. Nagel. Shape description using weighted symmetric axis
features, Pattern Recognition 10(3):167, 1978.

[23] G. Borgefors. On Digital Distance Transforms in Three Dimensions,
Computer Vision and Image Understanding 64(3):368-376, 1996.

[24] G. Borgefors, I. Nyström, G. Sanniti di Baja. Computing skeletons in three
dimensions, Pattern Recognition, 32(7), 1999.

[25] S. Bouix, K. Siddiqi. Divergence-Based Medial Surfaces, ECCV
1842:603-618, Springer-Verlag, 2000.

[26] J.W. Brandt, V.R. Alazi. Continuous Skeleton Computation by Voronoi
Diagram, CVGIP: Image Understanding, 55:329-338, 1992.

[27] A. Brennecke, T. Isenberg. 3D Shape Matching Using Skeleton Graphs.
Simulation and Visualization, 299-310, 2004.

[28] G.J. Brostow, I. Essa, D. Steedly, V. Kwatra. Novel Skeletal
Representation for Articulated Creatures, Proc. ECCV, 2004.

[29] D. Brunner, G. Brunnett. Mesh Segmentation Using the Object Skeleton
Graph, Proc. Int’l Conf. on Computer Graphics and Imaging, 48-55, 2004.

[30] C.A. Burbeck, S.M. Pizer. Object representation by cores: Identifying and
representing primitive spatial regions. Vision Research, 35(13):1917,1995.

[31] S.W. Choi, H.P. Seidel. Linear One-sided Stability of MAT for Weakly
Injective 3D Domain, Proc. ACM SMA, 2002.

18

Thinning Distance Field Geometric Potential Field Thinning Distance Field Geometric Potential Field
Horse Spider

Bunny Girl with ponytail

Dinosaur Hand

Castle Tree

Hammer Biplane

Commercial airplane Helicopter

Bishop Colon

Knight Knight with 10% added noise

Figure 10. Skeletons of various objects obtained using different curve-skeletonization algorithms. The comparisons

are on the first steps of all of the algorithms. Note: our implementations are not fully featured and the resultant curve-
skeletons may be improved. See text for details about each implementation. All of the objects and algorithm

implementations are also available for download at [139].

[32] J. Chuang, C. Tsai, Min-Chi Ko. Skeletonization of Three-Dimensional

Object Using Generalized Potential Field, IEEE PAMI,
22(11):1241,2000.

[33] N.D. Cornea, M.F. Demirci, D. Silver, A. Shokoufandeh, S.J. Dickinson,
P.B. Kantor. 3D Object Retrieval using Many-to-many Matching of
Curve-skeletons, Proc. Shape Modeling International, 2005.

[34] N.D. Cornea, D. Silver, P. Min. Curve-skeleton Applications, IEEE
Visualization, pp. 95, 2005.

[35] N. Cornea, D. Silver, X. Yuan, R. Balasubramanian. Computing
Hierarchical Curve-Skeletons of 3D Objects, The Visual Computer,
21(11):945-955, 2005.

[36] M. Couprie and R. Zrour. Discrete Bisector Function and Euclidean
Skeleton, Lecture Notes in Computer Science, vol. 3429, 2005.

[37] T. Culver, J. Keyser, D. Manocha. Exact computation of the medial axis
of a polyhedron, Computer Aided Geometric Design 21(1):65-98, 2004.

[38] T.K. Dey, J. Sun. Defining and computing curve-skeletons with medial
geodesic function, Proc. Eurographics Symp. On Geometry Proc., 2006.

[39] U. Eckhardt, G. Maderlechner. Invariant Thinning, Pattern Recognition
and Artificial Intelligence (7):1115-1144, 1993.

[40] A.F. Frangi, W.J. Niessen, R.M. Hoogeveen, T. van Walsum, M.A.
Viergever. Model-based quantitation of 3D magnetic resonance
angiographic images, IEEE Trans. on Medical Imaging, 18(10):946,
1999.

[41] Y. Fridman, S.M. Pizer, S. Aylward, and E. Bullitt. Extracting
Branching Tubular Object Geometry via Cores, Medical Image
Analysis, 8(3):169-176, Elsevier, 2004.

[42] D.S. Fritsch, S.M. Pizer, B.S. Morse, D.H. Eberly, A. Liu. The
Multiscale medial axis and its applications in image registration, Pattern
Recognition Letters, 15:445-452, 1994.

19

[43] N. Gagvani and D. Silver. Parameter Controlled Volume Thinning,
Graphical Models and Image Processing, 61(3):149-164, 1999.

[44] N. Gagvani and D. Silver. Animating volumetric models, Academic
Press Professional 63(6):443-458, 2001.

[45] N. Gagvani, D. Silver. Shape-based volumetric collision detection, Proc.
IEEE Symp. On Volume Visualization, 2000.

[46] P. Giblin, B.B. Kimia. A formal classification of 3D medial axis points
and their local geometry, Proc. IEEE CVPR, 566-573, 2000.

[47] P. Golland, W.E.L. Grimson. Fixed Topology Skeletons, CVPR, 2000.
[48] W. Gong and G. Bertrand. A simple parallel 3D thinning algorithm.

Proc. IEEE Pattern Recognition, 188-190, 1990.
[49] B. Gorte, N. Pfeifer. Structuring Laser-scanned Trees using 3D

Mathematical Morphology, XXth Congress of International Archives of
Photogrammetry, pp. 929, 2004.

[50] J. Greer. Computer skeletonization and automatic electron density map
analysis. Methods in Enzymology, 115:206-224, 1985.

[51] T. Grigorishin, Y.H. Yang. Skeletonization: An Electrostatic Field-
Based Approach, Pattern Analysis and App., 1:163-177, 1998.

[52] T. He, L. Hong, D. Chen, Z. Liang. Reliable Path for Virtual Endoscopy:
Ensuring Complete Examination of Human Organs, IEEE Trans.
Visualization and Comp. Graphics, 7(4):333-342, 2001.

[53] M. Hilaga, Y. Shinagawa, T. Kohmura, T. Kunii. Topology Matching
for Fully Automatic Similarity Estimation of 3D Shapes, SIGGRAPH,
2001.

[54] L. Hong, S. Muraki, A. Kaufman, D. Bartz, T. He. Virtual Voyage:
Interactive Navigation in the Human Colon, SIGGRAPH, 1997.

[55] S. Hornus, A. Angelidis, M.-P. Cani. Implicit modeling using
subdivision curves, The Visual Computer, 19(2 - 3):94, 2003.

[56] P.P. Jonker. Skeletons in N dimensions using shape primitives. Pattern
Recognition Letters, 23(6): 677, 2002.

[57] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, M. E. Gröller –
CPR: Curved Planar Reformation, IEEE Visualization, 2002.

[58] A. Kanitsar, R. Wegenkittl, D. Fleischmann and M. E. Grőller -
Advanced Curved Planar Reformation: Flattening of Vascular
Structures, IEEE Visualization, 2003.

[59] S. Katz, A. Tal. Hierarchical mesh decomposition using fuzzy clustering
and cuts, Proc. ACM SIGGRAPH 2003.

[60] R.A. Katz, S.M. Pizer. Untangling the Blum Medial Axis Transform,
IJCV, 55(2-3):139-153, 2003.

[61] D.-G. Kang, J.B. Ra. A New Path Planning Algorithm for Maximizing
Visibility in Computed Tomography Colonography, IEEE Transactions
on Medical Imaging, 24(8):957, 2005.

[62] T.Y. Kong, A. Rosenfeld. Digital topology: Introduction and survey.
Comp. Vision, Graphics, and Image Proc., 48(3):357-393, 1989.

[63] T.Y. Kong, A.W. Roscoe, A. Rosenfeld. Concepts of digital topology,
Topology and its App., 46(3):219-262, Elsevier, 1992.

[64] F. Lazarus, A. Verroust. Metamorphosis of Cylinder-like Objects,
Journal of Visualization and Comp. Animation. 8(3):131-146, 1998.

[65] F. Lazarus, A. Verroust. Level Set Diagrams of Polyhedral Objects,
ACM Solid Modeling, 1999.

[66] T. Lee and R.L. Kashyap. Building skeleton models via 3D medial
surface/axis thinning algorithms, CVGIP: Graphical Models and Image
Processing, 56(6):462-478, November 1994.

[67] F.F. Leymarie, B.B. Kimia. Computation of the Shock Scaffold for
Unorganized Point Clouds in 3D, Proc. IEEE CVPR, 2003.

[68] F.F. Leymarie. 3D Shape Representation via Shock Flows, Ph.D. thesis,
Brown University, May 2003.

[69] H. Li. An integrated approach to protein backbone modeling, Master of
Science Thesis, Queen's University, Kingston, OT, Canada, October
2002.

[70] X. Li, T.W. Woon, Z. Huang. Decomposing polygon meshes for
interactive applications, Proc. ACM Symp. On Interactive 3D Graphics,
35-42, 2001.

[71] J.-H. Lien, N.M. Amato. Simultaneous Shape Decomposition and
Skeletonization, Technical Report TR05-015, Parasol Lab, Department
of Computer Science, Texas A&M University, December, 2005.

[72] A. Lieutier. Any open bounded subset of Rn has the same homotopy type
than its medial axis, Proc. ACM SMI, 2003.

[73] P. Liu, F. Wu, W. Ma, R. Liang, M. Ouhyoung. Automatic Animation
Skeleton Construction Using Repulsive Force Field, 11th Pacific
Conference on Computer Graphics and Applications, 2003.

[74] C. Lohou and G. Bertrand, A 3D 12-subiteration thinning algorithm
based on P-simple points, Discrete Applied Mathematics 139:171-195,
2004

[75] W.E. Lorensen, H.E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm, ACM SIGGRAPH, 21(4):163-169,
1987.

[76] C.M. Ma and M. Sonka. A fully parallel 3D thinning algorithm and its
applications. Computer Vision and Image Understanding, 64(3):420-
433, 1996.

[77] C.-M. Ma, S.-Y. Wan. A medial-surface oriented 3D two-subfield
thinning algorithm, Pattern Recognition Letters, 22:1439, 2001.

[78] C.-M. Ma, S.-Y. Wan, H.-K. Chang. Extracting medial curves on 3D
images, Pattern Recognition Letters, 23:895, 2002.

[79] C.-M. Ma, S.-Y. Wan, J.-D. Lee. Three-dimensional topology preserving
reduction on the 4-subfields, IEEE TPAMI, 24(12):1594, 2002.

[80] W. Ma, F. Wu, M. Ouhyoung. Skeleton Extraction of 3D Objects with
Radial Basis Functions, IEEE SMI, 2003.

[81] G. Malandain, S. Fernandez-Vidal. Euclidean Skeletons, Image and
Vision Computing, vol. 16:317-327, 1998.

[82] A. Manzanera, T. Bernard, F. Preteux, B. Longuet. A unified
mathematical framework for a compact and fully parallel n-D
skeletonization procedure, Vision Geometry VIII, 3811:57–68, 1999.

[83] Maya, Alias, (http://www.alias.com).
[84] D.G. Morgenthaler. Three-dimensional simple points: serial erosion,

parallel thinning and skeletonization, TR-1005, Computer Vision Lab.,
Univ. of Maryland, 1981.

[85] B.S. Morse, S.M. Pizer, D.T. Puff, C. Gu. Zoom-Invariant Vision of
Figural Shape: Effects on Cores of Image Disturbances, Computer
Vision and Image Understanding 69(1):72, 1998.

[86] M. Mortara, G. Patanè. Shape-Covering for Skeleton Extraction, Int.
Journal of Shape Modeling 8(2):139, 2002.

[87] M. Näf, O. Kubler, R. Kikinis, M.E. Shenton, G. Szekely.
Characterization and Recognition of 3D Organ Shape in Medical Image
Analysis Using Skeletonization, IEEE Workshop on Math. Methods in
Biomedical Image Analysis, 139-150, 1996.

[88] C.W. Niblack, P.B. Gibbons, D.W. Capson. Generating skeletons and
centerlines from the distance transform, Graphical Models and Image
Processing, 54(5):420-437, 1992.

[89] I. Nystrom, G. Sanniti di Baja, S. Svensson. Representing Volumetric
Vascular Structures Using Curve Skeletons, Int. Conf. on Image
Analysis and Processing, pp. 495, 2001.

[90] I. Nyström, Ö. Smedby. Skeletonization of Volumetric Vascular Images
– Distance Information Utilized for Visualization, Journal of
Combinatorial Optimization, 5:27-41, 2001.

[91] R. Ogniewicz. A multiscale MAT from Voronoi diagrams: the skeleton-
space and its application to shape description and decomposition,
Aspects of Visual Form Processing, pp. 430, World Scientific, 1994.

[92] R. Ogniewicz, M. Ilg. Voronoi skeletons: theory and applications, Proc.
CVPR, pp.63, 1992.

[93] R. Ogniewicz, O. Kübler. Hierarchic Voronoi skeletons, Pattern
Recognition 28(3):343, 1995.

[94] K. Palagyi and A. Kuba. Directional 3D thinning using 8 subiterations,
Lecture Notes in Computer Science, 1568:325-336, 1999.

[95] K. Palagyi and A. Kuba. A parallel 3D 12-subiteration thinning
algorithm. Graphical Models and Image Proc., 61(4):199-221, 1999.

[96] D. Perchet, C. I. Fetita, F. Preteux. Advanced navigation tools for virtual
bronchoscopy, Proc. SPIE Conf. on Image Processing: Algorithms and
Systems III, vol. 5298, 2004.

[97] S.M. Pizer, D. Eberly, D.S. Fritsch. Zoom-invariant vision of figural
shape: the mathematics of cores, Computer Vision and Image
Understanding 69(1):55, 1998.

[98] S.M. Pizer, G. Gerig, S. Joshi, S. Aylward. Multiscale Medial Shape-
Based Analysis of Image Objects, Proc. IEEE, 91(10):1670-1679, 2003.

[99] S.M. Pizer, D. Fritsch, P. Yushkevich, V. Johnson, E. Chaney.
Segmentation, Registration, and Measurement of Shape Variation via
Image Object Shape, IEEE Trans. Medical Imaging, 18:851-865, 1999.

20

[100] S.M. Pizer, A.L. Thall, D.T. Chen. M-reps: A new object representation
for graphics, Tech. Rep. TR99-030, University of North Carolina,
Chapel Hill, NC, 17, 1999.

[101] C. Pudney. Distance-Ordered Homotopic Thinning: A Skeletonization
Algorithm for 3D Digital Images, Computer Vision and Image
Understanding, 72(3):404-413, 1998.

[102] J.M. Reddy, G.M. Turkiyyah. Computation of 3D skeletons using a
generalized Delaunay triangulation technique, Computer-Aided Design
27(9):677-694, 1995.

[103] M. Sabry Hassouna, A.A. Farag. Robust Centerline Extraction
Framework Using Level Sets, Proc. CVPR, pp. 458-465, 2005.

[104] P.K. Saha, B.B. Chaudhuri, D. Dutta Majumder. A new shape
preserving parallel thinning algorithm for 3D digital images. Pattern
Recognition, 30(12):1939-1955, 1997.

[105] P.K. Saha, B.B. Chaudhuri. 3D Digital Topology under Binary
Transformation with Applications, Computer Vision and Image
Understanding, 63(3):418–429, 1996.

[106] T. Saito, J. Toriwaki. New algorithms for Euclidean Distance
Transformation of an n-Dimensional Digitized Picture with
Applications. Pattern Recognition, 27:1551–1565, 1994.

[107] G. Sanniti di Baja, S. Svensson. A New Shape Descriptor for Surfaces in
3D Images, Pattern Recognition Letters, 23:703, 2002.

[108] K. Santilli, K. Bemis, D. Silver, J. Dastur, P. Rona. Generating realistic
images from hydrothermal plume data, IEEE Vis., 2004.

[109] H. Schirmacher, M. Zöckler, D. Stalling, H. Hege. Boundary Surface
Shrinking - a Continuous Approach to 3D Center Line Extraction, Proc.
of IMDSP, 25-28, 1998.

[110] M.P.P. Schlicher, E. Bouts, P.W. Verbeek. Fast analytical medial-axis
localization in convex polyhedra, In Proc. ICPR, pp. 55-61, 1996.

[111] J.A. Sethian. Fast Marching Methods, SIAM Review, 41(2):199, 1999.
[112] E.C. Sherbrooke, N.M. Patrikalakis, E. Brisson. Computation of the

Medial Axis Transform of 3-D polyhedra, Proc. SMI, 1995.
[113] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser. The Princeton Shape

Benchmark, Shape Modeling International, 2004.
[114] D. Silver and N. Gagvani. Unwinding the Colon, Medicine Meets

Virtual Reality (MMVR) 2002.
[115] E. Sorantin, C. Halmai, B. Erdohelyi, K. Palagyi, L.G. Nyul, K. Olle,

et.al.. Spiral-CT-based assessment of tracheal stenoses using 3D-
skeletonization, IEEE Trans. Medical Imaging, 21(3):263, 2002.

[116] M. Sramek, A.E. Kaufman. Alias-Free Voxelization of Geometric
Objects, IEEE Trans. Vis. and Comp. Graph., 5(3): 251 – 267, 1999.

[117] M. Straka, M. Cervenansky, A. La Cruz, A. Kochl, M. Sramek, E.
Groller, D. Fleischmann. The VesselGlyph: focus & context
visualization in CT-angiography, IEEE Visualization, 2004.

[118] H. Sundar, D. Silver, N. Gagvani, S. Dickinson. Skeleton Based Shape
Matching and Retrieval, Proc. Shape Modeling Int’l, 2003.

[119] K. Suresh. Automating the CAD/CAE Dimensional Reduction Process,
ACM Symp. In Solid Modeling and Applications, 2003.

[120] S. Svensson, I.Nystrom and G. Sanniti di Baja. Curve-skeletonization of
Surface-like Objects in 3D Images Guided by Voxel Classification,
Pattern Recognition Letters, 1419-1426, 2002.

[121] S. Svensson, C. Arcelli, G. Sanniti di Baja. Finding cavities and tunnels
in 3D complex objects, Proc. ICIAP, pp. 342 – 347, 2003.

[122] A. Tal and S. Katz. Hierarchical Mesh Decomposition using Fuzzy
Clustering and Cuts, ACM Trans. on Graphics, 22(3):954-961, 2003.

[123] A. Telea, A. Vilanova. A robust level-set algorithm for centerline
extraction, Eurographics/IEEE Symp. On Data Visualization, 2003.

[124] A. Telea, J.J. van Wijk. An augmented Fast Marching Method for
computing skeletons and centerlines, Proc. Symp. on Data Vis., 2002.

[125] C. Theobalt, E. de Aguiar, M.A. Magnor, H. Theisel, H.-P. Seidel.
Marker-free kinematic skeleton estimation from sequences of volume
data, Virtual Reality Software and Technology, pp.57, 2004.

[126] Y.F. Tsao and K.S. Fu. A parallel thinning algorithm for 3D pictures.
Computer Vision, Graphics and Image Proc., 17:315-331, 1981.

[127] A. Verroust, F. Lazarus. Extracting skeletal curves from 3D scattered
data, The Visual Computer, 16:15-25, 2000.

[128] B. Vrolijk, F. Reinders, F.H. Post. Feature tracking with skeleton graphs,
in Data Visualization: The State of the Art, pp. 37-52, Kluwer Academic
Publishers, 2003.

[129] L. Wade, R.E. Parent. Automated generation of control skeletons for use
in animation, The Visual Computer 18(2):97-110, 2002.

[130] M. Wan, F. Dachille, A. Kaufman. Distance-Field Based Skeletons for
Virtual Navigation, IEEE Visualization 2001.

[131] R. Webster, M. Harris, R. Shenk, J. Blumenstock, J. Gerber, C. Billman,
A. Benson, R. Haluck. Using an Approximation to the Euclidean
Skeleton for Efficient Collision Detection and Tissue Deformations in
Surgical Simulators, Medicine Meets Virtual Reality, vol. 13, IOS Press,
2005.

[132] F.-C. Wu, W.-C. Ma, R.-H. Liang, B.-Y. Chen, M. Ouhyoung. Domain
connected graph: the skeleton of a closed 3D shape for animation, The
Visual Computer 22(2):117, 2006.

[133] F. Wu, W.-C. Ma, P. Liou, R. Liang, M. Ouhyoung. Skeleton Extraction
of 3D Objects with Visible Repulsive Force, Eurographics Symp. On
Geometry Processing, 2003.

[134] Y. Xiao, P. Siebert, N. Werghi. A Discrete Reeb Graph Approach for the
Segmentation of Human Body Scans, Int’l. Conf. on 3D Digital Imaging
and Modeling, pp. 378, 2003.

[135] Y. Yang, O. Brock, R.N. Moll. Efficient and robust computation of an
approximated medial axis, Proc. Solid Modeling and Applications, 2004.

[136] Y. Zhao, H. Ong, T. Tan, Y. Xiao. Intuitive interfaces for animation:
Interactive control of component-based morphing, SIGGRAPH, 2003.

[137] Y. Zhou, A. Kaufman, A. W. Toga. Three-dimensional Skeleton and
Centerline Generation Based on an Approximate Minimum Distance
Field, The Visual Computer, 14, pp. 303-314, 1998.

[138] Y. Zhou, A.W. Toga. Efficient skeletonization of volumetric objects,
IEEE Trans. Visualization and Comp. Graphics, 5(3):196-209, 1999.

[139] Online resource: http://www.caip.rutgers.edu/~cornea/CurveSkeletons

Nicu D. Cornea received his B.Sc. in Computer
Engineering from the Technical University of Cluj-
Napoca, Romania in 2001, and his M.Sc. degree
in Electrical and Computer Engineering from
Rutgers University, New Jersey. Currently, he is a
Ph.D. student in the Department of Electrical and
Computer Engineering at Rutgers University. His
research interests include volume visualization
and graphics.

Deborah Silver is a Professor in the Department
of Electrical and Computer Engineering at
Rutgers, The State University of New Jersey. She
received a B.S. from Columbia University School
of Engineering and a Ph.D. from Princeton
University in Computer Science. Her research
interests include visualization, volume graphics
and computer graphics.

Patrick Min received a M.Sc. degree in computer
science from Leiden University, the Netherlands,
in 1993, and a Ph.D. degree in computer science
from Princeton University, New Jersey, in 2004.
Next, he was a post-doctoral researcher at
Utrecht University, the Netherlands.

Currently he is an assistant professor of
computer science and mathematics at the
American University of Rome. His research
interests are in 3D modelling, 3D shape
semantics, and 3D model retrieval. He is a
member of the Eurographics Association. For

more information, see http://www.google.com/search?q=patrick+min

