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Abstract. We consider asynchronous networks of finite-state systems commu-
nicating via a combination of reliable and lossy fifo channels. Depending onthe
topology, the reachability problem for such networks may be decidable. We pro-
vide a complete classification of network topologies according to whether they
lead to a decidable reachability problem. Furthermore, this classification can be
decided in polynomial-time.

1 Introduction

Fifo channels. Channel systems, aka “communicating finite-state machines”, are a
classical model for protocols where components communicate asynchronously via fifo
channels [BZ83]. When the fifo channels are unbounded, the model is Turing-powerful
since channels can easily be used to simulate the tape of a Turing machine.

It came as quite a surprise when Abdulla and Jonsson [AJ96,ACBJ04], and indepen-
dently Finkelet al. [Fin94], showed thatlossychannel systems (LCS’s), i.e., channel
systems where one assumes that the channels are unreliable so that messages can be
lost nondeterministically, are amenable to algorithmic verification (see also [Pac87]).
The model has since been extended in several directions: message losses obeying prob-
ability laws [Sch04,ABPJ05,ABRS05,BBS07], channels withother kinds of unreliabil-
ity [CFP96,BMO+08], etc.

How this unreliability leads to decidability is paradoxical, and hard to explain in
high-level, non-technical terms. It certainly does not make the model trivial: we re-
cently proved that LCS verification is exactly at levelFωω in the Extended Grzegorczyk
Hierarchy, hence it is not primitive-recursive, or even multiply-recursive [CS08b].

An ubiquitous model.In recent years, lossy channels have shown up in unexpected
places. They have been used in reductions showing hardness (or less frequently decid-
ability) for apparently unrelated problems in modal logics[Kur06], in temporal log-
ics [OW07], in timed automata [LW08], in data-extended models[JL07], etc. More and
more, LCS’s appear to be a pivotal model whose range goes far beyond asynchronous
protocols.

Fueling this line of investigation, we recently discoveredthat the “Regular Post
Embedding Problem”, a new decidable variant of Post’s Correspondence Problem, is
equivalent (in a non-trivial way) to LCS reachability [CS07,CS08a]. This discovery
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was an unexpected outcome of our study ofunidirectional channel systems (UCS),
where a Sender can send messages to a Receiver via two fifo channels, one reliable and
one lossy, but where there is no communication in the other direction (seeTd

2 in Fig. 1
below). As far as we know, this simple arrangement had never been studied before.

Our contribution. This paper considers the general case ofmixedchannel systems,
where some channels are reliable and some are lossy. These systems can be Turing-
powerful (one process using one reliable fifo buffer is enough) but not all network
topologies allow this (e.g., systems with only lossy channels, or systems where com-
munication is arranged in a tree pattern with no feedback, orUCS’s as above). We pro-
vide a complete classification of network topologies according to whether they lead to
undecidable reachability problems, or not. This relies on original and non-trivial trans-
formation techniques for reducing large topologies to smaller ones while preserving
decidability.

This is a fundamental study, aiming at understanding the fifochannel model in pres-
ence of message losses. A long-term goal would be to convergetowards a uniform treat-
ment and understanding of the various decidable families ofchannel systems, including
half-duplex systems [CF05], linear and monogeneous systems [JJ93], etc.

Beyond providing a complete classification, the present contribution has several
interesting outcomes. First, we discovered new decidable arrangements of channel sys-
tems, as well as new undecidable ones, and these new results are often surprising. They
enlarge the existing toolkit currently used when transferring results from channel sys-
tems to other areas, according to the “ubiquitous model” slogan. Secondly, the transfor-
mation techniques we develop may eventually prove useful for reducing/delaying the
combinatorial explosion one faces when verifying asynchronous protocols.

Outline of the paper.We describemixed channel systemsand their topologies in Sec-
tion 2 and provide in Section 3 a few original results classifying the basic topologies to
which we reduce larger networks. Section 4 shows that “fusing essential channels” pre-
serves decidability. An additional “splitting” techniqueis described in Section 5. After
these three sections, we have enough technical tools at handto describe our main result,
the complete classification method, and prove its correctness in Sections 6 and 7. Proofs
omitted in the main text are given in the technical appendix.

2 Systems with reliable and lossy channels

We classify channel systems according to theirnetwork topology, which is a graph
describing who are the participant processes and what channels they are connected to.

2.1 Network topologies

Formally, anetwork topology, or shortly atopology, is a tupleT = 〈N,R,L,s,d〉 where
N, R andL are three mutually disjoint finite sets of, respectively,nodes, reliable chan-

nels, and lossy channels, and where, writingC
def
= R∪ L for the set of channels,s,d :
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C → N are two mappings that associate asourceand adestinationnode to each chan-
nel. We do not distinguish between isomorphic topologies since N, R and L simply
contain “names” for nodes and channels: these are irrelevant here and only the directed
graph structure with two types of edges matters.

Graphical examples of simple topologies will be found below: we use dashed arrows
to single out the lossy channels (reliable channels are depicted with full arrows).

2.2 Mixed channel systems and their operational semantics

AssumeT = 〈N,R,L,s,d〉 is a topology withn nodes, i.e., withN = {P1,P2, ...,Pn}.
Write C = R∪L for the set of channels. Amixed channel system(MCS) having topol-
ogy T is a tupleS= 〈T,M,Q1,∆1, ...,Qn,∆n〉 whereM = {a,b, ...} is a finitemessage
alphabetand where, fori = 1, ...,n, Qi is the finite set of (control) states of a process
(also denotedPi) that will be located at nodePi ∈ N, and∆i is the finite set oftransition
rules, or shortly “rules”, governing the behaviour ofPi . A rule δ ∈ ∆i is either awrit-

ing rule of the form(q,c, !,a,q′), usually denoted “q
c!a
−→q′”, with q,q′ ∈ Qi , s(c) = Pi

anda ∈ M, or it is areading rule(q,c,?,a,q′), usually denoted “q
c?a
−→q′”, with this time

d(c) = Pi . Hence the way a topologyT is respected by a channel system is via restric-
tions upon the set of channels to which a given participant may read from, or write
to.

Our terminology “mixedchannel system” is meant to emphasize the fact that we
allow systems where lossy channels coexist with reliable channels.

The behaviour of someS= 〈T,M,Q1,∆1, ...,Qn,∆n〉 is given under the form of a
transition system. AssumeC = {c1, ...,ck} containsk channels. A configuration ofS is
a tupleσ = 〈q1, ...,qn,ui , ...,uk〉 where, fori = 1, ...,n, qi ∈ Qi is the current state ofPi ,
and where, fori = 1, ...,k, ui ∈ M∗ is the current contents of channelci .

Assumeσ = 〈q1, ...,qn,ui , ...,uk〉 andσ′ = 〈q′1, ...,q
′
n,u

′
i , ...,u

′
k〉 are two configura-

tions of some systemSas above, andδ ∈ ∆i is a rule of participantPi . Thenδ witnesses

a transition betweenσ andσ′, also called astep, and denotedσ δ
−→σ′, if and only if

– the control states agree with, and are modified according toδ, i.e.,qi = q, q′i = q′,
q j = q′j for all j 6= i;

– the channel contents agree with, and are modified according to δ, i.e., either
• δ = (q,cl ,?,a,q′) is a reading rule, andul = a.u′l , or
• δ = (q,cl , !,a,q′) is a writing rule, andu′l = ul .a, or cl ∈ L is a lossy channel

andu′l = ul ;
in both cases, the other channels are untouched:u′j = u j for all j 6= l .

Such a step is called “a step by Pi” and we say that itseffect is “readinga on c”, or
“writing a to c”, or “losing a”. A run (from σ0 to σp) is a sequence of steps of the form

r = σ0
δ1−→σ1

δ2−→σ2 · · ·
δp
−→σp, sometimes shortly writtenσ0

∗
−→σp. A run is perfectif none

of its steps loses a message.

Remark 2.1.With this operational semantics for lossy channels, messages can only be
lost when a rule writes them to a channel. Once inside the channels, messages can
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only be removed by reading rules. This definition is called the write-lossysemantics
for lossy channels: it differs from the more classical definition where messages in lossy
channels can be lost at any time. We use it because it is the most convenient one for our
current concerns, and because this choice does not impact the reachability questions we
consider (see [CS08b, Appendix A] for a formal comparison). ⊓⊔

2.3 The reachability problem for network topologies

Thereachability problemfor mixed channel systems asks, for a givenSand two config-
urationsσinit = 〈q1, . . . ,qn,ε, . . . ,ε〉 andσfinal = 〈q′1, . . . ,q

′
n,ε, . . . ,ε〉 in which the chan-

nels are empty, whetherS has a run fromσinit to σfinal. That we restrict reachability
questions to configurations with empty channels (ε denotes the empty word inM∗) is
technically convenient, but it is no real loss of generality.

Thereachability problemfor a topologyT is the restriction of the reachability prob-
lem to mixed systems having topologyT. Hence if reachability is decidable forT, it
is decidable for all MCS’s having topologyT. If reachability is not decidable forT, it
may be decidable or not for MCS’s having topologyT (but it must be undecidable for
one of them). Clearly, ifT ′ is a subgraph ofT and reachability is decidable forT, then
it is for T ′ too.

Tring
1

P1

P2

P3

P4

P5

P6

c1

c3 c4

c5

c6

c2 (lossy)

Our goal is to determine for which topologies reach-
ability is decidable. Let us illustrate the question and
outline some of our results.Tring

1 is a topology describ-
ing a directed ring of processes, where each participant
sends to its right-hand neighbour, and receives from its
left-hand neighbour. A folk claim is that such cyclic net-
works have decidable reachability as soon as one chan-
nel is lossy (as here withc2). The proof ideas behind
this claim have not been formally published and they
do not easily adapt to related questions like “what about
Tring

2 ?”, where a lossy channel in the other direction is
added, or aboutTring

3 where more channels are lossy in the ring.

Tring
2

P1

P2

P3

P4

P5

P6

c1

c3 c4

c5

c6

c2 (lossy)
c′2 (lossy)

Tring
3

P1

P2

P3

P4

P5

P6

c1

c3 c4

c6

c2 (lossy)
c′2 (lossy) c5 (lossy)

Our techniques answer all three questions uniformly. One ofour results states that
all channels along the pathc3 to c4 to c5 to c6 to c1 can be fused into a single channel
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going fromP3 to P2 without affecting the decidability of reachability. The transforma-
tions are modular (we fuse one channel at a time). Depending on the starting topology,
we end up with different two-node topologies, from which we deduce thatTring

1 and
Tring

3 have decidable reachability, whileTring
2 does not (see Corollary 4.6 below).

3 Reachability for basic topologies

This section is concerned with the basic topologies to whichwe will later reduce all
larger cases.

Theorem 3.1 (Basic topologies).Reachability is decidable for the network topologies
Td

1 and Td
2 (see Fig. 1). It is not decidable for the topologies Tu

1 , Tu
2 , Tu

3 , Tu
4 , Tu

5 , and
Tu

6 (see Fig. 2).

We start with the decidable cases:

P1Td
1 : c1 (lossy)

P1 P2Td
2 :

c1 (reliable)

c2 (lossy)

Fig. 1.Basic decidable topologies

That Td
1 , and more generally all topolo-

gies with only lossy channels (aka LCS’s),
leads to decidable problems is the classic result
from [AJ96].

RegardingTd
2 , we recently proved it has

decidable reachability in [CS07], whereTd
2 -

systems are called “unidirectional channel sys-
tems”, or UCS’s. Our reason for investigating
UCS’s was indeed that this appeared as a necessary preparation for the classification
of mixed topologies. Showing thatTd

2 has decidable reachability is quite involved, go-
ing through the introduction of the “Regular Post EmbeddingProblem”. In addition,
[CS07,CS08a] exhibit non-trivial reductions between reachability for UCS’s and reach-
ability for LCS’s: the two problems are equivalent.

Now to the undecidable cases:

P1Tu
1 :

c1 (reliable)
P1 P2Tu

2 :
c1 (reliable)

c2 (reliable)
P1 P2Tu

3 :
c1 (reliable)

c2 (lossy)
c3 (lossy)

P1 P2Tu
4 :

c1 (reliable)

c2 (lossy)
c3 (lossy)

P1 P2Tu
5 :

c1 (reliable)

c2 (lossy)

c3 (lossy)

P1 P2Tu
6 :

c1 (reliable)

c2 (lossy)

c3 (lossy)

Fig. 2. Basic topologies with undecidable reachability

It is well-known thatTu
1 may lead to undecidable problems [BZ83], and this is

also known, though less well, forTu
2 (restated, e.g., as the non-emptiness problem for

the intersection of two rational transductions). The otherfour results mix lossy and
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reliable channels and are new. We actually prove all six cases in a uniform framework,
by reduction from Post’s Correspondence Problem, akaPCP, or its directed variant,
PCPdir.

Recall that an instance ofPCP is a familyx1,y1,x2,y2, . . . ,xn,yn of 2n words over
some alphabet. The question is whether there is a non-empty sequence (asolution)
i1, . . . , ik of indexes such thatxi1xi2 . . .xik = yi1yi2 . . .yik. PCPdir asks whether there is a
directedsolutioni1, . . . , ik, i.e., a solution such that, in addition,yi1yi2 . . .yih is a prefix of
xi1xi2 . . .xih for all h = 1, . . . ,k. It is well-known thatPCP andPCPdir are undecidable,
and more preciselyΣ1

0-complete.

ReducingPCP to Tu
2 -networks. With a PCP instance(xi ,yi)i=1,...,n, we associate a

processP1 having a single statep1 andn loops1 p1
c1!xi c2!yi−−−−−→p1, one for each indexi =

1, ...,n. ProcessP1 guesses a solutioni1i2i3 . . . and sends the concatenationsxi1xi2xi3 . . .
andyi1yi2yi3 . . . on, respectively,c1 andc2. ProcessP2 checks that the two channelsc1

andc2 have the same contents, using reading loopsp2
c1?a c2?a
−−−−−→p2, one for each symbol

a,b, . . . in the alphabet. An extra control state, for examplep′1 with rulesp′1
c1!xi c2!yi−−−−−→p1,

is required to check thatP1 picks a non-empty solution. Then, in the resultingTu
2 -

network,〈p′1, p2,ε,ε〉
∗
−→〈p1, p2,ε,ε〉 if and only if thePCP instance has a solution.

ReducingPCP to Tu
3 -networks. For Tu

3 , the same idea is adapted to a situation with

three channels, two of which are lossy. HereP1 has rulesp1
c2!xi c3!yi c1!1|xi yi |

−−−−−−−−−−→p1. Thus
P1 sendsxi andyi on lossy channels and simultaneously sends the number of letters in
unary (1 is a special tally symbol) onc1, the perfect channel.P2 matches these with

reading loops of the formp2
c1?11 c2?a c3?a
−−−−−−−−→p2 for each lettera. If P2 can consume all1’s

out of c1, this means that no message has been lost on the lossy channels, and thenP2

really witnessed a solution thePCP instance.

ReducingPCPdir to Tu
1 -networks. For Tu

1 , we consider the directedPCPdir. P1 hasn

loopsp1
c1!xi c1?yi−−−−−→p1 where the guessing and the matching is done by a single process.

Since at any steph = 1, ...,k the concatenationxi1xi2...xih is (partly) consumed while
matching foryi1yi2...yih, only directed solutions will be accepted.

ReducingPCPdir to Tu
5 -networks. For Tu

5 too, we start fromPCPdir and use a variant
of the previous counting mechanism to detect whether some messages have been lost.

P1 has rules of the formp1
c3!1|xi | c1!xi c3?1|yi | c2!yi−−−−−−−−−−−−−−→p1, i.e., it sendsxi on c1 (the reliable

channel) andyi onc2 (unreliable) whileP2 checks the match with loopsp2
c1?a c2?a
−−−−−→p2. In

addition,P1 also maintains inc3 a count of the number of symbols written toc1 minus

1 Transition rules like “p1
c1!xi c2!yi
−−−−−→p1” above, where several reads and writes are combined in

a same rule, and where one writes or reads words rather than just one message at a time,
are standard short-hand notations for sequences of rules using intermediary states that are left
implicit. We avoid using this notation in situations where the specific ordering of the combined
actions is important as, e.g., in (∗) below.
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the number of symbols written toc2, or #h
def
= |xi1 . . .xih| − |yi1 . . .yih|. The counting

scheme forbids partial sequencesyi1 . . .yih that would be longer than the corresponding
xi1 . . .xih, but this is right since we look for directed solutions. If tally symbols onc3 are
lost, or if part of theyi ’s on c2 are lost, then it will never be possible forP2 to consume
all messages fromc1. Finally a run from〈p′1, p2,ε,ε,ε〉 to 〈p1, p2,ε,ε,ε〉 must be perfect
and witness a directed solution.

ReducingPCPdir to Tu
6 -networks. For Tu

6 , we adapt the same idea, this time having

P2 monitoring the count #h on c3. P1 has loopsp1
c1!xi1

|yi | c2!yi1
|xi |

−−−−−−−−−→p1 where a guessed
solution is sent onc1 andc2 with interspersed tally symbols. The guessed solution is

checked with the usual loopsp2
c1?a c2?a
−−−−−→p2. The1’s on c2 are stored toc3 and matched

(later) with the1’s on c1 via two loops:p2
c2?1 c3!1
−−−−−→p2 and p2

c3?1 c1?1
−−−−−→p2. In a perfect

run, there are always as many messages onc1 as there are onc2 andc3 together, and
strictly more if a message is lost. Hence a run from〈p′1, p2,ε,ε,ε〉 to 〈p1, p2,ε,ε,ε〉
must be perfect and witness a solution. Only direct solutions can be accepted since the
tally symbols inc3 count #h that cannot be negative.

ReducingPCPdir to Tu
4 -networks. For Tu

4 , we further adapt the idea, again with the
count #h stored onc3 but now sent fromP2 to P1. The loops inP1 now are

p1
c1!xi c2!yi1

|xi |

−−−−−−−→qi
c3?1|yi |

−−−→p1. (∗)

The1’s onc2 are sent back viac3 to be matched later byP1, thanks to a loopp2
c2?1 c3!1
−−−−−→p2.

Again a message loss will leave strictly more messages inc1 than inc2 andc3 together,
and cannot be recovered from. Only direct solutions can be accepted since the tally
symbols inc3 count #h.

4 Fusion for essential channels

Sections 4 and 5 develop techniques for “simplifying” topologies while preserving the
decidability status of reachability problems. We start with a reduction called “fusion”.

Let T = 〈N,R,L,s,d〉 be a network topology. For any channelc∈C, T −c denotes
the topology obtained fromT by deletingc. For any two distinct nodesP1,P2 ∈ N,
T[P1 = P2] denotes the topology obtained fromT by mergingP1 andP2 in the obvious
way: channel extremities are redirected accordingly.

Clearly, any MCS with topologyT−c can be seen as having topologyT. ThusT−c
has decidable reachability whenT has, but the converse is not true in general.

Similarly, any MCS having topologyT can be transformed into an equivalent MCS
having topologyT[P1 = P2] (using the asynchronous product of two control automata).
ThusT has decidable reachability whenT[P1 = P2] has, but the converse is not true in
general.
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For any channelc such thats(c) 6= d(c), we letT/c denoteT[s(c) = d(c)]−c and
say thatT/c is “obtained from T by contracting c”. HenceT/c is obtained by merging
c’s source and destination, and then removingc.

SinceT/c is obtained via a combination of merging and channel removal, there is,
in general, no connection between the decidability of reachability for T and forT/c.
However, there is a strong connection for so-called “essential” channels, as stated in
Theorem 4.5 below.

Before we can get to that point, we need to explain what are essential channels and
how they can be used.

4.1 Essential channels are existentially1-bounded

In this section, we assume a given MCSS= 〈T,M,Q1,∆1, . . .〉 with T = 〈N,R,L,s,d〉.

Definition 4.1. A channel c∈C is essentialif s(c) 6= d(c) and all directed paths from
s(c) to d(c) in T go through c.

In other words, removingc modifies the connectivity of the directed graph underlying
T.

The crucial feature of an essential channelc is that causality between the actions
of s(c) and the actions ofd(c) is constrained. As a consequence, it is always possible
to reorder the actions in a run so that reading fromc occurs immediately after the
corresponding writing toc. As a consequence, bounding the number of messages that
can be stored inc does not really restrict the system behaviour.

Formally, forb∈ N, we say a channelc is b-bounded along a runπ = σ0
δ1−→ . . .

δn−→σn

if |σi(c)| ≤ b for i = 0, . . . ,n. We sayc is synchronousin π if it is 1-bounded and at least
one ofσi(c) andσi+1(c) is ε for all 0≤ i < n. Hence a synchronous channel only stores
at most one message at a time, and the message is read immediately after it has been
written toc.

Proposition 4.2. If c is essential andπ = σ0
δ1−→ . . .

δn−→σn is a run withσ0(c) = σn(c) = ε,
then S has a runπ′ from σ0 to σn in which c is synchronous.

This notion is similar to the existentially-bounded systems of [LM04] but is applies to
a single channel, not to the whole system.

We prove Proposition 4.2 using techniques and concepts fromtrue concurrency

theory and message flow graphs (see, e.g., [HMK+05]). With a runπ = σ0
δ1−→ . . .

δn−→σn as
above, we associate a setE = {1, . . . ,n} of n events, that can be thought of the actions
performed by then steps ofπ: firing a transition and reading or writing or losing a
message. Observe that different occurrences of a same transition with same effect are
two different events. We simply identify the events with indexes from 1 ton. We write
e,e′, . . . to denote events, and also use the lettersr andw for reading and writing events.

Any e∈E is an event of some processN(e)∈N and we writeE =
S

P∈N EP the cor-
responding partition. There exist several (standard) causality relations between events.
For every processP∈ N, the events ofP are linearly ordered by<P: i <P j iff i, j ∈ EP

andi < j. For every channelc∈C, the events that write to or read fromc are related by
<c with i <c j iff i is an event that writes somem to c, and j is the event that reads that
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(occurrence of)m. (Here, events that lose messages are considered as internal actions
where no channel is involved.) We let≺ (and4) denote the transitive (resp. reflexive-
transitive) closure of

S

P∈N <P ∪
S

c∈C <c. (E,4) is then a poset, and4 is called the
visualorder (also causality order, or dependency order) in the literature. Fore∈ E, we
let ↓ edenote the past ofe, i.e., the set{e′ ∈ E | e′ 4 e}.

It is well-known that any linear extensione1, . . . ,en of (E,4) is causally consistent
and can be transformed into a runπ′ = σ0

e1−→
e2−→·· · starting fromσ0. This run ends in

σn like π, though it may go through different intermediary configurations. All the runs
obtained by considering different linear extensions are causally equivalent toπ, denoted
π ≈ π′, and they all give rise to the same poset(E,4).

We now state properties enjoyed by(E,4) in our context that are useful for prov-
ing Proposition 4.2. First, observe that, since the channels are fifo, and since only one
process, namelyd(c) (resp.s(c)), is allowed to read from (resp. write to) a channelc:

(w1 <c r1 andw2 <c r2) imply (w1 <s(c) w2 iff r1 <d(c) r2). (†)

(†) is sometimes taken as a definition of fifo communication.
Another important observation is the following: assumee4 e′. Then, and since4

is defined as a reflexive-transitive closure, there must be a chain of the form

θ : e= e0 ≤P0 e′0 <c1 e1 ≤P1 e′1 <c2 . . . <cl el ≤Pl e′l = e′

where, for 1≤ i ≤ l , s(ci) = Pi−1 andd(ci) = Pi . HenceT has a pathc1, . . . ,cl going
from P0 to Pl .

Lemma 4.3. If e1 ≺ e2 ≺ e3 and c is essential, then e1 6<c e3.

Proof. By contradiction. Assumee1 ≺ e2 ≺ e3 ande1 <c e3 for an essentialc. Since all
paths fromP = N(e1) = s(c) to P′ = N(e3) = d(c) go throughc (by essentiality), there
must exist a pairw, r ∈ E with e1 4 w <c r 4 e2 or, symmetrically,e2 4 w <c r 4 e3,
depending on whether thew <c r pair occurs before or aftere2 in the chain frome1

to e2 to e3. If e1 4 w <c r 4 e2 ≺ e3, thenr <P′ e3, hencew <P e1 using (†). Ife1 ≺
e2 4 w <c r 4 e3, thene1 <P w, hencee3 <P′ r using (†). In both cases we obtain a
contradiction. ⊓⊔

We now assume thatc is essential and thatπ hasσ0(c) = σn(c) = ε (henceE has
the same number, saym, of events reading fromc and writing to it). WriteP for s(c)
andP′ for d(c). Let w1 <P w2 . . . <P wm be themevents that write toc, listed in causal
order. Letr1 <P′ e2 . . . <P′ rm be them events that read fromc listed in causal order.

Lemma 4.4. There exists a linear extension of(E,4) where, for i= 1, . . . ,m, wi occurs
just before ri .

Proof. The linear extension is constructed incrementally. Formally, for i = 1, . . . ,m, let

Ei
def
=↓ r i andFi

def
= Ei r {wi , r i}. Observe thatF1 ( E1 ⊆ F2 · · ·Fi ( Ei ⊆ Fi+1, with the

convention thatFm+1 = E. EveryEi is a4-closed subset ofE, also called a down-cut
of (E,4). Furthermore,Fi is a down-cut ofEi by Lemma 4.3. Hence a linear extension
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of Fi followed by wi .r i gives a linear extension ofEi , and following it with a linear
extension ofFi+1rEi gives a linear extension ofFi+1. Any linear extension ofFi+1rEi

can be chosen since this subset does not contain reads from, or writes to,c. ⊓⊔

The linear extension we just built gives rise to a runπ′ in which c is synchronous. This
concludes the proof of Proposition 4.2.

Observe that when several channels are essential inT, it is in general not possible
to replace a runπ with an equivalentπ′ where all essential channels are simultaneously
synchronous.

4.2 Decidability by fusion

We call “fusion” the transformation ofT to T/c wherec is essential, and “reliable
fusion” the special case wherec is also a reliable channel.

Theorem 4.5 (Decidability by fusion).Let c be an essential channel in T :
1. T has decidable reachability if T/c has.
2. If c is a reliable channel, then T/c has decidable reachability if T has.

Proof. 1. Let S be aT-MCS. We replace it by a systemS′ wherec has been removed
and where the processes at nodesP1 = s(c) andP2 = d(c) have been replaced by a larger
process that simulate bothP1 andP2 and where communication alongc is replaced by
synchronizing the sends inP1 with the reads inP2 (message losses are simulated even
more simply by theP1 part). S′ has topologyT/c and simulatesS restricted to runs
where c is synchronous. By Proposition 4.2, this is sufficient to reach any reachable
configuration. Since reachability inS′ is decidable, we conclude that reachability inS
is decidable.

2. We now also assume thatc is reliable and consider a(T/c)-MCS S. With S we
associate aT-MCS S′ that simulatesS. S′ has two nodesP1 andP2 whereSonly had a
mergedP node.

P

c1

c2

c3

c4

∆P =































p1
c1?a1−−→p′1

p2
c2!a2−−→p′2

p3
c3?a3−−→p′3

p4
c4!a4−−→p′4
· · ·































⇒

P1 P2
c

c1

c2

c3

c4

∆P1 =



































p1
c1?a1−−→p′1

p2
c2!a2−−→p′2

p3
c!〈c3,?,a3〉
−−−−−→p′3

p4
c!〈c4,!,a4〉
−−−−−→p′4

· · ·



































∆P2 =











∗
c?〈c3,?,a3〉 c3?a3
−−−−−−−−−→∗

∗
c?〈c4,?,a4〉 c4?a4
−−−−−−−−−→∗

·· ·











Fig. 3.Associating aT-MCS with aT/c-MCS
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The construction is illustrated in Fig. 3. Informally,P1 inherits states fromP and
all rules that read from channelsc1 with d(c1) = P1 in T, or write to channelsc2 with
s(c2) = P1. Regarding the other rules, the communication action (reading from somec3

or writing to somec4) is sent toP2 via c. S′ uses an extended alphabetM′ that extends

the message alphabetM from Svia M′ def
= M∪(C×{?, !}×M). P2 only has simple loops

around a central state∗ that read communication instructions fromP1 via c and carry
them out.

S′ simulatesS in a strong way. Any step inScan be simulated inS′, perhaps by two
consecutive steps if a communication operation has to transit from P1 to P2 via c. In the
other direction, there are some runs inS′ that cannot be simulated directly byS, e.g.,
whenP2 does not carry out the instructions sent byP1 (or carries them out with a delay).
But all runs inS′ in whichc is synchronous are simulated byS.

Since runs in whichc is synchronous are sufficient to reach any configuration reach-
able inS′ (Proposition 4.2), the two-way simulation reduces reachability in S to reach-
ability in S′, which is decidable ifT has decidable reachability. ⊓⊔

The usefulness of Theorem 4.5 is illustrated by the following two corollaries.

Corollary 4.6. Tring
1 and Tring

3 (from Section 2.1) have decidable reachability. Tring
2

does not.

Proof. Building Tring
1 /c3/c4/c5/c6/c1 only fuses essential channels and ends up with

a decidable topology (only lossy channels).
Starting withTring

2 , we can buildT = Tring
2 /c3/c4/c5/c6 but have to stop there (c1 is

not essential). The resultingT, isomorphic toTu
4 from Fig. 2, does not have decidable

reachability. HenceTring
2 does not have decidable reachability since we fused reliable

channels only.
With Tring

3 , it is better to buildTring
3 /c3/c4/c6/c1. Here too we cannot fuse any more

because ofc′2, but the end result is a topology with decidable reachability sincec5 is
lossy. HenceTring

3 has decidable reachability. ⊓⊔

Corollary 4.7. A topology in the form of an undirected forest has decidable reachabil-
ity.

Proof (Sketch).If T is a forest, every channelc is essential, and everyT/c is still a
forest. HenceT reduces to a topology with lossy channels only. ⊓⊔

5 Splitting along lossy channels

P1 P2
c1 (reliable)

c2 (lossy)
P3 P4

c3 (reliable)

c4 (lossy)

P5 P6
c5 (reliable)

c6 (lossy)

c7 (lossy)

c8 (lossy)

c9 (lossy)

Fig. 4.A topology that splits in three

Let T1 = 〈N1,R1,L1,s1,d1〉 and
T2 = 〈N2,R2,L2,s2,d2〉 be two dis-
joint topologies. We say thatT =
〈N,R,L,s,d〉 is a (lossy) gluing of
T1 on T2 if T is a juxtaposition
of T1 andT2 (henceN = N1∪N2)
with an additional setL3 of lossy
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channels (henceR = R1 ∪R2 and
L = L1∪L2∪L3) connecting from
T1 to T2 in a unidirectional way:s(L3) ⊆ N1 andd(L3) ⊆ N2.

This situation is written informally “T = T1 ⊲ T2”, omitting details onL3 and its
connections. In practice this notion is used to split a largeT into subparts rather than
build larger topologies out ofT1 andT2.

Theorem 5.1 (Decidability by splitting).Reachability is decidable for T1⊲T2 if, and
only if, it is for both T1 and T2.

The proof of Theorem 5.1 (see Appendix A) uses techniques that are standard for
LCS’s but that have to be adapted to the more general setting of MCS’s.

We can apply Theorem 5.1 to prove that the topology in Fig. 4 has decidable reach-
ability. Indeed, this topology can be split along lossy channels (first{c8,c9}, thenc7),
giving rise to two copies ofTd

2 (from Fig. 1) and a two-node ring that can be reduced to
Td

1 by fusion.

6 A complete classification

In this section, we prove that the results from the previous sections provide a complete
classification.

Theorem 6.1 (Completeness).A network topology T has decidable reachability if,
and only if, it can be reduced to Td2 (from Fig. 1) and LCS’s using fusion and splitting
only.2

Note that, via splitting, the reduction above usually transforms T into severaltopolo-
gies. All of them must beTd

2 or LCS’s forT to have decidable reachability.
The “⇐” direction is immediate in view of Theorems 4.5.1 and 5.1,
For the “⇒” direction, we can assume w.l.o.g. thatT is reduced, i.e., it cannot be

split as someT1 ⊲T2, and it does not contain any reliable essential channel (that could
be fused).

We now assume, by way of contradiction, thatT cannot be transformed, via general
fusions, toTd

2 or to a LCS. From this we show that reachability is not decidable for
T. When showing this, we sometimes mention three additional transformations (“sim-
plification”, “doubling of loops” and “non-essential fusion”) that are described in Ap-
pendix B. We now start an involved case analysis.

1. SinceT cannot be transformed to a LCS, it contains a reliable channel cr , linking
nodeA = s(cr) to nodeB = d(cr). We can assumeA 6= B, otherwiseT containsTu

1
(from Fig. 2) and we conclude immediately with undecidability.

2. T must contain a pathθ of the formA = P0,c1,P1,c2, . . . ,cn,Pn = B that links
A to B without usingcr , otherwisecr would be essential, contradicting the assumption
thatT is reduced. We pick the shortest suchθ (it is a simple path) and we callT ′ the
subgraph ofT that only containsθ, cr , and the nodes to which they connect.

2 As is well-known, it is possible to further reduce any LCS intoTd
1 . However, we preferred a

statement for Theorem 6.1 where only our two main transformations areinvolved.
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3. If all ci ’s alongθ are reliable,T ′ can be transformed toTu
2 (from Fig. 2) by reliable

fusions, henceT ′, and thenT itself, have undecidable reachability. Therefore we can
assume that at least oneci alongθ is lossy.

4. Assume that there exist two nodesPi ,Pj alongθ that are connected via a third path
θ′ disjoint fromcr andθ. We put no restrictions on the relative positions ofPi andPj but
we assume thatθ′ is not a trivial empty path ifi = j. In that case, letT ′′ be the subgraph
of T that containscr , θ, andθ′, and where all channels exceptcr are downgraded to
lossy if they were reliable. Using simplification and doubling of lossy loops,T ′′ can
be transformed to an undecidable topology among{Tu

3 ,Tu
4 ,Tu

5 ,Tu
6 }. HenceT ′′ does

not have decidable reachability. Neither hasT since taking subgraphs and downgrading
channels can only improve decidability.

5. If we are not in case 4, the nodes alongθ do not admit a third path likeθ′.
Therefore all channels alongθ must be lossy, since we assumedT is reduced. ThusT ′

can be transformed toTd
2 by general fusion. Since we assumedT cannot be transformed

to Td
2 , T must contain extra nodes or channels beyond those ofT ′. In particular, this

must include extra nodes since we just assumed thatT has no third pathθ′ between
theT ′ nodes. Furthermore these extra nodes must be connected to theT ′ part otherwise
splittingT would be possible. There are now several cases.

6. We first consider the case of an extra nodeC with a reliable channelc from C to
T ′. SinceT is reduced,c is not essential and there must be a second pathθ′ from C to
T ′. Call T ′′ the subgraph ofT that only containsT ′, C, c andθ′. Applying non-essential
fusion onc, θ′ becomes a path between somePi ,Pj and we are back to case 4. Hence
undecidability.

7. Next is the case of an extra nodeC with a reliable channelc from T ′ toC. Again,
sincec is not essential, there must be a second pathθ′ from T ′ toC. Again, the induced
subgraphT ′′ can be shown undecidable as in case 6, reducing to case 4.

8. If there is no extra node linked toT ′ via a reliablec, the extra nodes must be
linked to T ′ via lossy channels. Now the connection must go both ways, otherwise
splitting would be possible. The simplest case is an extra nodeC with a lossyc from C
to T ′ and a lossyc′ from T ′ to C. But this would have been covered in case 4.

9. Finally there must be at least two extra nodesC andC′, with a lossy channelc
from C to T ′ and a lossyc′ from T ′ to C′. We can assume that all paths betweenT ′

andC,C′ go throughc andc′, otherwise we would be in one of the cases we already
considered. FurthermoreC andC′ must be connected otherwiseT could be split. There
are several possibilities here.

10. If there is a path fromC′ to C we are back to case 4. Hence undecidability.

11. Thus all paths connectingC andC′ go fromC to C′. If one such path is made of
reliable channels only, reliable fusion can be applied on the induced subgraph, merging
C andC′ and leading to case 8 where undecidability has been shown. Ifthey all contain
one lossy channel,T can be split, contradicting our assumption. that it is reduced.

We have now covered all possibilities whenT is reduced but cannot be transformed
to a LCS or toTd

2 . In all cases is has been shown that reachability is not decidable for
T. This concludes the proof of Theorem 6.1.
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7 A classification algorithm

Theorem 7.1 (Polynomial-time classification).There exists a polynomial-time algo-
rithm that classifies topologies according to whether they have decidable reachability.

The algorithm relies on Theorem 6.1:

Stage 1: Starting from a topologyT, apply splitting andreliable fusion as much as
possible. When several transformations are possible, pick any of them nondeter-
ministically. At any step, the transformation reduces the size of the topologies at
hand, hence termination is guaranteed in a linear number of steps. At this stage
we preserved decidability in both directions, henceT has decidability iff all the
reduced topologiesT1, . . . ,Tn have.

Stage 2: EachTi is now simplified using general fusion (not just reliable fusion). If
this ends with a LCS or withTd

2 , decidability forTi has been proved. When fusion
can be applied in several ways, we pick one nondeterministically: a consequence of
Theorem 6.1’s proof is that these choices lead to the same conclusion when starting
from a system that cannot be reduced with splitting or reliable fusion. Thus stage 2
terminates in a linear number of steps. When it terminates, either everyTi has been
transformed into a LCS orTd

2 , and we conclude that reachability is decidable forT,
or oneTi remains unsimplified and we conclude that reachability is not decidable
for T.

We observe that when stage 1 finishes, there will never be any new opportunity for
reliable fusion or for splitting since stage 2, i.e., general fusion, does not create or
destroy any path between nodes.

8 Concluding remarks

Summary.We introducedmixed channel systems, i.e., fifo channel systems where both
lossy and reliable channels can be combined in arbitrary topologies. These systems are
a generalization of the lossy channel system model (where all channels are lossy and
where reachability is decidable) and of the standard model (with unbounded reliable
fifo channels, where reachability is undecidable).

For mixed systems, we provide a complete classification of the network topologies
according to whether they lead to decidable reachability problems or not. Our main tool
are reductions methods that transform a topology into simpler topologies with an equiv-
alent decidability status. These reductions produce smallbasic topologies for which the
decidability status is established in Section 3.

Directions for future work.At the moment our classification is given implicitly, via a
simplification procedure. A more satisfactory classification would be a higher-level de-
scription, in the form of a structural criterion, preferably expressible in logical form (or
via excluded minors, . . . ). Obtaining such a description is our more pressing objective.

Beyond this issue, the two main avenues for future work are extending the MCS
model (e.g., by considering other kinds of unreliability inthe style of [CFP96], or by
allowing guards in the style of [BBS06], etc.) and considering questions beyond just
reachability and safety (e.g., termination and liveness).
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Technical appendix. i

A Proofs for Section 5

This section proves Theorem 5.1, i.e., “T1 ⊲T2 has decidable reachability iffT1 andT2

have”, whereT1 ⊲T2 is a juxtaposition ofT1 andT2 with additional glue in the form of
lossy channels with source inT1 and destination inT2.

First observe that the “⇒” direction is immediate sinceT1 andT2 are subgraphs of
T.

For the “⇐” direction, we assumeT = T1 ⊲ T2 with T, T1 andT2 as in Section 5.
We consider a MCSS with topologyT. FromS we extract two subsystemsS1 andS2

with topologiesT ′
1 andT ′

2 that are slight augmentations ofT1 andT2. More precisely,T ′
1

is T1 augmented with the interface channelsc1, . . . ,ck from L3, and with dummy extra
processesD1, . . . ,Dk, one for eachci ∈ L3, so thatd(ci) = Di is not left undefined.T ′

2 is
T2 augmented in a similar way, this time withs(ci) = Di . The MCS’sS1 andS2 are the
restrictions ofS to T ′

1 andT ′
2 assuming that the extra processesD1, . . . ,Dk are inactive.

Observe that, fori = 1,2, the channels inL3 are essential inT ′
i (also note thatT ′

i
is in general not a subgraph ofT since different interface channels inL3 may share a
common source or a common destination). Since applying fusion onL3-channels gives
exactlyTi , and since we assumed reachability is decidable forTi , we conclude it is for
T ′

i too by Theorem 4.5.

We now show how to decide reachability forSassuming that reachability is decid-
able for topologiesT ′

1 andT ′
2, hence for MCS’sS1 andS2.

A configurationσ of Scan be written under the form〈σ1,σ2,u1, . . . ,uk〉 whereσ1

is the restriction ofσ to T1, σ2 is the restriction toT2, andu1, . . . ,uk are the contents of
the extra channels fromL3. (In particular, the contents of channels inRi ∪Li are part of
σi).

Lemma A.1. Let σinit = 〈σ1
init ,σ

2
init ,ε, . . . ,ε〉 and σfinal = 〈σ1

final,σ
2
final,ε, . . . ,ε〉 be two

configurations of S with empty channels. There is a runσinit
∗
−→σfinal in S if, and only

if, there is a tuple〈u1, . . . ,uk〉 such that S1 has a run〈σ1
init ,ε, . . . ,ε〉

∗
−→〈σ1

final,u1, . . . ,uk〉

and S2 has a run〈σ2
init ,u1, . . . ,uk〉

∗
−→〈σ2

final,ε, . . . ,ε〉.

Proof (Sketch).Indeed, since the steps in theS1 part ofSnever depend on the steps in
theS2 part (interface channels inL3 only go fromS1 to S2), it is always possible to use
all theS1 steps first and theS2 steps later. ⊓⊔

Lemma A.2. The following problems are decidable:
(1) Given some〈u1, . . . ,uk〉 ∈ (M∗)k, does S1 have a run〈σ1

init ,ε, . . . ,ε〉
∗
−→〈σ1

final,u1, . . . ,uk〉?

(2) Given some〈u1, . . . ,uk〉 ∈ (M∗)k, does S2 have a run〈σ2
init ,u1, . . . ,uk〉

∗
−→〈σ2

final,ε, . . . ,ε〉?
(3) Given some regular languages R1, . . . ,Rk ⊆M∗, does there exists a tuple〈u1, . . . ,uk〉 ∈

R1×·· ·×Rk such that S2 has a run〈σ2
init ,u1, . . . ,uk〉

∗
−→〈σ2

final,ε, . . . ,ε〉?

Proof. (1) is almost immediate since reachability is decidable inT ′
1. Since we insist on

asking reachability questions with empty channels in the initial and final configurations,
we have to program the extra componentsD1, . . . ,Dk so that they empty theci and check
that they containedui and only accept if this is the case. The resulting system is still a
T ′

1 system.
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For (2), the same idea applies but this time theDi ’s fill the interface channels with
theui . Ensuring thatui is really inserted inci is done by upgrading the interface channels
from lossy to reliable channels. This does not impact the decidability of reachability
since it is established by fusing essential channels and reducing toT2.

For (3) we program theDi ’s so that they nondeterministically write oneui ∈ Ri in
ci . SinceRi is regular, a finite-stateDi can do the generation. Hence we reduced (3) to a
reachability question on a decidable topology (T ′

2 with reliable interface channels).⊓⊔

Lemma A.3. The set R⊆ (M∗)k of all minimal (w.r.t. the subword ordering) tuples
〈u1, . . . ,uk〉 allowing 〈σ2

init ,u1, . . . ,uk〉
∗
−→〈σ2

final,ε, . . . ,ε〉 is finite and can be computed
effectively.

Proof. Ris finite since the subword ordering is a well-quasi-order (Higman’s Lemma).
Regarding its computation, we cannot apply the backward reachability algorithm

for LCS’s sinceT ′
2 may contain reliable channels. However, by Lemma A.2.(2), we can

check any candidate tuple. Therefore it is possible to buildR incrementally by enumer-
ating all candidate tuples. Enumerating them in order of increasing length ensures that
only minimal tuples are retained.

This procedure is bound to eventually buildR (since it is finite) and there only
remains to ensure termination by detecting when the currentR is complete. This can be
done using Lemma A.2.(3): the setR′ of all tuples that do not contain a tuple fromRas
subword is a regular language, being the complement of the upward-closure of a finite
set. Thus we can decide whetherR′ contains some tuple that is not yet accounted for
in R. One detail is thatR′, though regular, is not in general a productR′

1×·· ·×R′
k of

regular languages, one for each part of the tuple. However itis well-known that such
sets are a finite union∑i R

′
1,i ×·· ·×R′

k,i of products of regular languages. ⊓⊔

We now have enough tools to implement Lemma A.1 and thereby decide reachability
for S. We computeR and check, using Lemma A.2.1, that one of the tuples inR is
reachable withS1. Observe that restricting to minimal tuples does not invalidate the
algorithm:c1, . . . ,ck being lossy, the set of tuples thatS1 can write there is downward-
closed.

B Some additional transformations

This section describes additional transformations and howthey preserve decidability of
reachability. The correctness proofs are only sketched in this extended abstract, but the
missing parts are easy to fill in since the transformations are similar to existing ones.

We list these transformations for the sake of completeness (they are used in the
proof of Theorem 6.1) but the reader should understand that they do not occur in the
classification algorithm, or in the statement of the classification theorem, where only
essential fusion and splitting are needed.

1. Double lossy loops.We say thatT has adouble lossy loopif there are distinctc,c′ ∈
L with s(c) = d(c) = s(c′) = d(c′).
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Lemma B.1. If c and c′ are a double lossy loop in T then reachability is decidable
for T if, and only if, it is for T−c′.

Proof (Idea).A single loop can simulate two loops the way a single lossy loop can
simulate an arbitrary LCS: we concatenate the contents of the two original channels
in the remaining one, using special markers to separate the two contents (see, e.g.,
[Sch02, Section 5]). Acting on one part of the contents requires rotating the contents
of the channels, and this can be achieved with the help of the markers. The markers
are inserted at the start of the run, and removed at the end. Ifthey are lost during
the simulation, correct simulation cannot be guaranteed, but it will be impossible to
reach an accepting state. Hence the simulation is correct for reachability questions.
The new observation is that it remains correct with an arbitrary mixed topology
around the two loops under consideration. ⊓⊔

Remark B.2.Paradoxically, we do not use Lemma B.1 for simplifying systems.
Rather we use it for doubling loops, which may prove useful when we try to obtain
basic topologies from Fig. 2 via simplification (see below).Hence it is important
that Lemma B.1 preserves decidability in both directions. ⊓⊔

2. Simplification. Let T be a topology with a lossy channel systemc between two
nodesP1 andP2. Thesimplification of T by cis a topologyT ′ wherec has been
removed and where all channelsc′ with s(c′) = P2 in T are redirected and have
s(c′) = P1 in T ′.

Lemma B.3. Reachability is decidable for T′ if it is for T .

Proof (Idea). T′ misses many features ofT, which only improves decidability. The
features ofT ′ thatT misses are the channelsc′ from P1 to someP that go fromP2 to
P in T. In T, these can be simulated by a standard multiplexing trick going through
P2 via c. ⊓⊔

3. Non-essential fusion.Let c be a reliable channel fromP1 to P2 (P1 6= P2) in some
topologyT. Assume that there is an additional path fromP1 to P2 that does not
usec (hencec is not essential). Further assume that this path only contains lossy
channels, and that there is no other path fromP1 to P2.

Lemma B.4. Reachability is decidable for T/c if it is for T .

Proving Lemma B.4 is quite different from proving Theorem 4.5. It uses the same
simulation we use in [CS07] to linkTd

2 andTd
1 , but this time in a more general

context since extra channels and processes may occur inT.


