Solving Partial-Information Stochastic Parity Games

Sumit Nain and Moshe Y. Vardi
Department of Computer Science, Rice University, Houston, Texas, 77005
Email: {nain,vardi} @cs.rice.edu

Abstract

We study one-sided partial-information 2-player con-
current stochastic games with parity objectives. In
such a game, one of the players has only partial
visibility of the state of the game, while the other player
has complete knowledge. In general, such games are
known to be undecidable, even for the case of a single
player (POMDP). These undecidability results depend
crucially on player strategies that exploit an infinite
amount of memory. However, in many applications
of games, one is usually more interested in finding
a finite-memory strategy. We consider the problem of
whether the player with partial information has a
finite-memory winning strategy when the player with
complete information is allowed to use an arbitrary
amount of memory. We show that this problem is
decidable.

1. Introduction

Two player infinite stochastic games play an impor-
tant role in many areas of computer science as they
provide a natural setting to model nondeterminism and
reactivity in the presence of uncertainty or random-
ness. In particular, infinite games with omega-regular
objectives are a fundamental tool in the analysis of
many aspects of reactive systems such as modeling,
verification, refinement, and synthesis [1], [8], [12].
For example, the standard approach to the synthesis
problem for reactive systems reduces the problem to
finding the winning strategy of a suitable game [15].

The formalism of infinite games can vary depending
on a number of factors such as the number of players,
the order in which the players make moves (concur-
rent or turn-based), the degree of randomness allowed
(stochastic or deterministic), the type of objective
(reachability, Biichi, or parity), the type of winning
condition (deterministic, qualitative probabilistic, or
quantitative probabilistic), and the presence or absence

of information asymmetry (perfect information, partial
information, or one-sided partial-information) [2], [5].
The expressiveness of the formalism varies with these
parameters. In this framework, the most general class
of games is the class of partial-information 2-player
concurrent stochastic games with parity objectives. In
this work we focus on an important subclass of partial-
information concurrent games: the class of one-sided
partial-information 2-player concurrent stochastic par-
ity games.

The most common approach to games assumes a
setting with perfect information where both players
have complete knowledge of the state of the game.
However, in many settings, the assumption of perfect
information is not valid and it is natural to allow an
information asymmetry between the players. Examples
include controllers with noisy sensors and software
modules that expose partial interfaces [16].

Since such partial-information games are more gen-
eral than perfect-information games and also quite use-
ful in their own right, it would be desirable to develop
algorithms to solve them. Unfortunately, the addition
of partial information substantially increases the dif-
ficulty of solving games. While perfect-information
stochastic parity games can be solved in NP N co-NP
[7], allowing partial information makes the problem
undecidable even for single player stochastic games
(i.e., Partially Observable Markov Decision Process)
[14]. Despite the obstacle of undecidability, some pos-
itive results have been proved for partial-information
games. Typically these results have been obtained for
restricted classes of partial-information games such as
requiring objectives to be completely visible [4] or
restricting objectives to weaker conditions than parity
(2], [3].

In contrast, our approach here is to focus on the gen-
eral case of parity objectives, which suffice to represent
all omega-regular objectives. Instead of weakening the
expressiveness of the objective, we restrict the partial-
information player to using a finite-memory strategy,

while allowing the player with complete information
to play an unrestricted strategy. In practice, many ap-
plications of games depend upon obtaining a winning
strategy for the system against an adversarial envi-
ronment. Often the goal is to obtain a finite-memory
strategy and use it some constructive fashion. Thus,
if the existence of an unrestricted winning strategy
is undecidable, it is natural to ask whether a finite-
memory winning strategy exists. Note that in the world
of perfect-information games, it is almost always the
case that memoryless determinacy holds (that is, there
is a winning strategy iff there is a winning strategy that
uses N0 memory).

There are two standard approaches to solving games:
the automata-theoretic approach which has strong con-
nections to deterministic games [19], and techniques
based on Markov chains that are used to solve stochas-
tic games [7]. We cannot use either directly, because
the presence of partial information complicates any
potential Markov-chain-based ergodic analysis, while
the automata-theoretic method is complicated by the
presence of probabilistic transitions. Instead, our ap-
proach is a novel application of techniques combined
from the two methods.

An outline of our approach: We represent the game
as a labeled regular tree (this is simply the unfolding of
the finite game graph). We first show that while there
is no a priori restriction on the amount of memory used
by the player with complete-information, we can safely
assume that it uses only a finite amount of memory.
Then a pair of opposing player strategies can be em-
bedded into the game tree by labeling the nodes with
the player actions generated when the play proceeds
according to those strategies. The resulting labeling
is regular if both the strategies are finite-memory.
This embedding can be viewed as an abstraction in
that it discards all the quantitative information about
probabilities contained in the strategies.

In the conventional approach to stochastic games,
one uses ergodic sets (strongly connected components)
of the resulting Markov chain to obtain a combina-
torial characterization of the qualitative probabilistic
behaviour. One of our key contributions is a method
to perform an analogous ergodic analysis directly on
labeled trees. This has the dual benefits of avoiding
the blowup caused by generating the Markov chain
and allowing the use of powerful techniques based
on tree automata. Using this result, we characterize
winning strategies in terms of reachability of the nodes
of the strategy labeled game tree and show that this
condition can be checked by a tree automaton. Finally,
we show how to ensure that the winning strategies
obtained are observation-based by applying techniques

from synthesis with incomplete information [10].

The main result of this paper is that one-sided
partial-information stochastic parity games are decid-
able when the partial-information player is restricted
to playing finite-memory strategies with no restric-
tions on the player with complete information. This
stands in contrast to the undecidability of the problem
for general strategies. One-sided partial-information
games are important because they are a natural model
for the behavior of modular systems that interact with
an environment, where the interactions between the
modular components are globally visible but the com-
putation within each component is not visible to other
components. For example, synthesis from components
can be viewed as such a game [11].

The structure of the rest of the paper is as fol-
lows: Section 2 contains the required mathematical
background on trees, automata and Markov chains,
while in Section 3 we formally describe our model
of one-sided partial-information games and state the
problem of finding a observation-based pure finite-
memory winning strategy in such a game, and in
Section 4 we show that the problem is decidable and
discuss the complexity of our solution. Finally, in
Section 5 we briefly discuss how our solution can
easily be extended to the case of randomized finite-
memory strategies.

2. Preliminaries

Labeled Trees: Given a set D of directions, a D-
tree is a set T' C D* such that (a) there is an element
xo € T, called the root of T, such that, for all x € T'
there exists y € D* with x =z -y, and (b) if z - c is
a non-root element of I', where x € D* and ¢c € D,
then x is also an element of 7. The elements of 1T’
are called its nodes. For every node x € T, the set of
successors of x is given by {x -c € T : ¢ € D}. A
node with no successors is called a leaf. A path © of
atree T is a set 1 C T such for every pair of nodes
x,y in 7, there exists z € D* such that x = y - z or
y = x - z. A path is infinite if it has no leaf nodes,
otherwise it is finite. A subtree of T is a tree T C T.
For a node = € T, the subtree rooted at x, denoted
T(x), is the tree {z-y € T : y € D*}. The full D-tree
is D*. The full subtree at z is the tree whose set of
nodes is = - D*.

Given an alphabet X, a Y-labeled D-tree is a pair
(T, 7), where T is a tree and 7 : T — ¥ maps each
node of T to a letter in X. A subtree of (T, T), is
a X-labeled D-tree (T',7'), where T” is a subtree of
T and 7/(z) = 7(x), for all z € T'. Given T C %,
we say a Y-labeled D-tree (T, 7) is [-recurrent if T

contains no leaf nodes and for each z € T there exists
y € D* such that 7(z-y) € Tand z-y € T. In a
T'-recurrent tree, from every node there is a path to
some I'-labeled node. As we show below, the size of
T" can be controlled by passing to a suitable subtree.

Lemma 2.1: Let (T, 7) be a I'-recurrent tree. Then
there exists v € I' and « € T such that (T'(z),7) is
~-recurrent.

Proof: We first note that if (T, 7) is I'-recurrent,
then for every node = € T, the subtree (T'(x), 7) is also
I"-recurrent. We now prove the statement of the lemma
by induction on the size of I'. In the base case, when
T is a singleton, (T, 7) itself is the required subtree.
Let |T'| > 1, and let 4" € T be such that (T, 7) is not
~'-recurrent. Then there exists y € T such that there
is no path from y to a «'-labeled node and therefore
(T'(y),7) only contains labels from I' = T" — {7'}.
Since (T'(y),7) is I'-recurrent, it must actually be
I"-recurrent. Thus, by the induction hypothesis, there
must exist a node z € T'(y) and v € IV such that
(T'(z),T) is y-recurrent. O

Transducers: A transducer is a deterministic finite
automaton with outputs. Formally, a transducer is a
tuple B = (¥7,%0,Q, qo,9, \), where: ¥; is a finite
input alphabet, ¥ is a finite output alphabet, @) is a
finite set of states, gg € @ is an initial state, A :) —
Yo is an output function labeling states with output
letters, and § : @ X ¥; — @ is a transition function.
We define 0* : ¥7 — (@ as follows: d*(e) = ¢o and
for x € X% and a € &y, §*(z - a) = 0(6*(),a). We
denote by tree(B), the Yp-labeled Xj-tree (X7, 7),
where for all z € X%, we have 7(x) = A(6*(x)). We
say tree(B) is the unwinding of B. A X-labeled D-
tree T is called regular, if there exists a deterministic
transducer C' such that T' = tree(C).

Tree Automata: For a set X, let BT (X) be the set
of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using A and V),
including the formulas True (an empty conjunction)
and False (an empty disjunction). For a set Y C X
and a formula 6 € Bt (X), we say that Y satisfies 0 iff
assigning True to elements in Y and assigning False
to elements in X —Y makes 6 true. An alternating tree
automaton is tuple A = (X, D, @, qo,0,5) , where ¥
is the input alphabet, D is a set of directions, @ is
a finite set of states, qg € @ is an initial state, § :
Q x ¥ — BY(D x Q) is a transition function, and 3
specifies the acceptance condition that defines a subset
of Q¥. Each element of BT (D x Q) is called an atom.
The alternating automaton A runs on X-labeled full
D-trees. A run of A over a X-labeled D-tree (T',7)
is a (T x Q)-labeled N-tree (7)., r). Each node of T,
corresponds to a node of 7. A node in 7T;., labeled by

(z, q), describes a copy of the automaton that reads the
node x of T and visits the state q. Note that multiple
nodes of T,. can correspond to the same node of 7'
The labels of a node and its successors have to satisfy
the transition function. Formally, (T,.,r) satisfies the
following conditions:

1) e €T, and r(e) = (e, qo).

2) Let y € T, with r(y) = (x,q) and
d(¢,7(x)) = 6. Then there is a set S =
{(co,q0), (c1,q1), - (cn,qn)} © D x Q such
that S satisfies 6, and for all 0 < 7 < n, we
have y -4 € T, and r(y - i) = (z - ¢;,q;). S is
allowed to be empty.

An infinite path 7 of a run (T, r) is labeled by a
word in Q. Let inf(m) be the set of states in) that
occur infinitely often in r(w). The Biichi acceptance
condition is given as S C @, and 7 satisfies [if
inf(r) N B # 0. The parity acceptance condition is
given as a function 8 : @ — {1,...,k}, and 7 satisfies
Bifmin({5(q) : ¢ € inf(m)}) iseven. Arun (T,) is
accepting if all its infinite paths satisfy the acceptance
condition. An automaton accepts a tree iff there exists a
run that accepts it. The language of A, denoted £(.A),
is the set of all 3-labeled D-trees accepted by .A.

Theorem 2.2: [13] Let A be an alternating tree
automaton. Then L£(A) is non-empty if and only if
A accepts some regular tree.

The transition function ¢ of an alternating tree au-
tomaton is nondeterministic if every formula produced
by § can be written in disjunctive normal form such
that if two atoms (c1, ¢1) and (ca, g2) occur in the same
conjunction then c¢; and ¢y must be different. A non-
deterministic tree automaton A is an alternating tree
automaton with a nondeterministic transition function.
In this case the transition function returns a set of |D|-
ary tuples of states and can be represented as a function
§:Qx ¥ — 29"

Markov Chains and Ergodic Sets: Given a directed
graph G = (V, E), a strongly connected component
(SCC) of G is a subset U of V, such that for all u,v €
U, u is reachable from v. We can define a natural
partial order on the set of maximal strongly connected
components of GG as follows: Uy < U, if there exists
uy € Uy and uy € Us such that uq is reachable from
ug. Then U C V is an ergodic set of G if it is a
minimal element of the partial order.

A Markov chain is a tuple M = (X, o, u), where
X is a finite set of states, xg is the initial state
and g : X? — [0,1] is a function that assigns
transition probabilities to each pair of states such that
Yowex iz, x’) =1 for all z € X. A subset Y of X
is called an ergodic set of M if Y is an ergodic set of
the directed graph (X, Z) where Z = {(z,2') € X?:

w(z,z’) > 0}. A path in M means a path in the graph
(X,Z), and a state = of M is reachable if there is a
path in M from z(to z.

3. One-Sided Partial-Information Games

A one-sided partial-information 2-player concurrent
stochastic game is a tuple G = (S, sg, A1, Az, 9, 0),
where

« S is a finite set of states.

e 5 is the starting state of the game.

e A; is a finite set of actions for player i.

e 0:5; x Ay x Ay — Dist(S), is the transition
function which returns a probability distribution
on the set of all states.

o O C 29 is a finite set of observations for Player
1 that partition the state space S. This partition
defines a function obs : S — O that maps each
state to its observation such that s € obs(s) for
all s € S. If O = {{s} : s € S}, then all states
are completely visible and we omit O from G.

Plays and Observation Sequences: A play in G is
an infinite sequence of states p = SpS3... such that
for all 5 > 0, there exists a; € Ay and a? € Ay with
d(sj,aj,a5)(sjr1) > 0. The set of plays in G is de-
noted Plays(G). The observation sequence of a play p
is the unique infinite sequence obs(p) = 0g01... € O¥
such that obs(s;) = o; for all j > 0.

Finite-memory Strategy: A randomized strategy in
G for Player 4 is a function f : S* — Dist(A;).
A pure strategy in G for Player 7 is a function
f:8* — A;. A (pure or randomized) strategy f for
Player 1 is observation-based if for all p,p’ € S*,
if obs(p) = obs(p'), then f(p) = f(p'). A pure
finite-memory strategy for Player i, is a strategy f
that can be represented as a finite transducer By =
(S, A;, Q,qo, A, M), such that for p € S*, f(p) =
A(A*(p)). f can also be represented by a regular A;-
labeled S-tree (S*, f). Similarly, a pure finite-memory
observation-based strategy f can be represented as a
finite transducer with input alphabet O and output
alphabet A1, or as a regular A;-labeled O-tree (O*, f).

Parity Objective: An objective for Player 1 in G
is a set ¢ C S of infinite sequences of states.
A play p € Plays(G) satisfies the objective ¢ if
p € ¢. For k € N, let a« : S — {0,1,...,k}
be a priority index function, which maps each state
to a nonnegative integer priority. The parity objective
¢o requires that the minimum priority that occurs
infinitely often in a play should be even. Formally,
do = {p € S¥ : min{a(s)|s € Inf(p)} is even}.
For priority p < k, we define the sub-objective

¢y = {p € 5| min({a(s) : s € inf(p)}) = p}. Then
the parity objective can be partitioned into simpler
sub-objectives as ¢, = ¢ U ¢o U --- U ¢,,, where
m<k<m+2.

Almost-sure winning: Given strategies f and g for
the two players, the probabilities of measurable subsets
of S“ are well defined, and ¢, is measurable for a
priority index « [17]. For a measurable objective ¢, we
denote by Pré’g(cé) the probability that ¢ is satisfied
by the play obtained from the starting state sg when
the strategies f and ¢ are used. Given a game G, an
observation-based strategy f for Player 1 is almost-
sure winning for the objective ¢ if for all randomized
strategies g for Player 2, we have Pré’g (¢) = 1.

In this paper we focus on 2-player concurrent
stochastic games with parity objectives where only
one of the players has complete information about the
state of the game at all times. We use the convention
that Player 1 is the player with partial information
and Player 2 has complete information. Our winning
condition is almost-sure winning, that is, the play must
satisfy the objective with probability 1. Our goal is
to decide whether the player with partial information
has an observation-based pure finite-memory winning
strategy and to find such a strategy if it exists.

Our problem: Given a one-sided partial-information
concurrent stochastic game G = (S, s9A1, Az, 8, O),
with parity objective ¢, is there an observation-based
pure finite-memory almost-sure winning strategy for
player 17?

Note that we put no restriction on Player 2, who
is allowed to play arbitrary strategies. Since 2-player
games are frequently used for the verification of system
behaviour in the presence of an adversarial environ-
ment, it is quite natural here to not restrict the power
of the second player. However, as we show in the next
section, it turns out that it is sufficient to consider only
pure finite-memory strategies for Player 2.

For the rest of the paper, we use the following
convention: winning means almost-sure winning; game
means a one-sided partial-information stochastic game,
in particular we use the letter G to represent the game
(S, s, A1, A2,0,0); a is a priority index function and
¢ 18 the corresponding parity objective.

4. Solving One-Sided Games

4.1. Restricting Memory for Player 2

We first show that we can safely restrict Player 2 to
a finite amount of memory without losing any expres-

siveness for Player 1. The key idea is that once Player 1
decides on a finite-memory strategy, the game reduces
to a one-player stochastic game (i.e. a Markov decision
process) with Player 2 the only player remaining. It is
well-known that only memoryless strategies are needed
to win in a one-player game [7]. But a memoryless
strategy in the one player game can be converted into
a finite-memory strategy in the original game. Thus
if Player 2 can defeat the particular strategy chosen
by Player 1 in the original game, then he can defeat
it using finite-memory. Conversely, if a finite-memory
Player 1 strategy can defeat every finite-memory Player
2 strategy, then it is a winning strategy.

Proposition 4.1: Player 1 has a pure finite-memory
winning strategy f iff for every pure finite-memory
player 2 strategy g we have Pré’g(qba) =1

Proof: Let f be a pure finite-memory player
1 strategy for G. Let B = (S, 41,Q,q0,A,)\) be
the transducer representation of f. Suppose f is not
winning for the objective ¢,,. Then there exists a player
2 strategy g for G such that Pr?(¢,) < 1. We
consider the complete-information 1-player stochastic
game G’ obtained by incorporating the choices of
f into G. Then G' = (S x Q,0, As,8"), where
5((5,9),)(s'¢') = 3(s, (@), a)(") if Alg,s) = ¢
and 0 otherwise. Let o’ : S x Q — {1,...,k} be de-
fined as (s, q) = a(s),and let ¢’ : (SxQ)* — As be
defined as ¢'((s1,q1)---(Sn,qn)) = ¢'(s1.. .8,). Then
we have Prg,(da) < 1. Further, since it is known that
pure memoryless strategies are sufficient for complete
information 1-player stochastic games [7], therefore
there must exist a pure memoryless player 2 strategy
h:SxQ — A for G such that Prlt, (¢},) < 1. Now
consider the transducer B’ = (.5, A2, SXQ, qo, A’, \'),
where A'((s,q),s") = (s',A(g,s)) and N ((s,q)) =
h(s,q). Let h’' be the pure finite-memory player 2
strategy for GG that is represented by B’. Then we have
Pré’h/(qﬁa) < 1. Therefore if an arbitrary strategy g
defeats f in G, then a pure finite-memory strategy h’
can also defeat f in G. This implies that to ensure that
a given finite-memory player 1 strategy f is winning
in G, it is sufficient to check that f wins against all
pure finite-memory strategies of player 2. |

4.2. Markov Chains and Labeled Trees

For the rest of Section 4, we only consider pure
finite-memory strategies for both players. Given a
game G, a pair of finite-memory strategies can resolve
all the strategic choices in the game, leaving behind
a finite-state probabilistic structure. Here we consider
two such structures: Markov chains and regular labeled

trees. The analysis of stochastic games using Markov
chains is well understood. The standard approach in-
volves taking the product of the game with the finite-
state strategies to obtain a larger composite memo-
ryless system that is a Markov chain. By analyzing
the ergodic structure of the Markov chain, qualitative
questions about probabilities are reduced to problems
involving simple graph reachability. While this ap-
proach is quite elegant, it suffers from two drawbacks:
it involves a potentially large increase in the state
space, and more importantly for our purpose, it is not
very amenable to solving problems involving partial
or incomplete information. In contrast, the automata-
theoretic approach deals well with incomplete infor-
mation [10], but tree automata are rarely used to
analyze probability directly. Our aim here is to use
the standard Markov-chain-based analysis to develop
a similar ergodic treatment for regular labeled trees.
We first give the definition for the standard Markov
chain construction.

Definition 4.2: Given pure finite-memory strategies
f and ¢ for Player 1 and Player 2 respectively,
where By = (S,Al,Qf,qg,Af,/\f) and B, =
(S, A42,Qq4.q5, Ay, \y) are the transducer representa-
tions of f and g respectively, the product of G with
By and B, is a Markov chain G x By x By, defined
as follows:

« The set of states is S X Q¢ X Q.

« The initial state is (so,qg,qg).

e For 5,5 € S, q1,¢q1 € Q5 and ¢2,q2 € Q.

the probability to transition from (s,qi,q2) to
(s, q1,45), is given by (s, Ar(q1), Ag(g2))(s")
if Ar(qr,s) = q7 and Ay(ge,s) = g5, and 0
otherwise.
States of this Markov chain inherit priority indices
from states of the game. Formally, we extend the
priority index function « to the states of the Markov
chain as follows: For (s,q1,¢2) € S X Qf X Qq,
a(s, q1, q2) = afs).

A strategy f : S* — A; for player ¢ can be viewed
as a labeling function for the full S-tree S*. So a pair
of strategies can be simply represented as a labeled
S-tree, where each node p € S* is labeled with
the actions chosen by the strategies at that node. In
addition we find it convenient to also label each node
with its corresponding game state. As we will see, this
labeled tree is sufficient for qualitative analysis of the
game.

Definition 4.3: For a word +, let last(y) denote the
last symbol of . We denote by tree(G, f,g), the
(A1 x Ay x S)-labeled S-tree (s0S™*,v) with v(p) =
(f(p),g(p),last(p)). We also extend the priority index

function « to nodes in S* as follows: For p € S*,
a(p) = allast(p)).

Let and y = x - z be nodes in (T,7) =
tree(G, f, g). We inductively define a notion of proba-
bilistic reachability. A node is always probabilistically
reachable from itself. We say that y is probabilistically
reachable from z if there exists s € S such that
d(last(x), f(x),g(x))(s) > 0 and y is probabilisti-
cally reachable from z - s. We say a node in a tree
is probabilistically reachable if it is probabilistically
reachable from the root.

We point out that the labeled tree representation is
more abstract than the product Markov chain represen-
tation. It lets us avoid computing the product and the
associated blowup. The Markov chain representation
and the label tree representation are closely related.
We first state without proof some simple properties of
this relationship.

Definition 4.4: Lettree(G, f,g) = (T,7) and M =
G x By x B,. Given a state x = (s,q1,q2) € M, we
define x|s = s to be the game-state component of .
Given a finite path = = (s1,q{,¢?)...(sn,qf,q9) in
M, we define play(m) = s1...s, € S*.

Lemma 4.5: If m is a finite path in G x By x B,
starting from the initial state, then play(w) is prob-
abilistically reachable in tree(G, f,g). Conversely, if
p € S* is probabilistically reachable in tree(G, f, g),
then there is a unique path 7 from the initial state of
G x By x By such that play(m) = p. U

We define a notion of a p-ergodic subtree that
allows us to reduce the probabilistic analysis of the
game structure to the reachability properties of labeled
subtrees. Intuitively, these subtrees can be viewed as
the analogue of ergodic sets. They play the same role
for labeled trees as ergodic sets do for Markov chains.

Definition 4.6 (p-ergodic subtree): Given a (A; X
Ay x S)-labeled S-tree (T,7), a node z € T, and
p € N, we say the subtree (T'(z),7) is p-ergodic, if x
is probabilistically reachable in 7" and for all y € T'(x)
we have:

o If y is probabilistically reachable from z then

a(y) > p.
o There exists z € T'(x) such that z is probabilisti-
cally reachable from y and «(z) = p.

We show that p-ergodic subtrees are similar to
ergodic sets in terms of their probabilistic behavior.
This is one of the main technical results of this paper.

Theorem 4.7: Let f and g be pure finite-memory
strategies for Players 1 and 2 respectively. Then the
following are equivalent:

1) Prlf(¢p) > 0.

2) The Markov chain G x By x By has a reachable

ergodic set whose lowest priority is p.

3) tree(G, f,g) has a p-ergodic subtree.

Proof: The equivalence of (1) and (2) is well
known and follows directly from the fact that every in-
finite play of the game must end up in an ergodic set of
the Markov chain with probability 1 [17]. We show that
(2) and (3) are equivalent. Let tree(G, f,g) = (T, T)
and M = G x By x B,. Let X be the set of states of
M and x be its start state.

(2) = (3): Suppose M has a reachable ergodic set
Z C X whose lowest priority is p. Then there exists
z € Z such that a(z) = p and z is reachable from z.
Let 7 be the shortest path from x(to z in M. Let p =
play(m) € S*. We show that the subtree (T'(p), 7) is p-
ergodic. Since z is reachable in M along , therefore,
by Lemma 4.5, the node p is probabilistically reachable
in tree(G, f,g). Let p/ € S* be such that p - p’ is
probabilistically reachable from p. Then, by Lemma
4.5, there exists a path 7’ in M from z to some 2’ such
that play(7') = p’ and 2'|s = last(p’). Since there is
a path from z to 2/, 2’ is also in the ergodic set Z and
a(z') > p, which implies a(p - p') = a(last(p’)) >
p. Thus, every node in T'(p) that is probabilistically
reachable from p has priority at least p. Finally, since
an ergodic set is connected, there is a path 7" from
z' to z in M. Let p"” = play(n"). Then p - p' - p" is
probabilistically reachable from p-p’ and a(p-p’-p") =
a(last(p”)) = a(z) = p. Therefore all the conditions
in Definition 4.6 are satisfied and so (T'(p),7) is a
p-ergodic subtree of tree(G, f, g).

(3) = (2): Suppose the subtree (T'(p),7) of
tree(G, f,g) is a p-ergodic subtree. Let S, = {s €
S : afs) = p}. Then (T'(p),) is also Sp-recurrent.
By Lemma 2.1, there exists s € S, and p € T(p),
such that p’ is probabilistically reachable from p and
(T(p'),7) is s-recurrent, that is, there is a path from
every node in (T(p’),7) to a node with label s.
Since every subtree of a s-recurrent tree is also s-
recurrent, we can assume without loss of generality
that last(p’) = s and «a(p’) = p. Consider the path 7
in M that corresponds to p’. Let w end in state z of
M. Then «(z) = p. Let Z C X be the set of all the
states of M that are reachable from z. If 2’ € Z and
7' is a path from z to 2/, then p”’ = play(w’) is such
that p’ - p” is probabilistically reachable from p’. Since
T(p) is p-ergodic, and p” € T(p") C T(p), we have
p<a(p-p") =a(last(p”)) = a(z’). Thus, all states
in Z have priority at least p. Also, since (T'(p’),7)
is s-recurrent, there must exist p”/ € S* such that
o - p" - p" is probabilistically reachable from p’ - p”
and p’ - p” - p""" is labeled with s. Let 7’/ be the path in
M that corresponds to p’”’. Then 7"’ is a path from 2z’

to some state 2’/ with a(z”") = p. Since reachability is
closed under transitivity, therefore from every state in
Z, there is a path to a state with priority p. Note that
it is not necessary for Z to itself be an ergodic set.
We show however, that Z contains an ergodic set with
the desired property. In a directed graph, by the very
definition of ergodic sets, from every vertex there is a
path to some ergodic set. So Z contains at least one
ergodic set Y of M. Since Y is a subset of Z, every
state in Y has priority at least p. Suppose that no state
in Y has priority exactly p. But since there is no path
that leaves an ergodic set, this would then contradict
the fact that from every state in Z we can reach a state
with priority p. Therefore at least one state in Y must
have priority p. This proves that M has a reachable
ergodic set with lowest priority p. |

4.3. Solving for Finite-memory Strategies

The most important feature of the definition of
p-ergodic subtree is that it is defined in terms of
local reachability properties that can be checked by a
nondeterministic Biichi tree automaton. We next build
such a tree automaton.

Lemma 4.8: There exists a nondeterministic Biichi
tree automaton (NBT) A, that accepts a (A; x Ay X .S)-
labeled S-tree T iff T" has a p-ergodic subtree.

Proof: For clarity of exposition, we assume that
S = {0,1} and define the automaton over binary trees,
but the definition can be easily extended to n-ary trees.

We define A, = (A1 x Ay x 5,Q,qo, 6,), where
Q = {search, cut, wait, look, visit, err}, gy = search,
and B = {visit, wait, cut}. The states of the automaton
can then be described as follows:

o search: In this state the automaton is searching
for the root of the special subtree.

« cut: This represents a branch not taken.

« wait and look: In these states the automaton has
entered the subtree and is looking for nodes with
priority p.

« visit: In this state the automaton has just visited
a node with priority p in the subtree.

o err: This is an error state that is entered if there
is a priority lower than p in the subtree.

Given a label v = (a,b,s) € A; x Az x 5, we
define X, = {s’ € S : d(s,a,b)(s’) > 0}. Then the
transition function J is defined as follows:

1) For g € {cut,err}, 6(q,v) = {q, ¢}

2) For q = search

{(search, cut), (wait, cut) } if X, = {0}
5(a.v) = {(cut, search), (cut, wait) } if X, ={1}
’ {(search, cut), (cut, search),
(wait, cut), (cut, wait) } if X, ={0,1}

3) For ¢ € {wait, look,visit}, if a(s) < p then
d(q,v) = {err,err}, if a(s) = p then

{(visit,cut)} if X, = {0}
0(q,v) = < {(cut,visit)} if X, = {1}
{(visit, visit)} if X, = {0,1}

and if «(s) > p then

{(look, cut)} if X, = {0}
d(g,v) = < {(cut, look)} if X, ={1}
{(look, wait), (wait, look)} if X, = {0,1}

In the first stage, A, guesses the location of the
root of the special subtree 7. While searching for
this root, A, remains in the state search. When it
encounters the root of 7', it enters the state wait for
the first time. This starts the second stage, where
A, considers only probabilistically reachable nodes
in T. In directions that correspond to a node that is
not probabilistically reachable in 7', A, moves to the
state cut and remains there perpetually. From every
probabilistically reachable node in T', A, guesses a
path to another probabilistically reachable node with
label p, using the states wait and look. It starts this
search in state wait, moves to state look immediately,
remains there until it encounters a probabilistically
reachable node with label p, and then moves to state
visit. If there is no path from some node to another
node with label p, all runs corresponding to the choice
of T as subtree will eventually get stuck in look. Thus,
some run corresponding to 7" as the required subtree
is accepting iff T satisfies the required conditions. [

We now transform 4, to obtain an automaton A
that accepts trees corresponding to winning strategies
for Player 1. While A, accepts (A; x Az x S)-labeled
S-trees, A accepts Aj-labeled S-trees. The transfor-
mation proceeds in steps: first we build A;, which
nondeterministically guesses the moves of Player 2,
then get rid of the S labels by enlarging the state
space to obtain A}, and next we unify multiple A7
automata corresponding to different sub-objectives to
obtain an automaton A’ for the parity objective. Note
that Ap accepts trees corresponding to strategy pairs
where Player 2 beats Player 1, so A’ accepts all losing
Player 1 strategies. So the required automaton A is
obtained by complementing .A’. Formally:

Theorem 4.9: There exists a nondeterministic parity
tree automaton (NPT) A such that A is non-empty iff
Player 1 has a finite-memory winning strategy for ¢,,.

Proof: Given two labelings v : S* — X, v :
S* — Y, we define the product labeling u x v : S* —
X xY as u xv(x) = (u(x),v(z)) for all x € S*.

Let .Ap = (Al X Ao X S,Q,de, ﬂ) be the NBT
defined in Lemma 4.8. We define A, = (A4; x
S,Q,q0,0", 3), where

(5/((],((178)): \/ 6((1’(&7@/75))

a’€As

Thus A, takes player 1 strategy as input, guesses
the strategy of player 2 and checks the resulting
labeled tree for the presence of a p-ergodic subtree
by simulating A,,.

Note that Aj, expects (A; x S)-labeled S-trees as
input. In order to get rid of the S portion of the
labeling, we move it into the state space as follows:
we define A = (Ay,Q xS, (qo,50),0", 8x5), where
for every ¢ € Q, s € S and a € Aj, the transition
0"((q, s), a) is obtained from &(q, (a, s)) by replacing
each atom (s',¢’) by the atom (s, (¢’,s")). Then A]
accepts A;-labeled S-trees. Note that if A, is an NBT
then so are A}, and Aj.

Let f be an arbitrary strategy for Player 1. Let v :
S* — S be the labeling v(z) = last(x). If there exists
a strategy ¢ for Player 2 such that Pré’g (¢p) > 0, then,
by Lemma 4.8, A, accepts (S*, f X g x v). Then, by
construction, A}, accepts (S*, f x v) and A} accepts
(S*, f). Alternately, if for all player 2 strategies g, we
have Pr5?(¢,) = 0, then, by Lemma 4.8, (S*, f x
g X v) is not accepted by A, for all possible labelings
g. Consequently, (S*, f x v) is not accepted by A/,
so A7 will not accept (S*, f). Thus, A7 accepts an
Aj-labeled S-tree (S*, f) iff there exists some player
2 strategy g, such that Pré’g (¢p) > 0.

Consider the automaton A’ whose language is the
union of the language of each .A;’, for all odd p <
max(«). Let f be a finite-memory strategy for Player
1. Then A" accepts an A;-labeled S-tree (S*, f) iff
there exists a player 2 strategy g such that Pré’g (Pr) >
0 for some odd k¥ < max(«). The latter condition is
equivalent to Pr5?(¢,) < 1. Therefore, A’ accepts
(S*, f) iff f is not winning.

Finally, consider the automaton A = A’, which is
the complement of A". Then A accepts (S*, f) iff f is
a winning strategy for Player 1. Now, by Theorem 2.2,
an NPT is nonempty iff it accepts a regular tree, and
a regular Aj-labeled S-tree (S*, f) is equivalent to a
finite-memory strategy f, therefore A is non-empty iff
Player 1 has a finite-memory winning strategy. |

4.4. Solving for Observation-based Strategies

Note that the finite-memory strategy found by
the method of Theorem 4.9 is not required to be
observation-based. In fact, we have not used the con-
cept of partial information anywhere in the techni-
cal development so far. However, the automata-based
method we have developed is robust in the presence
of partial information, and with one further transfor-
mation we can obtain an automaton that accepts only
observation-based winning strategies.

While a general strategy is a A;-labeled S-tree, an
observation-based strategy is best viewed as a Aj-
labeled O-tree. We already have an automaton A that
accepts Aj-labeled S-trees corresponding to winning
finite-memory strategies. We now develop an automa-
ton B that accepts A;-labeled O-trees corresponding
to the trees accepted by 4. We use a variant of a
technique first developed for synthesis from incomplete
information [10].

Theorem 4.10: There exists an alternating parity
tree automaton (APT) B such that B is non-empty
iff Player 1 has an observation-based finite-memory
winning strategy for ¢,.

Proof: Let A = (A1,Q,qo0,9,3) be the NPT
defined in Theorem 4.9. Then A accepts A;-labeled
S-trees. Let B = (A1,Q, qo,0’,3) where for every
q € Q and a € Ay, the transition ¢’(g,a) is obtained
from §(g,a) by replacing each atom (s,q’) by the
atom (obs(s),q’). Then B accepts A;p-labeled O-trees.
Let f : O* — A; be an observation-based strategy
for Player 1. We define a general Player 1 strategy
g :S* — A as follows: for p € S*, g(p) = f(obs(p))
(recall that obs maps each game state in a play to its
corresponding observation). Then B accepts (O*, f) iff
A accepts (S*, g). Also, from the perspective of the
opponent, f and g are exactly the same strategy, so f
is a winning strategy iff g is a winning strategy.

Let f be an observation-based finite-memory strat-
egy. Assume first that B accepts (O*, f). Then A
accepts (S*,g). But then g also has finite-memory,
and by Theorem 4.9, g is a winning strategy, which
implies that f is also a winning strategy. Now, for the
converse, assume that f is a winning strategy. Then g
must also be a finite-memory winning strategy, and by
Theorem 4.9, A accepts (S*, g). Therefore B accepts
(O*, f). Thus, B accepts (O*, f) iff f is a winning
strategy, and B is the required automaton. O

4.5. Computational Complexity

The NBT Aj, accepts |S|-ary trees and has O(1)
states with an alphabet of size O(]A4| - |S|), so the

NBT A, accepts |S|-ary trees and has O(|S]) states
with an alphabet of size O(]A;|). Then A’ is an
NBT with O(k|S|) where k = max(«). Therefore A,
which is obtained by complementing A’, is an NPT
with 279w states and parity index O(k|S|). The
translation from A to B adds no blowup, but B is
an APT, while A is an NPT. Since emptiness for an
alternating parity tree automaton can be checked in
time exponential in the size of the automaton [13],
therefore B can be checked for emptiness in time
doubly exponential in the size of the game G.

Theorem 4.11: The complexity of finding if the
partial-information player has a finite-memory winning
strategy in a one-sided partial-information stochastic
parity game is at most 2EXPTIME. |

5. Discussion and Future Work

Randomized Finite-memory Strategies: While our
focus in this work is on pure finite-memory strategies
for the partial-information player, it is straightforward
to extend our methods and results to the case of mixed
or randomized finite-memory strategies. If Player 1
uses a randomized finite-memory strategy, this would
not increase the state space of the resulting Markov
chain but instead would increase the number of transi-
tions with positive probability as a randomized strategy
would activate multiple actions for Player 1 in each
game state. This could be represented on a labeled
tree by letting the labels for Player 1 range over sets of
actions instead of single actions, that is, we would have
to consider a (241 x Ay x S)-labeled tree. Thus the
situation is essentially equivalent to restricting Player
1 to a pure finite-memory strategy but allowing an
exponentially larger set of actions instead. Solving the
equivalent game using our method would still take
time doubly exponential in the state space, so allowing
randomized finite-memory strategies does not change
the upper bound on time complexity.

Future Work: We have shown that the prob-
lem of finding a finite-memory winning strategy for
the partial-information player in a one-sided partial-
information concurrent game is in 2EXPTIME. The
question of tighter lower and upper bounds we leave
for the future. It would also be interesting to consider
the problem from the perspective of the stronger player.
Whether we can find a finite-memory winning strategy
for the player with complete-information (Player 2), if
it exists, is an open question.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

R. Alur, T.A. Henzinger,
Alternating-time temporal logic.
ACM, 49:672-713, 2002.

and O. Kupferman.
Journal of the

K. Chatterjee and L. Doyen. The complexity of partial-
observation parity games. In Proc. LPAR’10, LNCS
6397. Springer, 2010.

K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F.
Raskin. Algorithms for omega-regular games of in-
complete information. Logical Methods in Computer
Science, 3(3:4), 2007.

K. Chatterjee and T.A. Henzinger. Semiperfect-
information games. In Proc. FSTTCS’05, LNCS 3821.
Springer, 2005.

K. Chatterjee and T.A. Henzinger. A survey of stochas-
tic w-regular games. J. Computer and System Sciences,
78(2): 394-413, 2012.

C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. Journal of the ACM, 42:857—
907, 1995.

K. Chatterjee, M. Jurdzinski, and T. A. Henzinger.
Simple stochastic parity games. In Proc. CSL’03, LNCS
2803, pages 100-113. Springer, 2003.

L. de Alfaro and T.A. Henzinger. Interface-based
design. In Engineering Theories of Software-intensive
Systems, NATO Science Series: Mathematics, Physics,
and Chemistry 195, pages 83-104. Springer, 2005.
J.G. Kemeny and J.L. Snell. Finite Markov Chains.
Van Nostrad, 1960.

O. Kupferman and M.Y. Vardi. Synthesis with incom-
plete informatio. In 2nd Int. Conf. on Temporal Logic,
pages 91-106. Kluwer, 1997.

Y. Lustig, S. Nain, and M.Y. Vardi. Synthesis from
Probabilistic Components. In Proc. CSL’11, LIPIcs 12,
2011.

R. McNaughton. Infinite games played on finite graphs.
Annals of Pure and Applied Logic, 65:149184, 1993.

D.E. Muller and P.E. Schupp. Simulating alternat-
ing tree automata by nondeterministic automata: New
results and new proofs of theorems of Rabin, Mc-
Naughton and Safra. Theoretical Computer Science,
141:69-107, 1995.

A. Paz. Introduction to probabilistic automata. Aca-
demic Press, 1971.

A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In Proc. 16th ACM Symp. on Principles of
Programming Languages, pages 179-190, 1989.

[16]

(17]

(18]

[19]

J.H. Reif. The complexity of two-player games of
incomplete information. J. Computer and System Sci-
ences, 29:274301, 1984.

M.Y. Vardi. Automatic verification of probabilistic
concurrent finite-state programs. In Proc. FOCS’8S5,
pages 327-338. 1IEEE, 1985.

M.Y. Vardi. Probabilistic linear-time model checking:
An overview of the automata-theoretic approach. In
Formal Methods for Real-Time and Probabilistic Sys-
tems, LNCS 1601, pages 265-276. Springer, 1999.

T. Wilke. Alternating Tree Automata, Parity Games,
and Modal p-Calculus. Bulletin of the Belgian Mathe-
matical Society, Vol 8(2), 2001.

