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Abstract—This paper presents an efficient exact nearest patch matching algorithm which can accurately find the most similar patch-

pairs between source and target image. Traditional match matching algorithms treat each pixel/patch as an independent sample and

build a hierarchical data structure, such as kd-tree, to accelerate nearest patch finding. However, most of these approaches can only

find approximate nearest patch and do not explore the sequential overlap between patches. Hence, they are neither accurate in quality

nor optimal in speed. By eliminating redundant similarity computation of sequential overlap between patches, our method finds the

exact nearest patch in brute-force style but reduces its running time complexity to be linear on the patch size. Furthermore, relying on

recent multicore graphics hardware, our method can be further accelerated by at least an order of magnitude (�10�). This greatly

improves performance and ensures that our method can be efficiently applied in an interactive editing framework for moderate-sized

image even video. To our knowledge, this approach is the fastest exact nearest patch matching method for high-dimensional patch and

also its extra memory requirement is minimal. Comparisons with the popular nearest patch matching methods in the experimental

results demonstrate the merits of our algorithm.

Index Terms—Nearest patch search, texture synthesis, image completion, image denoising, image summarization.

Ç

1 INTRODUCTION

NEAREST patch matching is a fundamental problem in
computer graphics and computer vision, and has a

variety of applications in image editing and processing,
such as information retrieval [1], [2], texture synthesis [3],
[4], [5], superresolution [6], image filtering [7] and image
summarizing [8], etc. For these applications, nearest patch
matching is defined as finding the nearest patch in a source
image Z for each patch in a target image X under a
matching-error metric. For a 2D image, to find the nearest
patch in the source image Z with m pixels, the brute-force
implementation will compare between each pixel of the
patch and exhibits Oðmr2Þ running time for patch of size r.
Similarly, for video data which combine 2D images in the
temporal domain, the search for nearest 3D patch of size r
in a source video Z with m pixels costs Oðmr3Þ running
time. When the patch size r increases, the nearest patch
matching becomes very time-consuming and usually
becomes the bottleneck of applications.

Currently, there are two major kinds of strategies to
accelerate the patch matching. The first one is relying on
hierarchical tree structures such as kd-trees [9], TSVQ [4],
and ANN [10]. Such approaches can only efficiently handle a
low-dimensional patch. For a high-dimensional patch, they
are usually combined with dimensionality reduction meth-
ods, like PCA, for acceleration. Therefore, their matching
result is just approximate. The second kind of strategy is to

limit the search space in the source image Z based on a local
coherence assumption, such as the local propagation [11],
randomized correspondence [12], and k-coherence techni-
que [13]. Therefore, such an assumption could miss some
significant information. The matching result is not optimal
and might lead to many mismatches [14].

Inspired by Huang’s [15] and Weiss’s [16] works for
accelerating median filtering, we introduce a novel fast
exact nearest patch matching method. Our algorithm is
based on the following observations: when sequentially
performing brute-force nearest patch matching between the
source image Z and the target image X, the adjacent patch-
pairs overlap to a considerable extent. Making use of this
sequential overlaps in each row to eliminate the redundant
calculations, the time complexity for 2D patch can be
reduced from Oðmr2Þ to OðmrÞ. Furthermore, based on the
sequential overlaps between the columns, processing multi-
ple columns of patches simultaneously can further reduce
running time to a constant for patch-pairs matching. Our
method can be easily extended to accelerate 3D and even
higher dimensional patch matching to be computed in the
constant time.

Besides the significantly reduced time complexity, our
method also has a much lower memory requirement
compared to the existing nearest patch matching methods
which rely on hierarchical structure. The hierarchical
acceleration structures, such as the kd-tree [9], TSVQ [4],
and ANN [17], usually demand memory in the order of
OðrÞ or even higher. However, our method does not require
auxiliary data structures and the memory requirement is
minimal. Hence, it can be applied for large image and video
data precessing. In addition, since our method follows a
brute-force comparison routine, the nearest patch matching
result is guaranteed to be exact.

Relying on recent many-core platform, e.g., the GPU, our
nearest patch matching method can be further accelerated
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by at least an order of magnitude. We have efficiently
implemented it in various image editing tasks, such as
texture synthesis, image summarization, image completion,
and image denoising. To our knowledge, this approach is
the fastest exact nearest patch matching method for a high-
dimensional input and its extra memory requirement is
minimal. Moreover, its implementation is straightforward.

The rest of the paper is organized as follows: Section 2
reviews related work. In Section 3, the exact nearest patch
matching method for 2D images is presented. In Section 4,
the exact nearest patch matching method for video data is
further presented. In Section 5, we introduce how to
accelerate our methods in parallel using GPU. In Section 6,
both the experimental results and the comparisons with
previous methods are shown. Finally, we discuss the
limitations of our method in Section 7 and conclude our
paper in Section 8.

2 RELATED WORK

A complete review of existing works is beyond the scope of
this paper and we refer readers to [18], [19], [20] for excellent
overviews on the nearest patch matching algorithms.

Nearest patch search algorithms can be roughly classi-
fied into two categories: the exact nearest patch matching
and approximate nearest patch matching. PCA Trees [21],
K-means [22], [23] are often used to achieve exact nearest
patch matching. Currently, there are several methods, such
as kd-Tree [9], ANN [10], TSVQ [4] and Vantage Point Trees
[24], that can perform both exact and approximate nearest
patch matching. All these methods apply hierarchical tree
structure to accelerate searching. Some other methods such
as local propagation method [11], k-coherence technique
[13], and randomized correspondence algorithm [12] only
perform approximate nearest patch matching. These ap-
proximate methods find the approximate nearest patch in
local regions based on local coherence assumption. The
performance of the nearest patch matching method usually
depends on several factors: including image size, patch size,
the number of nearest patches, search range, and the
number of input images.

The kd-tree-based matching [9] is one of the most widely
used algorithms for finding the nearest patch. Although it is
easy to create and efficient for range query, the kd-tree only
works well for low-dimensional data. Using the kd-tree, the
number of searched nodes increases exponentially with the
space dimension. When the dimension is large (for
example, N > 15), its search speed becomes very slow.
Another drawback is that the spatial divisions of the tree
nodes are always axis-aligned. Hence, it induces an
unbalanced tree and results in a poor search performance.
Sproull [21] proposes PCA-tree structure which attempts to
remedy the axis-alignment limitation of the kd-tree. It first
applies Principal Components Analysis (PCA) at each tree
node to obtain the eigen-vector which corresponds to the
maximum variance, and then splits the points along that
direction. Recently, Xiao and Liu [25] applied kd-tree to
accelerate mean-shift clustering.

Both kd-tree and PCA-tree [21] are the so-called
“projective tree” [20], since they categorize points based
on their projection into some low-dimensional space. In

contrast, k-means [22], [23] and vantage point tree (vp-tree)
[24] are “metric tree” structures which organize points
using a metric defined over pairs of points. Thus, they don’t
require points to be finite-dimensional or even in a vector
space. K-means methods [22], [23] assign points to the
closest of k centers by iteratively alternating between
selecting centers and assigning points to the centers until
neither the centers nor the point partitions change. The vp-
tree [24] uses a single “ball” at each level. Rather than
partitioning points on the basis of relative distance from
multiple centers, the vp-tree splits points using the absolute
distance from a single center. Although these methods can
be used for nearest patch matching, their performances are
usually too low to be applied in patch-based image
processing and editing.

To reduce running time, instead of finding the exact
nearest patches, approximate approaches return patches
that are within a factor of ð1þ "Þ of the true closest distance,
for " � 0. There are many existing approximate matching
methods [4], [10], [17]. The ANN method [10] and tree-
structured vector quantization (TSVQ) [4] exploit the tree
structure to accelerate the search procedure. Therefore, they
also suffer from both the large memory requirement and the
cost for tree construction and traversal for high-dimensional
data like aforementioned methods [9] [21]. To accelerate
search procedure and reduce memory requirement, the
dimensionality reduction techniques such as PCA can be
integrated into the tree-based methods [5], [26]. Such a
routine projects high-dimensional patch vector into low-
dimensional space. Although performance is improved, a
tree-based ANNþ PCA combination can miss significant
information. Moreover, the running time is still long and
high memory consumption remains unsolved.

To reduce memory consumption, many other approx-
imate nearest patch matching methods without using tree-
structure have been proposed for patch-based texture
synthesis [11], [13], and structural image editing [12]. These
methods apply the local image coherence assumption to
reduce the search space. However, such an assumption
could miss significant information. The matching result is
not optimal and might lead to many mismatches.

The Fast Fourier Transforms (FFT) methods [27], [28] are
also used to accelerate approximate nearest patch matching.
Combining summed-area tables [29] and FFT techniques,
the complexity for searching the nearest patch for each
patch is ðOðnÞ þOðnlogðnÞÞ, where n is the number of pixels
in the image. The computational complexity of these
methods is still high for processing the large image.
Moreover, these methods cannot guarantee to find the
exact nearest patch.

In contrast to the existing nearest patch matching
methods, we propose a fast exact nearest patch matching
method based on eliminating the redundant computations
of the brute-force matching routine. Huang [15] presented
an improved algorithm for median filter by making use of
sequential overlaps between adjacent windows to eliminate
the redundant calculations. Weiss [16] further improved
the performance of the median filter by processing multiple
columns at once. Later, Rivers and James [30] extended the
method [16] to the fast shape matching. In this paper,
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inspired by [15], [16], we address a different problem. We
speed up the brute-force patch matching by eliminating the
redundancy of sequential overlaps between adjacent corre-
sponding patch-pairs. Our method guarantees that each
patch in the target image X compares every patch in source
image Z only once, furthermore, our method eliminates the
redundant computations of the adjacent corresponding
patch-pairs.

3 FAST NEAREST PATCH MATCHING

Using the standard euclidean distance function, the
similarity distance (patch distance or patch matching error)
between the 2D patch Xm in the target image X and Zn in
the source image Z with size r can be computed as:
dðXm;ZnÞ ¼

Pr
i¼1

Pr
j¼1½Xmði; jÞ � Znði; jÞ�2. Here, ði; jÞ re-

presents the index position for each pixel inside a patch.
This is the core computation task of the patch matching and
its time complexity is Oðr2Þ for a 2D image. Our novel
algorithm is based on the following observation: when
performing the nearest patch matching in sequential order
using a brute-force routine, the adjacent corresponding
patch-pairs overlap to a considerable extent. By exploiting
this sequential overlap, we eliminate the redundant
computations, thus the time complexity for the patch
matching is significantly reduced. In the rest of this section,
we illustrate the key idea of our fast matching method by
processing a 2D image.

3.1 The Basic O(r) Algorithm

As illustrated in Fig. 1, the term nearest patch matching
means that each patch Xi in the target X should find a

nearest patch Zi in the source Z. Using the brute-force
routine, Xi should compare with each patch Zj in Z to find
the nearest patch. The overall time complexity Oðr2 � ��
�Þ is huge for large patches, where � and � is the size of X
and Z, respectively. Notice that adjacent patch-pairs over-
lap to a considerable extent when performing a sequential
brute-force search. As shown in Fig. 1, the similarity
difference results in the overlapped region (purple)
between pair (X0; Z0) and pair (X1; Z1) are actually the
same. Hence, when computing the similarity for patch-pair
(X0; Z0), the results in the overlapped region can be kept.
Then, the distance for patch-pair (X1; Z1) can be computed
by summing the distance in the overlapped part and the
distance of the corresponding bottom row of patch-pair
(X1; Z1). As the patch-pairs slide over respective images
along each column, redundant calculations become sequen-
tial. We can make use of the sequential overlap to
significantly reduce the time complexity.

More specifically, we describe how to find a nearest patch
in the first column of the source Z for each patch of the first
column in the targetX. As in Fig. 1, there are P and S patches
in each column of the target and source image, respectively.
Each patch slides only by one pixel of each step. X0 and Z0

are first compared. Then, based on the preserved overlapped
results, X1 and Z1 are compared. The similarity of adjacent
patch-pairs continues to compute until the end of the first
iteration when XP�1 and ZðP�1ÞmodðSÞ are compared. Then,
similarly to the first iteration,X0 is compared with Z1 and its
subsequent patches are compared with the corresponding
subsequent patches in Z (namely, X1 with Z2, X2 with
Z3; . . . ) until the end of the second iteration. In the final
iteration, X0 is compared with ZS�1, and the subsequent
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Fig. 1. Nearest patch matching for target imageX (P ¼ 5), source image Z (S ¼ 3), and the patch size r ¼ 3. The first row is the first iteration (L ¼ 0),
the dðX0; Z0Þ is first computed, then its consequent patches ðX1; X2; X3; X4Þ are compared with the corresponding consequent patches
ðZ1; Z2; Z0; Z1Þ in Z. Specially, based on the overlap between dðX0 and Z0Þ, dðX1; Z1Þ is computed, similarly, based on the overlap between X1 and
Z1, dðX2; Z2Þ is computed, then we compute dðX3; Z0Þ, based on the overlap, dðX4; Z1Þ is computed. The second row is the second iteration (L ¼ 1),
the dðX0; Z1Þ is first computed, its consequent patches ðX1; X2; X3; X4Þ are compared with the corresponding consequent patches ðZ2; Z0; Z1; Z2Þ in
Z. Note that the overlaps are used in the distance computation. The third row is the third iteration (L ¼ 2), similarly, the dðX0; Z2Þ is first computed, its
consequent patches ðX1; X2; X3; X4Þ are compared with the corresponding patches ðZ0; Z1; Z2; Z0Þ in Z.



corresponding patch-pairs are compared until XP�1 finishes
the comparison with ZðPþS�2ÞmodðSÞ. Fig. 1 illustrates the
above steps for the target imageX with P ¼ 5 and the source
image Z with S ¼ 3.

It can be observed that using the sequential overlap, our
method guarantees that each patch Xi will only compare
with each Zj once and the redundant calculations are
eliminated. Note that when the pair (Xi; Zj) comes to
the occasion that Zj is the last patch ðZj ¼¼ ZS�1Þ, then
Xiþ1 corresponds to the first patch Z0 (the pair ðXiþ1; Z0Þ). In
this special case, the similarity (Xiþ1; Z0) needs to be fully
computed since there is no overlap available. After perform-
ing the nearest patch matching for each column of X with
each column in the source Z, we have finished the nearest
patch search in the image Z for each patch in the target X.

Using this method, the 2D patch matching complexity is
reduced from Oðr2Þ to OðrÞ for each patch. For the large
patches (32� 32 and larger), the proposed method becomes
dramatically fast. The pseudocode of the basic OðrÞ
algorithm for the 2D patch matching is presented in
Algorithm 1. In Fig. 3a, the time comparison with the naive
brute-force method is given. The results demonstrate that
our basic algorithm successfully break the Oðr2Þ time
complexity down to OðrÞ.

Algorithm 1. Pseudocode for OðrÞ algorithm processing

single column.

1: Z: Source image

2: X: Target image

3: P ,S: Number of patches in each column of Xand Z

4: Overlap: Distance of the overlapped region

5: Index½i�, Weight½i�: The nearest patch in Z for Xi and

the corresponding Distance.

6:

7: for L ¼ 0 to S � 1 do

8: for K ¼ 0 to P � 1 do

9: let � ¼ ðK þ LÞmodðSÞ
10: if (� ¼¼ 0 or K ¼¼ 0) then

11: Dist ¼ Distance between XK and Z�;

12: Compute Overlap;

13: else

14: Dist ¼ Overlap+Distance of bottom row in

ðXK;Z�Þ;
15: end if

16: if Dist < Weight½K� then

17: Index½K� ¼ �;
18: Weight½K� ¼ Dist;
19: end if

20: Overlap ¼ Dist-Distance of top row in ðXK;Z�Þ
21: end for

22: end for

3.2 Processing N Columns Simultaneously

The basic algorithm in Section 3.1 eliminates the redundant
computation of adjacent rows for the single-column
processing. To further improve performance, we now
perform the nearest patch matching for N columns by
comparing N adjacent columns of patches in target image X
with N adjacent columns of patches in source image Z.
Inspired by the method presented in [16], we propose to

process multiple columns simultaneously by eliminating
the redundant computation of adjacent columns.

Processing N columns simultaneously involves the
computation of N dependent patch distances (D�:
D0 . . .DN�1) for each output column. Each distance Di can
be computed efficiently by eliminating the redundant
computation of adjacent columns. Assuming that
D0 . . .DN�1 of current N adjacent patches have been
computed, now we compute the distances D

0
0 . . .D

0
N�1 of

the next N adjacent patches. As shown in Fig. 2, the newly
introduced data for the next N adjacent patches is just the
bottom row of pixels. Therefore, we first compute the
distances between each pixel-pair dðui; viÞ ¼ ðui � viÞ2 of
the new bottom row ðv0 . . . vrþN�2Þ from the input Z and its
corresponding row ðu0 . . .urþN�2Þ in outputX. Here,ui and vi
represent the pixel in X and Z, respectively. Then, the pixel-
pair distances ðdðu0; v0Þ; . . . ; dðurþN�2; vrþN�2ÞÞ is added to
patch-pair distances D0 . . .DN�1, as shown in Fig. 2. Finally,
by subtracting the old top row pixel-pair distances from
D0 . . .DN�1, we receive the distancesD

0
0 . . .D

0
N�1 for the next

adjacentN patches. Note that old top row pixel-pair distances
do not need to be recomputed, since they have already been
kept after the previous computation.

Using this mechanism, for N output columns, the
number of multiplication operations reduces from N � r
to N þ r� 1, and the average number of the pixel-pairs
distance computation for per patch-pair reduces from r to
1þ ðr� 1Þ=N . The time for computing distances between
each patch-pair is still O(r), but with a much lower constant
than the single-column algorithm. Let N ¼ r� 1, to process
N columns simultaneously for patch-pairs matching, the
average number of the pixel-pairs distance computation for
each column is the constant 2. Compared with the
algorithm of single column in OðrÞ runtime, a significant
improvement in efficiency is achieved. By widening N to fit
the widening size of patch r, N columns technique can be
adapted to perform patch matching of an arbitrary size. In
all the experiments in our paper, we process N ¼ r� 1
columns simultaneously.
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Fig. 2. N columns processing. (a) Source Z, (b) target X. The patch size
r ¼ 4, and N ¼ 3. A bottom row of pixel-pairs (green) are newly added to
D*. To compute the distances of patch-pairs, we first sum the first r
pixel-pair distances: S1 ¼ dðu0; v0Þ þ � � � þ dður�1; vr�1Þ and it is the sum
of new row for patch-pair distance D

0

1. Except for S0, the following Si can
be computed as: Si ¼ Si�1 � dðui�1; vi�1Þ þ dðurþi�1; vrþi�1Þ, as illu-
strated in bottom sketch map in (a). By adding Si to column Di and
subtracting the old top row (blue) pixel-pairs distances from Di, we
receive the new patch-pair distance D

0

i.



To perform the nearest patch search for each patch in the
target image X, of each iteration, we compare N adjacent
columns of patches XN in the target image X with each N
adjacent columns of patches ZN in the source image Z.
Then, each ZN steps one pixel along the image Z, while XN

steps N pixels along the image X. This guarantees that each
patch Xi is compared against every patch Zj only once. For
the patches near the boundary, we use the self-adaptive
multiple columns processing (N is gradually reduced) to
eliminate the redundant computation between the columns.

Compared with the single-column algorithm, the multi-
ple columns algorithm further accelerates the nearest patch
search, as illustrated in Fig. 3b. The experimental results
prove that using the multiple columns algorithm, the
computational complexity on average remains constant for
each patch-pair distance computation for different patch
sizes. The total computational time is only slightly increased
by increasing the patch size.

4 FAST 3D PATCH MATCH COMPUTING

Compared to the 2D image, video data are usually much
larger in size. In addition, the time complexity for the
standard 3D patch match is Oðr3Þ with the patch size r. The
cubical-complexity time of 3D nearest patch search leads to
an intractable scenario for a naive brute-force routine. In
this section, we generalize the fast nearest patch matching

presented in the image case to accelerate the nearest 3D
patch matching for video data.

Similar to the image search case, observing the overlap of
the adjacent cube-pairs, we eliminate the redundancy of the
adjacent cubes in each column to accelerate the nearest
patch matching. As shown in Fig. 4a, we just need to
incrementally compute the pixel-pair distances for the new
bottom layer of pixels. The time complexity of the 3D cube
matching is reduced from Oðr3Þ to Oðr2Þ. In the remainder
of this section, we will present two strategies for 3D cube
matching: processing N columns of 3D patches simulta-
neously and processing N �N 3D patches simultaneously,
which further accelerate the 3D patch matching.

4.1 Processing N 3D Patches Simultaneously

Similar to the image case, we process N columns of 3D
patches simultaneously, as shown in Fig. 4b. For the case of
3D patch matching, we add one new bottom layer of pixels
u½0::r�1�½0::rþN�2� and v½0::r�1�½0::rþN�2� to input and output video
separately. To compute the patch distances D

0
0 . . .D

0
N�1 for

the next adjacent N 3D patches, we just need to compute the
pixel-pair distances duv of the bottom layer and add them to
D� ¼ ðD0; ::; DN�1Þ, where Di is the similarity of ith 3D
patch-pair. Fig. 4a shows how a row of patch-pairs is added
to the D*.

Processing N columns independently usually requires
overall N � r2 multiplications for distance computation of
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Fig. 4. (a) 3D patch matching algorithm on a single column. (b) ProcessingN columns simultaneously, adding new (½0::r� 1�½0::rþN � 2�) pixel-pairs
distances to N � 1 matching distances D� ¼ ðD0; ::; DN�1Þ. (c) Processing N �N patch-pairs simultaneously, adding (½0::rþN � 2�½0::rþN � 2�)
pairs of pixel distances to D� (Di;jði; j 2 ½0; N � 1�Þ).

Fig. 3. Time complexity comparison in different patch sizes, (a) proposed basic single-column processing versus naive brute-force patch match,
(b) single-column processing versus multiple columns processing, (c) GPU parallel processing for multiple columns versus single-threaded CPU
implementation for multiple columns processing. (d) GPU parallel processing for multiple columns versus GPU parallel processing of the naive
brute-force patch matching. The size of source image Z is 256� 256, and size of target image X is 278� 278.



pixel pair dðui;j; vi;jÞ. In comparison, our scheme for
processing N columns simultaneously only involves ðN þ
r� 1Þ � r multiplication operations to compute the distance
of the ðN þ r� 1Þ � r pixel-pairs. Using this mechanism,
the complexity is significantly reduced, for example, if
N ¼ r� 1, the multiplication operation reduces from N �
N2 to 2�N2. The average number of the pixel-pairs
distance computation for N columns is 2�N for the cube
with size r, and the number of addition operations is also
greatly reduced.

Similarly to the image case, we compute the distanceSiði ¼
0; ::; rþN � 2Þ for ðu½0::r�1�½i�; v½0::r�1�½i�Þ of the added layer, and
add Si to D* for the 3D patch similarity computation.

4.2 Processing N �N 3D Patches Simultaneously

Observing that the 3D patches considerably overlap in the
direction of the z-axis (Fig. 4c), we further eliminate the
redundancy between adjacent patches and accelerate the 3D
patch matching. The fundamental idea behind the mechan-
ism is to process N �N adjacent patches simultaneously:
we first process the first row that contains N columns of 3D
patches using the multiple columns acceleration algorithm,
then, based on the computed sequential patches distance,
the rest of adjacent N � 1 row patches (the direction of the
z-axis) can be computed sequentially.

Specially, to process N �N adjacent patches simulta-
neously, the new ½0 . . . rþN � 2�½0 . . . rþN � 2� pixel-pairs
are added to the corresponding N �N patch-pairs, as
illustrated in the schematic (Fig. 4c). The overall number of
multiplication operations is ðN þ r� 1Þ � ðN þ r� 1Þ, for
computing the distance of each pixel-pair. For N �N patch-
pairs, the average number of distance computations for per
patch-pair is ðN þ r� 1Þ2=N2. Let N ¼ r� 1, the average
number is the constant 22, which greatly improves the
performance compared to processing N rows 3D patches
independently. The overall computational cost of our
method outperforms naive brute-force method by up to a
factor of r3. Similarly as before, we add the ðN þ r� 1Þ �
ðN þ r� 1Þ pixel-pair distances to the N �N patch match-
ing distance set D� (Di;jði; j 2 ½0; N � 1�Þ), and obtain the
distances of the current N �N 3D patch-pairs.

To perform the nearest patch search for each patch in X,
we compareN �N patches XN�N of the output X with each
N �N patchesZN�N simultaneously. More specifically, each
ZN�N slides one pixel along x-axis direction and one pixel
along z-axis direction, while XN�N slides N pixels along x-
axis and z-axis direction, as shown in (Fig. 4c). The numberN
can be adjusted near the boundary of the video data.

4.3 Computational Complexity Analysis

Our fast nearest patch matching can be generalized to

handle a d-dimensional continuous data set Rd. Similar to

Sections 3 and 4, to find the nearest d-dimensional patch

with size r, we can process ðN �N . . .�NÞd�1 columns

simultaneously. The patch matching time complexity for d-

dimensional patch-pair can be reduced from N � ðrÞd to

ðN þ r� 1Þd�1. Let N ¼ r� 1, the average multiplication

operations for each d dimensional patch-pair is 2d�1. Using

our proposed method, the average multiplication opera-

tions for each patch-pair is a constant, regardless the patch

size r. It should be pointed out that near the boundary

regions of the d dimensions data, the number N must be

adjusted accordingly. It will make the computational

complexity negligibly higher than 2d�1. Since our method

requires no auxiliary structure, the memory requirement is

always small.

5 GPU ACCELERATION

Recent many-core graphics processing units (GPUs) exhibit
great parallel computation potential and incur performance
breakthrough for many time-consuming algorithmic im-
plementations [31]. Based on its SIMD pipeline structure,
the GPU is especially appropriate for accelerating an
algorithm which requires few data synchronizations and
can be implemented in a highly parallel way. The data
synchronization somehow serializes the parallel processing
routine by introducing data waiting stage for threads
execution, hence its cost usually dominates the overall
performance of a parallel implementation.

Our exact nearest patch matching method relies on data-
reuse to reduce computations. It intrinsically contains data
dependences between the matching operation of neighbor
patches. The simple GPU translation for its implementation
could only achieve limited performance improvement
(�3�) over the CPU code. To maximally utilize the parallel
computing infrastructure of the GPU, we propose to copy
multiple rows of data into the local (shared) memory in the
GPU kernel and compute pixel-pair distance for multiple
patch-pairs in parallel. We present the GPU implementa-
tions for both single-column and N-columns patch match-
ing methods.

We provide pseudocode for the GPU implementation of
the single-column method in Algorithm 2 and refer to the
line numbers as Lxx in the following text. The illustrations
for the GPU implementation for the single-column proces-
sing is given in Fig. 5. Initially, we compute r� r pixel-pair
distances between the source patch Z� and target patch XK

in parallel and sum up each row of the pixel-pair distance
map to obtain r per-row distances (L13-L14, corresponding
to Figs. 5a and 5b). Next, instead of sliding each patch-pair
only one pixel along each column, during each following
iteration, the r rows of new pixels (nonoverlapping with the
previous one) are loaded into the GPU local memory (L22
and Fig. 5c). Again we compute the r� r per-pixel distances
and the r per-row distances (L23 and Fig. 5d). Now there is
in memory an array of 2� r per-row distances which
corresponds to contiguous rows of r patch-pairs. Hence,
running r threads in parallel, each thread sums r entries of
the 2� r per-row distances (L24 and Fig. 5e). The distance
between r patch-pairs can be obtained efficiently. By using
such a multirows parallelism strategy, the synchronization
latency of single-column patch matching is greatly hidden.

Algorithm 2. Pseudocode for GPU OðrÞ algorithm single-

column processing.
1: Z: Source image, X: Target image, r: Patch size

2: P ,S: Number of patches in each column of X and Z

3: Index½i�, Weight½i�: The nearest patch in Z for Xi and its

distance

4: PixelDis½r�½r�: pixel-pair distances array between two

patches
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5: RowDis½2r�: The sum of elements in each row of

PixelDis½�½�
6: PatchDis½V �: PatchDistance

7:

8: for L ¼ 0 to S � 1 do

9: while K 	 P � 1 do

10: Let � ¼ ðLþKÞmodðSÞ
11: if (K ¼¼ 0 or � ¼¼ 0) then

12: Computing PixelDis½�½� between Z� and XK

in parallel

13: Computing RowDis½0 . . . r� 1� of PixelDis½�½�
in parallel

14: Dist ¼ Sum of all the elements of

RowDis½0 . . . r� 1�
15: if Dist 	Weight½K� then

16: Weight½K� ¼ Dist
17: Index½K� ¼ �

18: end if

19: K þþ
20: else

21: Computing PixelDis½�½� between Z�þr�1 and

XKþr�1 in parallel

22: Computing RowDis½r . . . 2r� 1� of PixelDis½�½�
in parallel

23: for V ¼ 0 to r� 1 in parallel do

24: PatchDis½V � ¼ Sum of the elements of

RowDis½V þ 1 . . .V þ r�
25: if Dist < Weight½K þ V � then

26: Index½K þ V � ¼ �þ V
27: Weight½K þ V � ¼ PatchDis½V �
28: end if

29: RowDis½V � ¼ RowDis½V þ r�
30: end for

31: Kþ ¼ r
32: end if

33: end while

34: end for

The proposed N-columns patch matching method can
also be implemented in GPU. The strategy is similar to the
single-column case. The r� ðrþN � 1Þ pixel-pair dis-
tances PixelDis½0; r� 1�½0; rþN � 2� between N columns
patches in Z and the corresponding N columns patches in
X can be initially computed in parallel. Similarly, the
pixel-pair distances sum ColumnDis½0; rþN � 2� in each
column of PixelDis½0; r� 1�½0; rþN � 2�, can also be
computed in parallel. During each iteration, r�N þ r� 1
new pixels are copied into the GPU local memory. With
the available N þ r� 1 columns pixel-pair distance array
ColumnDis½0; rþN � 2�, the N columns patch matching
are done in parallel. Compared to the single-column case,
implementing the N columns patch matching in GPU
further improves the performance.

Our GPU implementation is based on Nvidia’s CUDA
[32]. As illustrated in Fig. 3c, using the GPU acceleration
techniques, our nearest patch matching method can be
further accelerated by at least an order of magnitude
(�10�) compared to its CPU implementation. Such an
efficient performance ensures that our method can be
applied in an interactive editing task for a moderate-sized
image. For example, in nonlocal image denoising applica-
tion (described in Section 6) with the image of size
256� 256, interactive performance can be achieved for
generating the denoised results.

We also compare the performance of the GPU acceleration
of our proposed method with the GPU implementation of
the naive brute-force patch matching. As shown in Fig. 3d,
when the patch size is very small, our method does not show
much advantage over the naive brute-force method. How-
ever, when the patch size becomes larger, our method
becomes increasingly faster. This occurs because the time
complexity of each 2D patch-pair matching in our method
can be reduced to constant. However, for the naive brute-
force method, there is too much redundant computation
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Fig. 5. Illustrations for the GPU single-column processing algorithm (OðrÞ). After r2 pixel-pair distances between patch Z� and XK (a), and
RowDis½0; r� 1� are implemented in parallel using GPU, the r rows data are copied into the GPU’s local memory (b). Then, (c) we compute in
parallel the pixel-pair distances between patch Z�þr�1 and XKþr�1, (d) compute and store RowDis½r; 2r� 1� (d). (e) Relying on the available
RowDis½0; r� 1�, the matching comparison of next adjacent r rows patches can be done in parallel.



when the patch size is large. Therefore, although implemen-
ted in GPU, its speed is still much slower than our GPU
method and even slower than the single-threaded CPU
implementation of our multiple columns processing. With
the rapidly developing GPUs equipped with more shared
memory in near future, our method can get further
performance improvement since more rows of data could
reside in the local (shared) memory.

6 EXPERIMENTAL RESULTS AND APPLICATIONS

We apply our fast nearest patch matching method in several
applications, including the nearest template patch search,
nonlocal filtering [7], optimization-based texture synthesis
[5], [33], image and video completion [34], and image
summarization [8], [12]. In this section, we show and
discuss the results of all these applications. We compare the
performance of our method against both the exact nearest
patch matching method, like kd-tree, and the approximate
nearest patch matching methods, such as ANN [10], TSVQ
[4], and FFT method [27]. Furthermore, we show some
comparisons with the most recently randomized correspon-
dence algorithm [12] which uses the image local coherence
assumption. All the comparisons with these methods focus
on the following aspects: memory requirement, time
complexity, and the quality of image processing and editing
results. Our approach is implemented in C++ on a Pentium
Dual-Core CPU E5200@2.50 GHz with 2 GB RAM. The GPU
acceleration is based on CUDA [32] and run on a NVIDIA
GeForce GTX 285 (1 GB) graphics card.

6.1 Nearest Template Patch Matching

Since kd-tree is one of the most popular methods for the
nearest template patch matching, we compare the perfor-
mance of our method against the kd-tree method for the
exact nearest template patch with different patch sizes. As
illustrated in Fig. 6, the kd-tree only works well for a low-
dimensional case. When the dimension is large (for
example, N > 15), the kd-tree may become very slow
because the number of the searched nodes increases
exponentially with the space dimension. Note that the
comparison is performed based on the same criterion: the
nearest patch is searched for every patch in the image. For
the kd-tree method, both the time for the tree construction
and the time for performing the nearest patch search with

different patch sizes are given in Fig. 6b. The search time
means the average time for finding the nearest patch for
each patch.

6.2 Nonlocal Image and Video Denoising

We further apply our nearest patch matching technique for
accelerating the nonlocal means (NL-means) image denois-
ing [7]. Different from most filtering methods which
perform locally, this algorithm is based on a nonlocal
average of all pixels in the image. NL-means [7] works well
for the image filtering. However, it is also notoriously slow
since the similarity for each patch Zi with each other patch
Zj in the image has to be computed.

To accelerate the NL-means algorithm, the search for
similar windows is usually restricted in a “search window”
of size S � S pixels [7] larger than the patch size of Zi. Using
this technique, the method cannot restore the details and fine
structure of the noisy images as well as the globally weighted
average. Nevertheless, using our method by eliminating
redundant similarity computation between the overlap
patches, not only the similarity is computed at extremely
fast speed, but also the exact result quality is ensured.

In Fig. 7, we compare the results between our method
which uses the globally weighted average with NL-means
algorithm which restricts the search of similar windows in a
“search window” of size S � S pixels. As shown in the
zoom-out results of Fig. 7i, our method gives better filtering
results. The image difference u�NLhðuÞ is displayed in
Figs. 7e and 7g. The performance of our method for
nonlocal filtering using patches of different sizes is given
in Fig. 7j.

In Fig. 8, we present nonlocal video denoising results
using the proposed 3D patch similarity computation. In
comparison, it only takes about 21 minutes to filter a video
(400� 300� 280) by the GPU implementation of our method.
We also give the results with different 3D patch sizes and find
that the patch size (7� 7� 7) usually works best.

6.3 Optimization-Based Texture Synthesis

Optimization-based texture synthesis methods [5], [33], [35]
apply an optimization process to iteratively increase the
similarity between the output synthesized texture and the
exemplar. To accelerate texture optimization, the critical
step is to find the best matching patch Zp in the input
exemplar Z for each patch Xp in the output synthesized
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Fig. 6. Comparison with kd-tree. (a) The image (840� 600), (b) time complexity comparison for the patch search with different sizes on the kd-tree
construction, the kd-tree patch search, our N columns on CPU, and our N columns on GPU, (c) memory requirement comparison for the patch
search with different sizes.



texture X. Using our method, the texture optimization is
greatly accelerated.

We compare the performance of our method with the
other two approximate nearest patch matching methods:
ANN [10] and TSVQ [4]. The timing is given in Figs. 9, 10,
and Table 1 for different patch sizes. Note that for
comparison, we test ANN and TSVQ and our method with
single-threaded CPU implementation. It turns out that our
method is already faster. Also note that the time for ANN
and TSVQ does not include the preprocessing time of the
tree construction, it usually takes several seconds to
minutes to build the tree for TSVQ and ANN depending
on the input data. Building the tree structure also dominates
the memory requirement for ANN [10] and TSVQ [4]. When
processing the large patches, the time complexity and
storage considerations of ANN and TSVQ incur serious
difficulty. In contrast, our method does not share this

problem(see Fig. 9d). The ANN method takes the value " as
a parameter, and returns an approximate nearest patch that
lies no farther than ð1þ "Þ times the distance to the exact
nearest patch. We use " ¼ 1:5 and find that it is a good
compromise between the speed and accuracy. The halting
criteria for TSVQ method is that the error between the two
sequential nearest patches is below 10�10.

In practice, as pointed in [33], it is computationally
expensive to compute the energy over all patches in the
texture. A subset of neighborhoods Xy that sufficiently
overlap with each other can be selected. Defining the energy
only over this subset will produce desirable results. Since it
only needs to find the nearest patches for a subset of patches
in X, this may result in the faster performance for the ANN
and TSVQ than finding the nearest patches for all patches in
X. However, as illustrated in Fig. 9c and Table 1, even
choosing Xy neighborhood centers that are r=w pixels apart
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Fig. 7. Nonlocal image denoising. (a) noisy image u (480� 612), (b),(c),and (d) are the denoised imagesDhðuÞ, we apply similarity square patch Zi of
7� 7 pixels, and fix a search window of 21� 21, 71� 71, 101� 101 pixels, respectively, (e) displaying of the image difference u�NLhðuÞ between
(a) and (d), (f)and (h) the filtering results using the global weighted averaging, the similarity square patch Zi is set 7� 7 and 9� 9 pixels, respectively,
(g) the image difference u�NLhðuÞ between (a) and (f), (i) the zoom-out results of (a), (b), and (f), (j) time complexity for global weighted averaging
using patch with different sizes.

Fig. 8. Nonlocal video denoising. (a) Noisy video u (400� 300� 280), (b) denoised image DhðuÞ, (c) and (d) displaying of the image difference
u�DhðuÞ with 3D patch size (11� 11� 11) and patch size (7� 7� 7), respectively. The 180th frame of the video is illustrated.



(w ¼ 4 in our experiments and r is the width of each
neighborhood), our complete search method is still much
faster than ANN and TSVQ. Note that for extreme case when
patch size r ¼ 56, if we set w ¼ 4, our complete nearest
search method does not show much better performance
advantage compared to TSVQ and ANN. It is because in this
case, for TSVQ and ANN, only 1=296 of the patches in the X
are needed to be searched for finding the nearest patches.
However, in most texture synthesis applications, the pre-
ferred patch size is much smaller and our method is fully
capable to handle it with the best performance.

We also give the performance comparison with FFT
method [27] on both CPU and GPU. As shown in Fig. 9 and
Table 1, when performing the nearest patch matching on
CPU, FFT method is slower than our method when the
patch size is not large (r < 32), and is faster when the patch

size is large (r > 32). This happens because when proces-
sing a moderate size image with a large patch size, the
number of neighboring patches becomes smaller too.
Hence, our method cannot make the best of the sequential
overlap between patches. When performing on GPU, our
method is much faster for both large and small patch sizes
and more experimental data are presented in Table 1.
Furthermore, our method guarantees to find the exact
nearest patch, while FFT method [27] may lead to a
nonoptimal match due to the round-off error produced by
the many computations used in the convolution sum.

We also give comparison results with ANN using
increasingly larger search space for different patch sizes.
For a given epsilon value " and a fixed patch dimension d,
ANN has a single-query complexity of Oðcd;�logðnÞÞ [10],
where n is the number of patches in the exemplar image,
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Fig. 9. Image texture synthesis using optimization method. (a) The image exemplar (128� 128) is synthesized to a larger texture (256� 256), (b) time
complexity comparison for patch with different size used in TSVQ [4], and ANN [10], ANN working on a subset of patches in the texture being
synthesized, (c) time complexity comparison for ANN working on a subset of patches in the texture being synthesized, FFT method on CPU, FFT
method on GPU, our N columns acceleration on CPU, and our N columns acceleration on GPU, (d) memory requirement comparison.

Fig. 10. Time complexity comparison with ANN [10] for synthesizing a texture (512� 512) from increasingly larger exemplar images (from 128� 128
to 704� 704). Three different kinds of patch size are used: (a) patch size is 4� 4, (b) patch size is 8� 8, and (c) patch size is 16� 16.

TABLE 1
Performance Comparison on the Texture Synthesis (Milliseconds) Based on Different Patch Sizes for TSVQ, ANN, ANN Working
on a Subset of Patches in the Texture Being Synthesized, FFT Method on CPU, FFT Method on GPU, Our N Columns Acceleration

on CPU, and Our N Columns Acceleration on GPU



and cd;� is a factor depending on " and d. If k patches are
queried (say, the k patches of synthesized texture), the
overall complexity is Oðcd;�klogðnÞÞ. The proposed algo-
rithm has a complexity of OðknÞ (the naive algorithm is
Oðknr2Þ where r is the image patch size). In Fig. 10, we
present time complexity comparisons with ANN [10] for
synthesizing a texture (512� 512) from increasingly larger
exemplar images (from 128� 128 to 704� 704). We present
comparison results for three different patch sizes: 4� 4,
8� 8, and 16� 16. The largest input exemplar image
presented is 704� 704. As for a much larger image, the
memory requirement for building the tree structure goes
beyond 2 GB RAM. The results in Fig. 10 show that our
method (on both CPU and GPU) is faster than ANN.
Although the overall trend in complexity shows that ANN
may become faster for very large n (for example,
8;192� 8;192). However, for such a large image, the
memory requirement for building tree structure becomes
a prohibitive bottleneck. It should be pointed out that,
although our method is effective for nearest patch search in
texture synthesis, however, the approximate methods such
as ANN and k-nearest matching perform very well in terms
of speed and quality, and are powerful methods for nearest
patch search.

6.4 Image and Video Completion

Compared with the example-based texture synthesis, the
patch-based image completion [34] typically involves a
large input image so that the matching problem is even
more time critical. As an example, in order to complete the
missing region H in an image S with some new data H�

such that the resulting image S� will have a high global
visual coherence with some reference image D. Typically,
D ¼ SnH, which is the remaining image portions outside
the hole, is used to fill the hole. Therefore, our target is
seeking a patch set S� which maximizes the following
objective function [34]:

CoherenceðS�jDÞ ¼
Y

p2S�
max
q
D

simðWp; VqÞ; ð1Þ

where p, q run over all points in their respective sequences.
simð:; :Þ is a local similarity measure between two patches
Wp and Vq. We have to find a nearest patch Vq in D for each
patch Wp in the hole H.

In Fig. 11, we present a large image completion example
using the optimization-based methods [34]. For the special
case of image completion, since both the “hole” region and
the reference region that is used as the exemplar within the
image texture are not regular, we use hybrid method to
accelerate the patch matching. We employ not only the N
columns matching, but also the single-column matching
techniques. In Fig. 11, a patch with size 25� 25 is used in
the completion process to preserve the large structures of
the image. It takes about 15 seconds on CPU for one
complete nearest patch matching. We also show video
completion results in Fig. 12, which are based on the nearest
3D patch search method (75 seconds on GPU for one
complete nearest patch search). Similar to [34], we adopt the
motion information for better completion.

6.5 Visual Data Summarizing

Simakov et al. [8] propose an approach for the summariza-
tion (or retargeting) of visual data (images or video) based
on the optimization of a well-defined bidirectional similar-
ity measure. Two signals Z (input Source signal) and X

(output Target signal) are considered to be “visually
similar” if as many as possible patches of Z are contained
in X, and vice versa. For every patch Q 
 X, we need to
search for the most similar patch P 
 Z, and compute the
patch distances, and vice versa.

The nearest patch matching dominates the efficiency of the
data summarization processing. We compare our perfor-
mance and summarization results with the randomized
correspondence algorithm [12]. For one complete nearest
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Fig. 11. Image completion using optimization, (a) original image (460� 346), (b) masked image, (c) the completion result.

Fig. 12. Video completion. (a) The input video (320� 130� 150), (b) the masked video, (c) completed video. The 122th frame of the video is
illustrated.



patch search using CPU implementation, it takes 4 seconds
for our method, and only 1 second for the randomized
correspondence method [12] since it depends on the local
search scope. However, the randomized algorithm [12] may
cause the optimization function to return a local minimal
solution. Moreover, using the method [12], nearest patches
are found based on the local image coherence information.
Hence, the editing results depend heavily on the initialization
of the nearest-neighbor field. Using our exact nearest patch
search, the editing results do not depend on a good
initialization. As illustrated in Fig. 13, when using the same
initialization of the nearest patch field, our method generates
more convincing result compared with the randomized
correspondence method [12].

The video summarization can be done by computing the
bidirectional similarity between the source video and target
video [8]. Instead of the 2D patch used in image summar-
ization, in the video case, we use 3D space-time patch. In
Fig. 13, the video summarization results using our fast
nearest 3D patch search are given. It only takes our method
about 2.5 minutes on GPU for one complete nearest patch
search in this example.

7 LIMITATIONS

Our fast nearest patch search highly depends on the
overlapping patches of the continuous input data (image
and video) to eliminate the redundant computations.
However, when there is no sequential overlap between
the neighborhoods of the input data, our method cannot
work efficiently. Furthermore, for some applications, like
texture synthesis, which do not require the exact patch
matching, the approximate method such as ANN [10] may
achieve faster results by incorporating PCA techniques.
Although our method for video is significantly faster, to
process extremely large and long video sequence with a
large patch size, the efficiency of our method has to be
further improved for the interactive video processing and
editing. However, with the rapid development of the
graphics hardware, such an acceleration could be achieved
in the near future.

8 CONCLUSION

In this paper, we proposed a novel fast exact nearest patch
matching method for image processing and editing. In

contrast to most widely used algorithms, our method does
not require the reconstruction of any hierarchical data
structure. The key idea is to eliminate the redundant
matching computations of the adjacent overlapped patches,
which results in a constant complexity for the patch
similarity matching. Furthermore, we present the GPU-
accelerated version of the proposed method, which further
improves the performance by at least an order of
magnitude. To our knowledge, our algorithm is the most
efficient exact approach for the nearest patch matching
among the existing methods. In addition, its memory
requirement is minimal. We applied our nearest exact
patch matching method in several practical image/video
applications and all the experimental results are very
convincing and promising.
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