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Abstract. We address the problem of semantic segmentation, or multi-
class pixel labeling, by constructing a graph of dense overlapping patch
correspondences across large image sets. We then transfer annotations
from labeled images to unlabeled images using the established patch
correspondences. Unlike previous approaches to non-parametric label
transfer our approach does not require an initial image retrieval step.
Moreover, we operate on a graph for computing mappings between im-
ages, which avoids the need for exhaustive pairwise comparisons. Con-
sequently, we can leverage offline computation to enhance performance
at test time. We conduct extensive experiments to analyze different vari-
ants of our graph construction algorithm and evaluate multi-class pixel
labeling performance on several challenging datasets.

1 Introduction

The availability of large online repositories of human-annotated images has
greatly increased in the past several years. As a result data-driven approaches
to many computer vision tasks have emerged as compelling alternatives to the
more traditional model-based approaches. One important such task is multi-
class pixel labeling, or semantic segmentation [9, 18], where the goal is to assign
a class label to each pixel in a given image—for example, pixels can be labeled
as belonging to “road”, “sky”, “tree”, etc. Data-driven approaches on this task
(e.g., [16, 20, 19]) are competitive with state-of-the-art model-based approaches
while offering several key advantages. For example, the set of class labels does
not need to be pre-defined and data can be added incrementally without having
to re-estimate model parameters. This is attractive for life-long learning systems.

Typical data-driven methods for semantic segmentation involve three main
steps to label a novel target image. First, a small set of similar images is re-
trieved from a large corpus of annotated images. This can be done, for example,
by comparing global image descriptors such as GIST [17]. Next, dense pixel map-
pings between images in the retrieval set and the target image are computed.
Some methods enforce smooth mappings [16], while others allow arbitrary map-
pings [20]. Last, labels from the images in the retrieval set are transferred to the
target image via the dense pixel mappings. Since ambiguity may arise when su-
perimposing labels from different images, a Markov random field (MRF) is often
used to aggregate labels and enforce smoothness constraints. Preprocessing of
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images in the dataset, for example by hashing GIST descriptors, can help accel-
erate the retrieval step. However, the most expensive operation is the second step
which requires pairwise comparisons between the target image and all retrieved
images. This can only be done at test time. Moreover, the image retrieval step
may adversely affect results on small objects, which are not well accounted for
when encoding the image by a single global descriptor.

We address these problems by building a graph over images that allows us
to rapidly find good mappings between images in the dataset. Specifically, we
propose to construct a graph of dense and overlapping correspondences between
small patches from all the images in our dataset simultaneously. The graph
encodes k-nearest-neighbour matches between the patches. Our method does not
require exhaustive pairwise comparisons and, consequently, has lower running-
time and is independent of the number of images in the dataset at test time.
Moreover, our graph formulation allows efficient incremental addition of new
images and offline computation can be continued to steadily find better matches.

Barnes et al. [2] proposed a very efficient randomized search algorithm for
finding dense patch correspondences between a pair of images. Their key ob-
servation was that good matches can be propagated to adjacent patches in an
image. We extend this idea to entire image graphs. For example, a dataset may
contain many instances of nearly identical objects. Consider three such objects:
A, B and C. If we have already found good matches between A and B, and good
matches between B and C, then it is likely that A and C will also match well.
As we will see, our search procedure contains moves that exploit this scenario.

Our contributions are three-fold: First, we introduce the notion of a Patch-
MatchGraph which encodes dense patch-based k-nearest-neighbour matches
over entire image sets. Importantly, we cast our graph construction as a formal
optimization problem, which allows us to analyze different solution methods.
Second, we extend the PatchMatch algorithm of Barnes et al. [2] by introduc-
ing new moves that leverage existing good matches in the graph. Third, we show
how our PatchMatchGraph can be used for multi-class pixel labeling.

We perform extensive benchmarking of our approach and evaluate multi-class
pixel labeling accuracy on four semantic segmentation datasets. We also show
how we can adapt to new labeling tasks without re-training.

2 Background and Related Work

Many works use graphs to encode the (spatial or appearance) relationship be-
tween regions or key-points within image collections for various tasks including
large-scale 3D reconstruction [1], discovery and annotation of common land-
marks [6, 14], and content-based image retrieval and exploration [10]. While
these works tackle the problem of extracting sparse information at a very large
scale, our focus is on providing detailed pixelwise semantic segmentation.

An early work that addressed the problem of data-driven semantic segmen-
tation is the innovative method of Liu et al. [15]. Here a smooth warping from
one image to another is estimated using matched SIFT features. Next, labels are
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likewise warped and transferred. Similarly, Zhang and Quan [20] propose trans-
ferring labels by first matching patches across images using the PatchMatch
algorithm [2]. In their work, smoothness is enforced over the image indexes from
which labels are being copied. Tighe and Lazebnik [19] also perform label trans-
fer by matching into a small subset of images retrieved from a large corpus based
on global descriptors. Their method then matches entire superpixels using a rich
set of features. Unlike these works, our work does not require pairwise compar-
isons between images. Instead, we build a graph representing nearest neighbour
patch correspondences and use this graph for label transfer. Moreover, we use
very simple colour features during the matching phase.

Our method builds on the PatchMatch algorithm of Barnes et al. [2, 3].
However, these works are primarily focused on image editing tasks whereas our
focus is on semantic segmentation. Moreover, we generalize their original pairwise
model to a graph-based model and introduce search moves that leverage the
graph structure. Other recent works also propose application-specific extensions
to the basic set of PatchMatch moves, e.g., Bleyer et al. [4] introduce temporal
and view propagation moves in the context of stereo reconstruction.

Locality-sensitive hashing (LSH) [11, 7] provides a more general approach for
finding approximate nearest neighbours on a large-scale. However, traditional
LSH fails to take into account the smooth structure of images, i.e., adjacent
patches have similar appearance, which we exploit in our work.

3 Building the PatchMatchGraph

Our method is based on the PatchMatch approximate nearest neighbour al-
gorithm [2, 3]. Briefly, the algorithm produces a so-called nearest neighbour field

(NNF) which defines a dense correspondence between all patches of a fixed size
in one image with those in a different image. It does this via a randomized search
that exploits image smoothness to propagate good match candidates.

Our algorithm extends the generalized PatchMatch algorithm by approxi-
mating a k-nearest neighbour field (k-NNF) over an entire graph of images rather
than over image pairs. The advantage of our approach is that not all image pairs
need to be considered. We call the resulting data structure a PatchMatch-
Graph, which we define as follows:

Definition 1. Let I = {Ii}ni=1 be a set of n images and let W and H be patch

width and patch height parameters, respectively. A PatchMatchGraph over

images I is a directed graph GW×H(I) = 〈V, E〉 where each node u ∈ V represents

a distinct W×H patch from one of the images in the set and each edge (u, v) ∈ E
represents a match from patch u to patch v.

We allow edges (u, v) ∈ E to be annotated with a transformation T , which
indicates that patch u matches to a transformed version, T (v), of patch v. We
denote the annotated edge by the tuple (u, v, T ). In our work, we only consider
a small set of allowable transformations (e.g., horizontal and vertical flips) that
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can be computed quickly. There is no technical reason, however, why a larger set
of transformations cannot be considered (e.g., arbitrary rotations and scalings).1

We endow the PatchMatchGraph with a cost function c : E → R which
scores the quality of matching patch u to the transformed patch T (v). We wish,
then, to construct a graph with minimum total cost such that each patch matches
to k other patches. Formally, we wish to solve the optimization problem

minimize (over E) ∑

(u,v,T )∈E
c(u, T (v))

subject to ∀u ∈ V : deg(u) = k
(1)

where deg(u) is the out-degree of node u. To encourage a diverse set of matches
we impose the following additional restrictions: (i) we do not allow an image to
match to itself, and (ii) we do not allow a patch to match to two patches within
the same image, i.e., if (u, v) ∈ E and (u, v′) ∈ E are two distinct edges in the
graph then patches v and v′ must come from different images. Necessarily this
requires k ≤ n− 1. The new optimization problem can be written as

minimize
∑

(u,v,T )∈E
c(u, T (v))

subject to ∀u ∈ V : deg(u) = k

∀(u, v, T ) ∈ E : Ii(u) 6= Ii(v)
∀(u, v, T ), (u,w, S) ∈ E s.t. v 6= w : Ii(v) 6= Ii(w)

(2)

where Ii(u) is the image containing the patch represented by node u. We solve
this problem approximately using a move-making search procedure over the set
of edges (and patch transformations) as described in Section 3.1 below.

The PatchMatchGraph can be efficiently stored and manipulated using
arrays of sorted lists for each patch u ∈ V. The arrays are arranged in a grid for
each image Ii(u) so that adjacent patches can be indexed quickly. Data structures
such as max-heap allow the lists to be updated rapidly (see [3] for details). As
a simple example, consider a graph G satisfying the conditions in Equation 2.
Now suppose we find a new good match (u, v), i.e., one with low cost c(u, v).
Then we can update G by adding the edge (u, v) to E and removing the edge
(u,w) ∈ E with either (i) highest cost, or (ii) where w is from the same image as
v (i.e., Ii(w) = Ii(v)). Algorithm 1 summarizes this operation. Importantly, the
update maintains the constraints in Equation 2 while decreasing the objective
value. It remains to find good match candidates, which we do through a sequence
of search moves.

3.1 Search Moves

Our moves, shown schematically in Figure 1, are an extension of the moves
proposed by Barnes et al. [3] for the PatchMatch algorithm. Importantly, as
we will see below, our approach allows good matches to propagate across different
images in the dataset via so-called enrichment moves, which was not possible
in the pairwise approach of Barnes et al. [3]. We now review the PatchMatch
search moves and describe our extensions for building a PatchMatchGraph.

1 For brevity we will sometimes use the shorter notation (u, v) instead of (u, v, T )
when the transformation is not critical to the discussion.
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Algorithm 1 Updating a PatchMatchGraph with a candidate match.

1: input G = 〈V, E〉 and new edge e = (u, v, T )

2: Let e′ = argmax(u,v′,T ′)∈E

{

∞ if Ii(v′) = Ii(v)
c(u, T ′(v′)) otherwise

3: if c(u, T (v)) < c(u, T ′(v′)) then
4: E ← E ∪ {e} \ {e′}
5: end if

6: return G

(a) Initialization (b) Propagation (c) Decaying Search

(d) Forward Enrichment (e) Local Search

(f) Inverse Enrichment (g) Exhaustive Search

Fig. 1. Search moves executed by our algorithm. See text for details.

Initialization (Fig. 1(a)). The initialization step sets up the PatchMatch-
Graph data structure with random matches and ensures that the constraints in
Equation 2 are satisfied. Concretely, we initialize V to contain every valid patch
location from all images in our dataset and E to the empty set. Then for each
node u ∈ V we randomly choose k other nodes v1, . . . , vk ∈ V and k transforms
T1, . . . , Tk such that each neighbour vi comes from a different image. The tuples
(u, vi, Ti) are then added to E . This step is performed only once.

There are many alternative methods for initialization. For example, we could
use locality-sensitive hashing (LSH) [11, 7] on patch-based descriptors to find
good candidate matches. However, as we show in our experiments random ini-
tialization works well and catches up with the more sophisticated LSH alternative
after just a few move-making iterations.

Propagation (Fig. 1(b)). The propagation move proposed by Barnes et al. [2]
is motivated by the observation that whenever a patch u matches well to patch
v then patches spatially adjacent to u (in the image) are likely to match well to
patches spatially adjacent to v (in v’s image). Concretely, for each edge (u, v) ∈ E
the propagation move considers all candidate edges (u′, v′) where u′ and v′ are
4-connected to u and v, respectively (see Figure 1(b)). When transformations are
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applied to v′ the relative location and orientation of the pair of adjacent patches
is adjusted accordingly. For example, for horizontal flips the patch immediately
to the left of u is compared to the patch immediately to the right of v.

Decaying random search (Fig. 1(c)). This move is designed to escape local
optima by randomly sampling alternative matches. Given a match (u, v) we
consider a sequence of candidate patches {vj} sampled from a region around v

(in the same image) with exponentially decaying size (see [2] for details). Patch
transformations Tj corresponding to each of the vj are sampled uniformly.

Local search (Fig. 1(e)). The local search move is a deterministic move, which
aims to locally improve a match: Consider an existing edge (u, v, T ). Then for all
patches v′ spatially adjacent to v, edges (u, v′, T ) are good candidate matches.
Barnes et al. [2] did not consider this move since repeating the decaying random
search will eventually cover the local neighbourhood. However, experimentally
we find that replacing the decaying random search with local search results in
significantly faster convergence with only a small degradation in objective value.

Inverse enrichment (Fig. 1(f)). Inverse enrichment was introduced by Barnes
et al. [3] and is motivated by the observation that if v is a good match for u

then it is likely that u will be a good match for v. Consequently, in our search
procedure, after adding new edges (u, v, T ) to the graph (by one of the other
search moves), we consider also adding edges (v, u, T−1).

Forward enrichment (Fig. 1(d)). Similar to the inverse enrichment move we
can diffuse good matches forward through the graph. As depicted in Figure 1(d),
if there exist edges (u, v, T ) and (v, w, S) ∈ E then (u,w, T◦S) is a good candidate
edge, where T ◦S represents the composition of transformations T and S. In our
work we only attempt one hop in the graph although longer paths could also be
considered at additional computation cost. To prevent cycles (and enforce our
graph constraints) we skip edges that match back to the same image.

Exhaustive search (Fig. 1(g)). The above moves are designed to exploit good
matches by propagating them across images and diffusing them throughout the
PatchMatchGraph. However, without sufficiently many good initial matches
the move-making algorithm could converge to a poor solution. We can avoid
this by seeding the graph with a small number of very good matches. This move
randomly samples a patch u and exhaustively search for the k nearest neighbours
for that patch. Since we are only considering one patch at a time this search step
is fast and can be very effective at escaping from local optima. The patch u can
be sampled with probability inversely proportional to the score of its best current
match. This has the added benefit of explicitly removing poor matches.

3.2 Search Procedure

The complete search algorithm can be summarized as follows: First, we initialize
the PatchMatchGraph with random matches such that the constraints of
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Equation 2 are satisfied. We then iterate through each of the search moves to
progressively improve the matches. We terminate our search after a maximum
number of iterations or when very few improved matches are found (for example,
when none of the moves, other than exhaustive search, find better matches).

We skip certain moves if they involve a match that has not changed since the
last iteration of the algorithm. For example, the local search move does not need
to be repeatedly run on the same edge (u, v). Moreover, we choose the order of
the moves to ensure that good matches propagate quickly through the graph.
For example, following the recommendation of Barnes et al. [2], we evaluate the
propagation move in forward and then reverse raster scan order.

It is also straightforward to introduce images incrementally or only consider
a subset of the images during a search iteration. For example, if we have already
found good matches for all the patches in an image computational resources can
be diverted to finding better matches for patches in other images. Moreover,
the moves do not need to be executed serially. In fact, it is trivial to distribute
the search over a number of parallel machines. We discuss a number of other
extensions and variants of our approach in Section 3.4 below.

Without the exhaustive search our approach is not guaranteed to convergence
to the global optimum when the number of nearest neighbours k maintained by
the PatchMatchGraph is less than n−1 (the size of the dataset less one) even
if run indefinitely. This is because certain matches (i.e., image pairs) may never
be considered. Nevertheless a global solution is not necessary for most tasks and
our aim is rather to find good approximate solutions quickly.

3.3 Cost Function

Our method requires a cost function for evaluating the quality of a match be-
tween two patches. Let fu ∈ R

d denote the feature vector describing the patch
associated with node u. For example, fu could be formed by concatenating the
RGB colour components for every pixel in the patch (in fixed row-wise or column-
wise order). In this case fu will have dimension d = 3WH for a W ×H patch.
We can now define a number of common cost functions such as sum-of-absolute-
differences (SAD), cSAD(u, v) = ‖fu − fv‖1, or sum-of-square-differences (SSD),
cSSD(u, v) = ‖fu − fv‖22 between two nodes u and v.2

3.4 Extensions and Variations

There are a number of variations to the method for constructing a Patch-
MatchGraph described above. For example, scale invariance can be addressed
by including scale transformations T which implicitly resize patches during the
matching step. In our implementation, we prefer to use image pyramids and
treat each level of the pyramid as a separate image but forbid matches between
different levels in the same pyramid (i.e., matches between an image and itself).

2 In practice we do not store the feature vectors fu and fv explicitly. Rather we
compute c(u, v) directly from the image data.
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Another variation is to impose a different degree constraint for each node in
the graph, i.e., deg(u) = ku. This could be beneficial, for example, in concentrat-
ing computation effort on patches which are more discriminative (e.g., contain
distinctive patterns) and therefore likely to lead to better labeling accuracy.

4 Using the PatchMatchGraph for Label Transfer

Our PatchMatchGraph can be used to solve multi-class pixel labeling prob-
lems by transferring annotations from labeled images to those without labels.
We assume that each image Ii has an associated label matrix Li, which contains
labels for the pixels in the image. We denote the label at pixel p by Li(p). In the
case of an unlabeled image Li(p) is assigned the special label “unknown”.

In contrast to superpixel-based methods, a patch may contain pixels of dif-
ferent classes. Therefore we transfer labels in a pixelwise fashion. Let Pu be the
set of pixels associated with patch u ∈ V and let mu→T (v) : Pu → Pv define
the mapping from pixels in Pu to pixels in Pv under transformation T . For each
pixel p in the target image define Ep = {(u, v, T ) ∈ E | p ∈ Pu} to be the subset
of edges such that p is contained within the patch u at the source of the edge.
We can now estimate the probability for an unknown pixel p to take label ℓ as

P (yp = ℓ | G) ∝
∑

(u,v,T )∈Ep

wℓ
p(u, T (v))

[[

Li(v)

(

mu→T (v)(p)
)

= ℓ
]]

(3)

where Li(v)(q) is the label for pixel q in the image containing patch v, and
[[ · ]] is the indicator function taking value one if its argument is true and zero
otherwise. Here, wℓ

p(u, T (v)) is a pixelwise weighting function that regulates the
contribution from each match. For example, we may want to weight matches by
a function of their cost. In our work, we simply weight matches by 1

r2
where r

is the rank of the match in the sorted list of matches for node u.
It is common in pixel-labeling problems to smooth pixelwise class estimates

via an conditional Markov random field (CRF). Briefly, for each pixel p, let
fp ∈ R

L be the vector of log-probabilities for each label (from Equation 3).3

Then energy for a labeling y over a full image can be written as a combination
of unary and contrast-sensitive pairwise smoothing terms:

E(y | G) =
∑

p

∑

ℓ

[[yp = ℓ]]θTℓ fp + λ
∑

pq

[[yp 6= yq]] exp

(

−‖xp − xq‖2
2β

)

(4)

where θℓ are parameters which calibrate the probability estimates for each class
and λ ≥ 0 controls the strength of the pairwise smoothness term. Here the
pairwise term is over adjacent pixels p and q in the image, xp and xq are colour
vectors for the pixels, and β is the average square-distance between colour vectors
for adjacent pixels in the image (see [18] for details). The parameters θℓ and λ

can be learned from a subset of annotated images in the PatchMatchGraph.

3 Feature vector fp could be extended arbitrarily to include other features such as
the output of boosted classifiers or location priors. We explore some of these in our
experiments.
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Fig. 2. Evaluation of different search strategies for constructing a PatchMatch-
Graph. The strategies refer to moves discussed in Section 3.1. Plotted are average
cost of best match versus number of nearest neighbours (left) and normalized objective
versus running time (right).

5 Experimental Results

We perform a number of experiments to benchmark our algorithm and evaluate
its performance on the multi-class pixel labeling task. All experiments are run on
a single core of a 2.93GHz Intel Nehalem CPU with 24GB RAM. Unless otherwise
stated we fix the patch size to 8× 8 pixels, the number of nearest neighbours, k,
to ten, and use the sum-of-absolute-differences (SAD) cost function.

5.1 Benchmarking

Our benchmarking experiments are aimed at evaluating different search strate-
gies for building our PatchMatchGraph. Specifically, we are interested in the
trade-off between running time and objective value (of Equation 2). In this ex-
periment we use the 80 training images from the Polo dataset [20] scaled to 50%
of their original size. Features are computed over CIELab colour space.

Figure 2 contains plots comparing the objective value for a number of move-
making strategies. For convenience we scale the objective value by the total
number of patches to get an average score per patch. The left plot shows the av-
erage cost of the best matching patch as a function of out-degree, k. As expected
we find better matches (i.e., lower cost) as the search space increases (i.e., larger
k). However, this comes at high computational expense, e.g., it took 18 minutes
for 100 iterations with k = 1 versus 2 hours and 28 minutes for k = 10.

The second plot and table show objective value versus running time for differ-
ent search moves with k fixed at ten. Here we see some interesting results. First,
performing pairwise nearest-neighbour search offers no advantage over search-
ing for the k-nearest neighbours simultaneously—it is much slower and does not
find better matches. The reason is that the pairwise search cannot diffuse good
matches to other images in the dataset.

Second, the decaying random search move is the most expensive in terms
of running time. Moreover, it helps little when combined with the other moves
(i.e., resulting in an average match score of 119.4 versus 121.5 when removed at
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over seven times the computational cost). The decaying random search if run
long enough will encompass all the moves proposed by the local search move.
However, in terms of running time local search is far superior. Interestingly,
removing the local search move results in slightly better matches. We surmise
that this is due to getting trapped in a local optima early in the search procedure.

Third, as expected locality-sensitive hashing provides much better ini-
tialization than random guessing. However, the algorithm converges to the same
objective value with both initialization approaches. This demonstrates that tak-
ing image smoothness into account is vital for fast nearest neighbour search.

Last, exhaustive search, while guaranteed to find optimal matches, does
not noticeably improve the objective. This is partly due to the high-quality
matches already discovered by randomized search and the large number of patches
dominating the objective value relative to the few exhaustive search moves.

5.2 Semantic Segmentation

We evaluate the multi-class labeling accuracy of our method on four challenging
semantic segmentation datasets. In these experiments we augment the CIELab
colour feature vector for each pixel with an “edge” feature which captures the
contrast between the pixel and its neighbours. This puts emphasis on matching
well along the boundaries of objects. We also include the (normalized) vertical
location of the pixel in the image to provide some spatial context. The five
features are illustrated in Figure 3 on two representative images.

For each dataset, we build a PatchMatchGraph over all images for k = 10
and k = 20. We include resized copies of each image to allow for scale-invariant
matches. These are derived from an image pyramid which starts at 50% of the
original image size and reduces each layer by a factor of

√
2 down to a minimum

size of 32 × 32 pixels. Based on the benchmarking results from Section 5.1 we
chose not to use the decaying random search or exhaustive search moves.

We divide each dataset into train and test subsets following the standard
practice in the literature for the dataset. When building the PatchMatch-
Graph we disallow matches between images within the test subset. Labels are
then transferred from training images to the test images. Our experimental re-
sults (averaged over the test subsets) are summarized in Table 1 and discussed
for each dataset below. Figure 5 shows some example results.

We include results for two variants of the CRF model (see Equation 4). The
first variant simply uses the CRF to calibrate probabilities and smooth over
neighbouring pixels as discussed in Section 4. The second variant, which we
call the Boosted CRF, incorporates discriminatively trained unary potentials.
Briefly, for each class we learn a one-versus-all boosted decision tree classifier
on the vector of log-probabilities fp and local pixel features. Here, we set the
decision tree depth to two and train for a maximum of 100 rounds. We then use
the output of the boosted classifier as the unary features in our CRF model.

6-Class Polo Dataset [20]. This dataset contains 317 unique images of polo
scenes. The task is to label pixels from the set: grass, ground, horse, person, sky,
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Fig. 3. Features used to compare patches. Shown
are the original RGB colour image for two images
from the Polo dataset [20] and the per-pixel feature
values for each channel of the CIELab colour space,
edge feature and vertical position feature.

Fig. 4. Instances of repeated
images in the Stanford
Dataset [8] found by our
algorithm with their (non-
identical) ground truth labels.

or tree. Pixels not falling into these categories are labeled as void in the ground
truth and ignored during test. This is a relative easy dataset with state-of-the-
art methods achieving pixelwise accuracies around 89%. Our simple approach
without the CRF is competitive with the current state-of-the-art and with CRF
smoothing beats it by about 3%. Moreover, our “training time”, i.e., graph
construction, is only 20 minutes. Test time is around four seconds per image.
Doubling the number of nearest neighbours, k, from 10 to 20 results in little
improvement (as supported by Figure 2). Finally, the discriminatively learned
Boosted CRF improves results further but at high computational cost.

Table 1. Summary of results from our semantic segmentation experiments. Values
in parentheses indicate class-averaged accuracy. For reference, we include published
state-of-the-art results where available.

Stanford BG [8]
Polo [20] Semantic Geometric MSRC [5] LMO [16]

Number of Classes 6 8 3 21 33
Number of Images 317 715 591 2688
Train/Test Split 80/237 572/143 335/256 2488/200
Number of Patches 5031477 22635766 17154995 39355008⋆

k = 10

Graph Build (H:MM) 0:20 2:29 1:32 5:36
Accuracy 89.6 (82.3) 70.3 (56.6) 89.1 (89.2) 62.8 (49.1) 59.6 (18.4)
CRF Accuracy 92.2 (89.3) 71.4 (60.2) 89.1 (88.7) 71.1 (64.7) 65.7 (14.2)
Boosted CRF Acc. 93.9 (91.4) 73.9 (63.2) 88.0 (87.9) 78.6 (72.8) 65.2 (14.9)

k = 20

Graph Build (H:MM) 0:46 6:23 4:00 exceeds
24GB

memory
limit

Accuracy 89.9 (82.9) 70.7 (57.0) 89.2 (89.2) 63.3 (49.8)
CRF Accuracy 92.6 (89.7) 71.9 (60.7) 89.3 (88.7) 72.5 (66.4)
Boosted CRF Acc. 94.2 (91.7) 73.4 (62.0) 88.2 (88.1) 79.0 (72.8)

Zhang and Quan [20] 89.8 (82.5) – – – –

Shotton et al. [18] 83.9 (77.1)† – – 72.2 (57.7) 51.7‡

Gould et al. [8] – 76.4 91.0 76.4 –

Tighe and Lazebnik [19] 87.9 (76.1)† 77.5 90.6 – 76.9 (29.4)
Krahenbuhl and Koltun [12] – – – 86.0 (78.3) –
Ladicky et al. [13] – – – 86.0 (75.0) –
Liu et al. [16] – – – – 76.7
⋆ Due to the size of this dataset we did not match over image pyramids.
† Reported by Zhang and Quan [20].
‡ Reported by Liu et al. [16] (without Markov random field).
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21-Class Microsoft Research Cambridge (MSRC) Dataset [18, 5]. This
dataset contains 591 roughly annotated images and has been the de facto stan-
dard for evaluating semantic segmentation algorithms for a number of years.
The images contain a mix of 21 different foreground and background classes.
We achieve 71.1% accuracy after less than two hours of computation. This is
comparable to many multi-class segmentation methods albeit well below state-
of-the-art. However, our method is at least an order of magnitude faster. On this
dataset CRF smoothing improves both quantitative and qualitative results.

8-Class Stanford Background Dataset [8]. This dataset contains 715 images
and provides two distinct label sets. We construct a single PatchMatchGraph
and use the same graph to label images with either one of eight semantic classes
or one of three geometric classes. The semantic classes include seven background
categories and a generic foreground category. The geometric classes are vertical,
horizontal, and sky. Quantitative results are shown in Table 1.

Surprisingly, on this dataset the CRF did not help much due to the relatively
low intra-class variation at the pixel level (whole regions, e.g., water and sky, are
sometimes confused) and some smoothness already imposed at the patch level.
In fact, the CRF can often degrade results by over-smoothing (see Figure 5).

We can use the patch-wise nearest neighbours returned by our algorithm to
determine global similarity between images. Interestingly, this allowed us to find
six instances of repeated images in the Stanford Background Dataset that have
not previously been reported (see Figure 4).4 Since annotations for these images
were obtained independently the corresponding ground truths differ slightly.

33-Class LMO Dataset [16]. This is a large dataset consisting of 2688 im-
ages and annotated with 33 labels. Due to the size of the dataset we did not
search over image scales. Moreover, running with k = 20 exceeded the available
memory on our hardware. This, however, is a limitation of our implementation,
which holds the entire graph and all images in memory at the same time. A
better implementation could (i) use a database back-end for storing the Patch-
MatchGraph, and (ii) make use of distributed computation.

Our results are encouraging but below state-of-the-art methods. We believe
that this is due to the more sophisticated features and contextual information
introduced by the image retrieval step used in those methods. Interestingly,
the Boosted CRF does not improve accuracy. This is in part due to confusion
between visually similar and related semantic classes, e.g., river and sea, and the
weak features available to the boosted classifiers.

6 Discussion

In this work, we have proposed a method for non-parametric label transfer by
building a graph of dense and overlapping patch correspondences between images

4 The images are 1000875 and 9000875, 1000288 and 9000288, 1001184 and 9001184,
6000117 and 6000324, 6000068 and 6000318, and 6000257 and 6000348.
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Polo Dataset [20]

Stanford Background Dataset [8]

MSRC Dataset [5]

LMO Dataset [16]

Fig. 5. Example results from four different datasets. Shown are the image, results from
our PatchMatchGraph label transfer and with CRF smoothing. Results are shown
as colour coded images and image overlays. Best viewed in colour.

in a dataset. This data-driven approach has several advantages over model-based
approaches including not expending effort on modeling the appearance of object
classes and supporting life-long learning through incremental addition of labeled
data. Moreover, this approach allows us to change labeling tasks (e.g., from
semantic labels to geometric labels) with no changes to the model.

Compared with existing non-parametric label transfer techniques our graph-
based approach offers the advantage of not requiring pairwise image comparisons.
This makes our method independent of the size of the labeled dataset at test
time and avoids the initial image retrieval step. However, scene level information
is clearly an important source of context that we are currently missing.

We are excited about a number of extensions of our work. First, our search
procedure is embarrassingly parallelizable and we intend to assess the scalability
of our method to very large datasets by distributing computation. Second, we are
currently restricted to rectangular patches but would be interested in exploring
the use of superpixels (or combinations of superpixels) for defining regions. Last,
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we currently only use the graph structure for finding nearest neighbour matches.
It would be interesting to see whether we could exploit the graph structure at test
time, e.g., to estimate the quality of each match during semantic label transfer.
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