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Abstract 
 

Overlapping computation with communication is 
a key technique to conceal the effect of 
communication latency on the performance of 
parallel applications.  MPI is a widely used message 
passing standard for high performance computing.  
One of the most important factors in achieving a 
good level of overlap is the MPI ability to make 
progress on outstanding communication operations.  
In this paper, we address some of the communication 
progress shortcomings in the current polling and 
RDMA Read based Rendezvous protocol used for 
transferring large messages in MPI.  We then 
propose a novel speculative Rendezvous protocol that 
uses RDMA Read and RDMA Write to effectively 
improve communication progress and consequently 
the overlap ability.  Performance results based on a 
modified MPICH2 over 10-Gigabit iWARP Ethernet 
reveal a significant (80-100%) improvement in 
receiver side overlap and progress ability. 
 
1. Introduction 
 

Clusters are the predominant platforms for high-
performance computing due to their cost-performance 
effectiveness.  Interconnection networks and the 
communication system software play a key role on 
the performance of clusters.  In this regard, several 
modern networks such as InfiniBand [7], Myrinet 
[15], Quadrics [2, 18], and 10-Gigabit iWARP 
Ethernet [16, 20] have been introduced.  Such 
interconnects use OS bypass, and Remote Direct 
Memory Access (RDMA) to support efficient and 
scalable communications.  RDMA is a one-sided 
operation, allowing direct data transfer from the 
source buffer to the remote destination buffer without 
the host CPU intervention or intermediary copies. 

Most scientific applications running on clusters 
are written on top of Message Passing Interface 
(MPI) [12]. MPI implementations typically use two 
different protocols for transferring small and large 
messages: Eager and Rendezvous.  In the Eager 
protocol, the sender sends the entire message to the 
receiver, where the receiver provides sufficient 
buffering space for the incoming messages.  This 
protocol is mainly used for sending small messages.  
The Rendezvous protocol is used for large messages, 
where the cost of copying is prohibitive.  The sender 
and receiver negotiate the availability of the receiver 
side buffer before the actual data transfer. 

Overlapping computation with communication is 
one of the basic techniques in hiding communication 
latency, thereby improving application performance.  
Using non-blocking communication calls at the 
application level [6], supporting independent progress 
for non-blocking operations at the messaging layer 
[4], and offloading communication processing to the 
Network Interface Card (NIC) are the main steps to 
achieve efficient overlap. 

NICs in modern interconnects are designed to 
offload most of the network processing tasks from the 
host CPU, providing excellent opportunity for 
communication libraries such as MPI to hide the 
communication latency using non-blocking calls.  To 
efficiently utilize the offload engines, non-blocking 
communications need to make progress 
independently.  Most MPI implementations require 
subsequent library calls in order to make progress in 
outstanding non-blocking calls.  This may have a 
significant impact on performance when a 
computation phase follows a non-blocking call. 
Specifically, communication progress becomes more 
important for the Rendezvous protocol, where a 
negotiation exists prior to the actual data transfer.  
This is simply because a non-blocking call may return 
without completing the negotiation.  In [19], the 



 

authors have shown that how lack of an independent 
progress in the MPI Rendezvous protocol on top of 
modern interconnects can affect the overlap ability.  

While most MPI implementations use polling-
based progress engines, some use interrupts for 
communication progress [21].  Although interrupt-
based approaches activate the progress engine any 
time communication progress is needed, they impose 
high overhead and fluctuation on the communication 
time, which cannot be overlooked.  Our focus in this 
paper is therefore to address current polling-based 
protocols’ shortcomings by proposing a novel 
speculative Rendezvous protocol that could increase 
communication progress and overlap.  While current 
protocols rely only on the sender to initiate the 
Rendezvous, our proposed protocol lets either sender 
or receiver initiate the negotiation in order to start the 
data transfer before the non-blocking send or receive 
call returns.  This will enable overlapping any 
computation phase following the non-blocking calls.  
To the best of our knowledge, this is the first study of 
this kind for the MPI Rendezvous protocol.    

We have implemented the new protocol on 
MPICH2 [13] over 10-Gigabit iWARP Ethernet.  Our 
assessment is done using overlap and progress micro-
benchmarks for both sender and receiver and for two 
timing scenarios, where either the sender arrives first 
in the communication call, or the receiver arrives 
first.  Our experimental results indicate that the new 
protocol is able to outperform the current Rendezvous 
protocol by effectively improving the receiver side 
progress and overlap from almost zero to nearly 
100%, at the expense of only 2-14% degradation for 
the send side overlap and progress when the receiver 
arrives first. 

The rest of this paper is organized as follows.  
Related work is reviewed in Section 2.  Section 3 
discusses the proposed Rendezvous protocol.  In 
Section 4, we present and analyze the experimental 
results.  Finally, Section 5 concludes the paper. 
 
2. Related work 
 

There has been a few works on overlap and 
communication progress in message passing systems. 
In [4], the authors compared the impact of six MPI 
implementations on application performance running 
on two platforms with Quadrics QsNet [17] and 
CNIC network interface cards.  Their results show 
that in almost all benchmarks, combination of 
offload, overlap and independent progress 
significantly contributes to the performance.  The 
study in [3] concerns a similar work on IB and 
QsNetII [2]. 

The authors in [5] have proposed an overlap 
measurement method for MPI.  In their method, the 
communication overhead is first computed, and then 
application availability is calculated using the 
overhead amount.  While [8, 23] addresses combined 
send and receive overlap, our proposed overlap 
measurement method in this paper, along with [5, 22], 
target send and receive overlaps separately.  

In [19], the authors analyze the overlap and 
progress ability in InfiniBand [11], Myrinet-10G [15] 
and 10-Gigabit iWARP Ethernet [16], and conclude 
that transferring small messages makes an acceptable 
level of independent progress.  On the other hand, in 
most cases, transferring large messages does not 
make progress independently, decreasing the chances 
of overlap in applications.  The results in [19] 
confirm that independent progress is required, at least 
for data transfer, to achieve high overlap ability with 
non-blocking communication.  The paper also shows 
how different Rendezvous protocols affect overlap 
and communication progress in different networks. 

On the issue of using interrupts in the 
Rendezvous protocol, the solution in [1] is based on 
RDMA Write.  The authors in [9] have proposed 
event-based progress over TCP/IP networks.  In [10], 
some hardware mechanisms are proposed to combine 
interrupts and polling.  Researchers have recently 
proposed RDMA Read Rendezvous protocols [22] 
for MPI to improve communication progress and 
overlap. In this work, a traditional two-way 
handshake followed by RDMA Write is replaced by a 
one-way handshake followed by RDMA Read.  The 
Authors in [22] also use an interrupt-based scheme to 
alleviate the bottleneck when the receiver arrives 
first, achieving nearly complete overlap and up to 
50% progress improvement in MPI over InfiniBand 
relative to the RDMA Write Rendezvous protocol. 

The results in [22] and also [19] show that one-
way Rendezvous protocols using RDMA Read help 
achieve a good level of overlap and progress at the 
send side.  However, both one-way Rendezvous (used 
in the MVAPICH project [14] and MPICH2 over 
iWARP) and two-way Rendezvous (used in the 
MVAPICH project [14]) protocols are not able to 
provide independent progress and good overlap for 
receiving large messages [19]. 
 
3. Speculative MPI Rendezvous Protocol 
 

Section 3.1 explains the basics of the proposed 
protocol for the two timing scenarios.  We will then 
discuss the protocol design specification in Section 
3.2.  Finally, Section 3.3 covers the methodologies to 
prevent race and deadlock conditions. 



 

3.1. Protocol Preliminaries 
  

In the current RDMA Read based Rendezvous 
protocol [22], used in the implementation of MPI 
non-blocking communication calls for large 
messages, the sender sends a Request to Send (RTS) 
message to the receiver that includes the sender’s data 
buffer address.  Upon receiving the RTS, the receiver 
process will transfer the data using RDMA Read.  

Basically, there are two send and receive timing 
scenarios in the current Rendezvous protocol that 
could happen at runtime: 1) the sender arrives first at 
the send call; and 2) the receiver arrives first at the 
receive call.  The first scenario assumes that when the 
receiver arrives at the receive call, the RTS 
negotiation message is already in the receive buffer. 
Thus, the data transfer can start right away.  In the 
other scenario, the receiver posts an early non-
blocking call, before receiving the RTS message.  
Therefore, the receiver will not be able to start the 
RDMA Read based data transfer.  In essence, the data 
transfer will start afterwards by the progress engine, 
activated either by a costly interrupt or in the next 
MPI communication call [22].  Thus, any 
computation phase after the non-blocking receive call 
will delay the start of data transfer [19]. To increase 
communication progress and overlap, this paper 
proposes a novel method in which the receiver can 
also initiate the communication.  
 
3.1.1 Sender Arrives First. Figure 1(a) depicts the 
current Rendezvous protocol when the sender arrives 
first. In this timing scenario, we expect that a 
matching RTS from the sender is present at the 
receiver queues, and that the non-blocking receive 
call will transfer the data using RDMA Read.  
However, due to the one-sided nature of the RDMA 
operation used to transfer the RTS from the sender, in 
addition to inefficiency in the current implementation 
of MPICH2 over RDMA-enabled channels, the 
receiver is not able to find the already arrived RTS.  
Therefore, a receive request (Rreq) will be enqueued 
in the receive queue (Recvq), leaving the 
communication progress to a future progress engine 
call.  

The results presented for both small and large 
messages in [19] (over iWARP and IB networks) 
highlight the existence of such inefficiency, resulting 
in non-independent progress for both Eager and 
Rendezvous protocols.  Investigating the issue inside 
the implementation of MPI prompted us that an initial 
progress engine call is needed to put the RTS 
message from the channel-related buffers into the 

unexpected queue (Unexq).  The receiver is then able 
to recognize the arrived RTS and take action before 
returning from the non-blocking call.  This initial 
progress engine call is also beneficial for the sender, 
as described in Section 3.2. 
 
3.1.2 Receiver Arrives First. Figure 1(b) depicts the 
current Rendezvous protocol when the receiver 
arrives first.  In this timing scenario, the receiver will 
enqueue an Rreq in the Recvq, and return from the 
non-blocking call.  The communication will progress 
when the progress engine becomes active by a 
subsequent library call.  In the current protocol, the 
receiver does not start the Rendezvous negotiation 
because it is only the sender that knows the 
communication mode (e.g. synchronous or ready 
mode), and/or the exact size of the message.   

However, in our proposal, the early-arrived 
receiver predicts the communication protocol based 
on its own local message size.  If the predicted 
protocol is Rendezvous, a message similar to RTS 
(we call it Request to Receive or RTR), including the 
receive buffer address is prepared and sent to the 
sender. At the sender side, if the Rendezvous protocol 
is chosen, the arrived RTR message is used to transfer 
the data to the receiver using RDMA Write.  
Otherwise, if the Eager protocol is chosen, the arrived 
RTR will be simply discarded.  Figure 2 shows a 
sample timing diagram for the proposed receiver-
initiated Rendezvous protocol.  Using this protocol, 
there is now potential for more progress and overlap. 
 
3.2. Protocol Design Specification 
 

In this section, we will discuss the design and 
implementation of the proposed Rendezvous protocol 
in MPI library.  Basically, the protocol is executed by 
three MPI library components: the (non-blocking) 
send call, the (non-blocking) receive call, and the 
progress engine activated by subsequent library calls.   
 
3.2.1. Non-blocking Receive.  Initially, a protocol 
prediction is done based on the local message size in 
the receive call.  In the case of Rendezvous protocol 
(large message), an initial progress engine call is 
made to place a possibly arrived RTS into the MPI 
queues. Then, for either case of the prediction 
outcome, the Unexq is checked for a matching 
message.  If an Eager message is found, it will be 
placed into the user buffer and the communication 
will be finalized.  Otherwise, if a matching RTS is 
found, the RDMA Read (data transfer) will be started.  
 



 

Figure 1. Timing diagram for the Rendezvous protocol in MPICH2-iWARP: (a) sender arrives first, 
(b) receiver arrives first. 

 
If no matching is found in the Unexq, the 

receiver side will post the Rreq to the Recvq.  If the 
Eager protocol has been predicted, the receiver 
returns from the non-blocking call.  On the other 
hand, if the Rendezvous protocol has been predicted, 
the local memory will be registered and an RTR 
message will be prepared and sent to the sender to 
initialize the Rendezvous protocol. 
 
3.2.2. Non-blocking Send.  A non-blocking send call 
will first decide the appropriate protocol.  The 
protocol selection criteria vary in different 
implementations, but they are mainly based on the 
message size and the MPI communication mode.  In 
the case of Eager, the message is transferred eagerly. 

Similar to the case for non-blocking receive, if 
the Rendezvous protocol is chosen, an initial progress 
engine call is invoked, and the Unexq is then 
searched for any possibly arrived matching RTR from 
the receiver.  In case a matching RTR is found, the 
sender will immediately initiate the data transfer 
using RDMA Write.  The send request (Sreq) will be 
also enqueued into a send request queue (Sendq) until 
the communication is complete.  On the other hand, if 
no RTR is found, the sender will register the local 
memory and start the negotiation by sending an RTS. 
 
3.2.3. Progress Engine. The progress engine’s job in 
the proposed protocol is in handling the incoming 
RTR and RTS messages as well as finalizing the 
communication (that is, sending done packet and 
deregistering memory).  Handling an incoming RTS 
is similar to the current protocol.  It is assigned to the 
first matching Rreq in the Recvq.  Then, the 
corresponding data buffer is registered, and the data 
is transferred using RDMA Read.  If no matching 
request is found in the Recvq, the RTS is placed in 
the Unexq for future use.  

Dealing with RTR is a bit different, though.  If 
no Sreq is matched against the arriving RTR, the 

RTR will be placed in the Unexq to be assigned to a 
future Sreq.  Otherwise, the RTR will be assigned to 
the first matching Sreq in the Sendq that has no RTR 
assigned to it.  However, there is a possibility that the 
RTR from the receive call has been sent 
simultaneously with an RTS from the peer send call.  
In other words, the RTR and RTS messages may have 
crossed each other.  In such a case, we disregard the 
RTR and let the receiver to perform the RDMA Read.  
Therefore, the sender side buffer registration and 
RDMA Write will take place only if no RTS has been 
sent to the receiver before.  
 
3.3. Race and Deadlock Hazards 
 

Unlike the current Rendezvous negotiation 
model, in which only the sender is responsible for 
starting the Rendezvous, in the proposed protocol 
both the sender and receiver are able to start the 
negotiation.  Therefore, the new protocol should be 
checked for race and deadlock conditions.  Due to 
space limitations, we will briefly discuss the race and 
deadlock conditions, and our proposed solutions. 
 
3.3.1. Ambiguous RTS/RTR Destination Hazard. 
Both peer MPI send and receive calls could be the 
initiator of the Rendezvous protocol, and neither of 
them can determine whether the other peer has 
already sent an RTR/RTS message.  Thus, when a 
matching RTS/RTR arrives, the protocol cannot 
determine the matching receive/send call for the 
arrived RTS/RTR. 

To prevent the above condition, an 
acknowledgement (ACK) message will be sent to the 
other side when an RTS/RTR is received.  This way, 
the other side will no longer expect any RTS/RTR 
from the send/receive call that sends the ACK.  Thus, 
the subsequent incoming RTS/RTRs will be assigned 
to the next matching send/receive calls. 
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Figure 2. Timing diagram for the proposed Rendezvous protocol when the receiver arrives first.  

 
3.3.2. Mispredicted RTR Race Hazard. Based on 
the sender buffer size as well as its preference in 
protocol selection, the receiver protocol prediction 
may be different than the sender’s decision.  If the 
receiver mispredicts the Rendezvous protocol, it will 
send an RTR, which will not be used by the sender 
that is using the Eager protocol.  This extra RTR can 
be mistakenly assigned to another matching send call 
that selects the Rendezvous protocol. 

To avoid this hazard, for each message envelope, 
each send call transferring an Eager message sets an 
Eager-flag.  This is used as a warning for the 
subsequent matching Rendezvous send calls from the 
same process to be aware of the possibility of 
mispredicted RTRs.  Such RTRs should be dropped.  
In addition, a stop-RTR flag is sent to the receiver to 
temporarily stop generating the RTR for that message 
envelope, until all mispredicted RTRs are dropped. 
 
3.3.3. Deadlock. For a message transfer, deadlock 
happens when neither the sender nor the receiver 
proceeds with the communication.  In the proposed 
protocol, there are certain cases that the receiver can 
post a request into the Recvq without sending an 
RTR.  There are also cases that the sender drops the 
arrived RTR.  However, as described for the send 
side in Section 3.2, either an arrived RTR is used or 
an RTS is sent to the receiver. Therefore, the 
communication will continue either by the sender 
using RTR, or by the receiver using RTS.  This leaves 
no chance for deadlock for any message size. 
 
4. Experimental Results and Analysis  
 

We have implemented the proposed Rendezvous 
protocol on MPICH2 over NetEffect 10-Gigabit 
iWARP Ethernet.  We first describe our experimental 
platform, and then analyze the performance results. 
 
4.1. Experimental Framework  
 

The experiments were conducted on Dell 
PowerEdge 2850 SMP servers, each with two 
2.8GHz Intel Xeon processors (with 1MB L2 cache) 

and 2GB SDRAM.  The machines run Fedora Core 4 
with kernel version 2.6.11.  Our iWARP network 
consists of the NetEffect NE020 10-Gigabit Ethernet 
RNICs [16], each with PCI-Express x8 interface and 
CX-4 board connectivity.  A Fujitsu XG700-CX4 10-
Gigabit Ethernet switch connects the nodes.  We use 
MPICH2-iWARP, based on MPICH2 1.0.3 [13] over 
NetEffect verbs 1.4.3, which uses the Rendezvous 
protocol for messages larger than 128KB. 
 
4.2. Experimental Results 
 

In this section, we use the micro-benchmarks 
proposed in [19] to evaluate how the new protocol 
may affect overlap and progress.  We use two timing 
scenarios, to either force the sender to arrive earlier 
(to use RTS), or to force the receiver to arrive earlier 
(to use RTR).  Assessment is done at both sender and 
receiver sides.  Interested reader is referred to [19] 
for more details about the micro-benchmarks. 
 
4.2.1. Receiver Side Overlap and Progress. 
Enhancing the receiver side Rendezvous overlap and 
progress ability has been the main goal of this work.  
The performance results depicted in Figure 3 and 
Figure 4 show that the new protocol has been highly 
successful in its objectives.  Improving the receiver 
side overlap ability from less than 10% to more than 
80% (more than 90% in most cases) in both timing 
scenarios can be clearly observed in Figure 3.  In our 
judgment, this is a significant achievement.  In the 
case that the sender arrives first, the initial progress 
engine call at the receiver side has helped to find the 
already arrived RTS message.  Thus, we have now 
achieved the expected level of receiver side overlap 
and progress.  The overlap is more than 80% and the 
progress benchmark latencies are not affected by the 
inserted delay, confirming an independent progress.  

The main achievement of the proposed 
Rendezvous protocol is for the other scenario, in 
which the receiver arrives earlier.  Since the early-
arrival receiver speculatively sends an RTR message, 
the late-arrival sender will find the RTR and start the 
communication (unlike the current protocol where the 
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early-arrival receiver would start communication 
when it receives the RTS from the sender after its 
computation phase).  Therefore, complete progress 
and almost full (more than 92%) overlap is achieved 
during the computation phase.  
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 Figure 3. Current and new Rendezvous 
overlap ability for two timing scenarios. 

 
4.2.2. Sender Side Overlap and Progress. As we 
have targeted the receiver side overlap and progress, 
we do not expect a major change in the send side 
overlap or progress ability.  The results in Figure 3 
and Figure 4 for the send overlap and progress 
comply with our expectations.  Figure 4 presents the 
results for 1MB messages.  Similar results have been 
observed for other long messages. 

Comparing the current and the new send overlap 
results, we observe that except for some message 
sizes when the receiver arrives first, the overlap is 
almost at the same level or even better.  This is a 
good achievement given our protocol has added some 
extra overhead at the send side.  For the case that the 
receiver arrives earlier, the sender side overlap has 
dropped slightly (2-14% based on the message size).  
This could be due to the required RTR processing at 
the sender, before launching the RDMA Write. 

The send side progress results comply with the 
overlap observations.  When the sender arrives first, 
the same negotiation scenario occurs as in the current 

protocol.  Therefore, we see similar progress results.  
However, just like the overlap results for the case that 
the receiver arrives earlier, the new send side 
progress is a bit worse.  Although the corresponding 
results presented in Figure 4 suggest that the latency 
has been shifted by the inserted delay (after a certain 
point), examining the details of latency results 
indicates that only 4-15% of the whole 
communication latency (depending on the message 
size) remains after the inserted delay.   
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These results confirm that MPI has been able to 

make progress in more than 85% of the 
communication, which is in harmony with the 
corresponding overlap results in Figure 3.  This can 
be attributed to the fact that we measure the latency at 
the receiver side to make sure the message has 
completely arrived.  When the receiver arrives earlier 
and sends an RTR, the sender will start the RDMA 
Write after finding the RTR.  Thus, the RDMA Write 
will be overlapped with the sender-side synthetic 
delay, inserted after the non-blocking call.  However, 
the receiver does not finish the operation until 
receiving a done packet from the sender, which is 
sent after the delay.  This affects the benchmark 
latency in the cases that the inserted delay is more 
than the message latency. 



 

5. Conclusions and Future Work 
 

In this work, we analyzed the overlap and 
communication progress ability and shortcomings of 
a polling and RDMA Read based MPI Rendezvous 
protocol on top of RDMA-enabled interconnects.  To 
address its shortcomings, we proposed a novel 
speculative MPI Rendezvous protocol, and 
implemented it on MPICH2 over NetEffect 10-
Gigabit iWARP Ethernet.  Our experimental results 
show that the new protocol is able to improve the 
receiver side progress and overlap ability from almost 
zero to nearly 100%, at the expense of only 2-14% 
degradation for the send side overlap and progress.  
Although we targeted iWARP Ethernet, we believe 
this proposal can be applied directly to any other 
RDMA-enabled networks. 

As for the future work, we would like to evaluate 
the proposed protocol on a larger testbed with some 
real applications.  We also intend to investigate the 
protocol overhead, and study various overhead 
avoidance techniques.  Specifically, we would like to 
improve the adaptability of our design to minimize 
the protocol overhead on applications that may not 
benefit from the proposed receiver-initiated 
Rendezvous protocol. 
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