

Improving Communication Progress and Overlap in MPI Rendezvous
Protocol over RDMA-enabled Interconnects

Mohammad J. Rashti Ahmad Afsahi
Department of Electrical and Computer Engineering

Queen’s University, Kingston, ON, CANADA K7L 3N6
mohammad.rashti@ece.queensu.ca ahmad.afsahi@queensu.ca

Abstract

Overlapping computation with communication is
a key technique to conceal the effect of
communication latency on the performance of
parallel applications. MPI is a widely used message
passing standard for high performance computing.
One of the most important factors in achieving a
good level of overlap is the MPI ability to make
progress on outstanding communication operations.
In this paper, we address some of the communication
progress shortcomings in the current polling and
RDMA Read based Rendezvous protocol used for
transferring large messages in MPI. We then
propose a novel speculative Rendezvous protocol that
uses RDMA Read and RDMA Write to effectively
improve communication progress and consequently
the overlap ability. Performance results based on a
modified MPICH2 over 10-Gigabit iWARP Ethernet
reveal a significant (80-100%) improvement in
receiver side overlap and progress ability.

1. Introduction

Clusters are the predominant platforms for high-
performance computing due to their cost-performance
effectiveness. Interconnection networks and the
communication system software play a key role on
the performance of clusters. In this regard, several
modern networks such as InfiniBand [7], Myrinet
[15], Quadrics [2, 18], and 10-Gigabit iWARP
Ethernet [16, 20] have been introduced. Such
interconnects use OS bypass, and Remote Direct
Memory Access (RDMA) to support efficient and
scalable communications. RDMA is a one-sided
operation, allowing direct data transfer from the
source buffer to the remote destination buffer without
the host CPU intervention or intermediary copies.

Most scientific applications running on clusters
are written on top of Message Passing Interface
(MPI) [12]. MPI implementations typically use two
different protocols for transferring small and large
messages: Eager and Rendezvous. In the Eager
protocol, the sender sends the entire message to the
receiver, where the receiver provides sufficient
buffering space for the incoming messages. This
protocol is mainly used for sending small messages.
The Rendezvous protocol is used for large messages,
where the cost of copying is prohibitive. The sender
and receiver negotiate the availability of the receiver
side buffer before the actual data transfer.

Overlapping computation with communication is
one of the basic techniques in hiding communication
latency, thereby improving application performance.
Using non-blocking communication calls at the
application level [6], supporting independent progress
for non-blocking operations at the messaging layer
[4], and offloading communication processing to the
Network Interface Card (NIC) are the main steps to
achieve efficient overlap.

NICs in modern interconnects are designed to
offload most of the network processing tasks from the
host CPU, providing excellent opportunity for
communication libraries such as MPI to hide the
communication latency using non-blocking calls. To
efficiently utilize the offload engines, non-blocking
communications need to make progress
independently. Most MPI implementations require
subsequent library calls in order to make progress in
outstanding non-blocking calls. This may have a
significant impact on performance when a
computation phase follows a non-blocking call.
Specifically, communication progress becomes more
important for the Rendezvous protocol, where a
negotiation exists prior to the actual data transfer.
This is simply because a non-blocking call may return
without completing the negotiation. In [19], the

authors have shown that how lack of an independent
progress in the MPI Rendezvous protocol on top of
modern interconnects can affect the overlap ability.

While most MPI implementations use polling-
based progress engines, some use interrupts for
communication progress [21]. Although interrupt-
based approaches activate the progress engine any
time communication progress is needed, they impose
high overhead and fluctuation on the communication
time, which cannot be overlooked. Our focus in this
paper is therefore to address current polling-based
protocols’ shortcomings by proposing a novel
speculative Rendezvous protocol that could increase
communication progress and overlap. While current
protocols rely only on the sender to initiate the
Rendezvous, our proposed protocol lets either sender
or receiver initiate the negotiation in order to start the
data transfer before the non-blocking send or receive
call returns. This will enable overlapping any
computation phase following the non-blocking calls.
To the best of our knowledge, this is the first study of
this kind for the MPI Rendezvous protocol.

We have implemented the new protocol on
MPICH2 [13] over 10-Gigabit iWARP Ethernet. Our
assessment is done using overlap and progress micro-
benchmarks for both sender and receiver and for two
timing scenarios, where either the sender arrives first
in the communication call, or the receiver arrives
first. Our experimental results indicate that the new
protocol is able to outperform the current Rendezvous
protocol by effectively improving the receiver side
progress and overlap from almost zero to nearly
100%, at the expense of only 2-14% degradation for
the send side overlap and progress when the receiver
arrives first.

The rest of this paper is organized as follows.
Related work is reviewed in Section 2. Section 3
discusses the proposed Rendezvous protocol. In
Section 4, we present and analyze the experimental
results. Finally, Section 5 concludes the paper.

2. Related work

There has been a few works on overlap and
communication progress in message passing systems.
In [4], the authors compared the impact of six MPI
implementations on application performance running
on two platforms with Quadrics QsNet [17] and
CNIC network interface cards. Their results show
that in almost all benchmarks, combination of
offload, overlap and independent progress
significantly contributes to the performance. The
study in [3] concerns a similar work on IB and
QsNetII [2].

The authors in [5] have proposed an overlap
measurement method for MPI. In their method, the
communication overhead is first computed, and then
application availability is calculated using the
overhead amount. While [8, 23] addresses combined
send and receive overlap, our proposed overlap
measurement method in this paper, along with [5, 22],
target send and receive overlaps separately.

In [19], the authors analyze the overlap and
progress ability in InfiniBand [11], Myrinet-10G [15]
and 10-Gigabit iWARP Ethernet [16], and conclude
that transferring small messages makes an acceptable
level of independent progress. On the other hand, in
most cases, transferring large messages does not
make progress independently, decreasing the chances
of overlap in applications. The results in [19]
confirm that independent progress is required, at least
for data transfer, to achieve high overlap ability with
non-blocking communication. The paper also shows
how different Rendezvous protocols affect overlap
and communication progress in different networks.

On the issue of using interrupts in the
Rendezvous protocol, the solution in [1] is based on
RDMA Write. The authors in [9] have proposed
event-based progress over TCP/IP networks. In [10],
some hardware mechanisms are proposed to combine
interrupts and polling. Researchers have recently
proposed RDMA Read Rendezvous protocols [22]
for MPI to improve communication progress and
overlap. In this work, a traditional two-way
handshake followed by RDMA Write is replaced by a
one-way handshake followed by RDMA Read. The
Authors in [22] also use an interrupt-based scheme to
alleviate the bottleneck when the receiver arrives
first, achieving nearly complete overlap and up to
50% progress improvement in MPI over InfiniBand
relative to the RDMA Write Rendezvous protocol.

The results in [22] and also [19] show that one-
way Rendezvous protocols using RDMA Read help
achieve a good level of overlap and progress at the
send side. However, both one-way Rendezvous (used
in the MVAPICH project [14] and MPICH2 over
iWARP) and two-way Rendezvous (used in the
MVAPICH project [14]) protocols are not able to
provide independent progress and good overlap for
receiving large messages [19].

3. Speculative MPI Rendezvous Protocol

Section 3.1 explains the basics of the proposed
protocol for the two timing scenarios. We will then
discuss the protocol design specification in Section
3.2. Finally, Section 3.3 covers the methodologies to
prevent race and deadlock conditions.

3.1. Protocol Preliminaries

In the current RDMA Read based Rendezvous
protocol [22], used in the implementation of MPI
non-blocking communication calls for large
messages, the sender sends a Request to Send (RTS)
message to the receiver that includes the sender’s data
buffer address. Upon receiving the RTS, the receiver
process will transfer the data using RDMA Read.

Basically, there are two send and receive timing
scenarios in the current Rendezvous protocol that
could happen at runtime: 1) the sender arrives first at
the send call; and 2) the receiver arrives first at the
receive call. The first scenario assumes that when the
receiver arrives at the receive call, the RTS
negotiation message is already in the receive buffer.
Thus, the data transfer can start right away. In the
other scenario, the receiver posts an early non-
blocking call, before receiving the RTS message.
Therefore, the receiver will not be able to start the
RDMA Read based data transfer. In essence, the data
transfer will start afterwards by the progress engine,
activated either by a costly interrupt or in the next
MPI communication call [22]. Thus, any
computation phase after the non-blocking receive call
will delay the start of data transfer [19]. To increase
communication progress and overlap, this paper
proposes a novel method in which the receiver can
also initiate the communication.

3.1.1 Sender Arrives First. Figure 1(a) depicts the
current Rendezvous protocol when the sender arrives
first. In this timing scenario, we expect that a
matching RTS from the sender is present at the
receiver queues, and that the non-blocking receive
call will transfer the data using RDMA Read.
However, due to the one-sided nature of the RDMA
operation used to transfer the RTS from the sender, in
addition to inefficiency in the current implementation
of MPICH2 over RDMA-enabled channels, the
receiver is not able to find the already arrived RTS.
Therefore, a receive request (Rreq) will be enqueued
in the receive queue (Recvq), leaving the
communication progress to a future progress engine
call.

The results presented for both small and large
messages in [19] (over iWARP and IB networks)
highlight the existence of such inefficiency, resulting
in non-independent progress for both Eager and
Rendezvous protocols. Investigating the issue inside
the implementation of MPI prompted us that an initial
progress engine call is needed to put the RTS
message from the channel-related buffers into the

unexpected queue (Unexq). The receiver is then able
to recognize the arrived RTS and take action before
returning from the non-blocking call. This initial
progress engine call is also beneficial for the sender,
as described in Section 3.2.

3.1.2 Receiver Arrives First. Figure 1(b) depicts the
current Rendezvous protocol when the receiver
arrives first. In this timing scenario, the receiver will
enqueue an Rreq in the Recvq, and return from the
non-blocking call. The communication will progress
when the progress engine becomes active by a
subsequent library call. In the current protocol, the
receiver does not start the Rendezvous negotiation
because it is only the sender that knows the
communication mode (e.g. synchronous or ready
mode), and/or the exact size of the message.

However, in our proposal, the early-arrived
receiver predicts the communication protocol based
on its own local message size. If the predicted
protocol is Rendezvous, a message similar to RTS
(we call it Request to Receive or RTR), including the
receive buffer address is prepared and sent to the
sender. At the sender side, if the Rendezvous protocol
is chosen, the arrived RTR message is used to transfer
the data to the receiver using RDMA Write.
Otherwise, if the Eager protocol is chosen, the arrived
RTR will be simply discarded. Figure 2 shows a
sample timing diagram for the proposed receiver-
initiated Rendezvous protocol. Using this protocol,
there is now potential for more progress and overlap.

3.2. Protocol Design Specification

In this section, we will discuss the design and
implementation of the proposed Rendezvous protocol
in MPI library. Basically, the protocol is executed by
three MPI library components: the (non-blocking)
send call, the (non-blocking) receive call, and the
progress engine activated by subsequent library calls.

3.2.1. Non-blocking Receive. Initially, a protocol
prediction is done based on the local message size in
the receive call. In the case of Rendezvous protocol
(large message), an initial progress engine call is
made to place a possibly arrived RTS into the MPI
queues. Then, for either case of the prediction
outcome, the Unexq is checked for a matching
message. If an Eager message is found, it will be
placed into the user buffer and the communication
will be finalized. Otherwise, if a matching RTS is
found, the RDMA Read (data transfer) will be started.

Figure 1. Timing diagram for the Rendezvous protocol in MPICH2-iWARP: (a) sender arrives first,
(b) receiver arrives first.

If no matching is found in the Unexq, the

receiver side will post the Rreq to the Recvq. If the
Eager protocol has been predicted, the receiver
returns from the non-blocking call. On the other
hand, if the Rendezvous protocol has been predicted,
the local memory will be registered and an RTR
message will be prepared and sent to the sender to
initialize the Rendezvous protocol.

3.2.2. Non-blocking Send. A non-blocking send call
will first decide the appropriate protocol. The
protocol selection criteria vary in different
implementations, but they are mainly based on the
message size and the MPI communication mode. In
the case of Eager, the message is transferred eagerly.

Similar to the case for non-blocking receive, if
the Rendezvous protocol is chosen, an initial progress
engine call is invoked, and the Unexq is then
searched for any possibly arrived matching RTR from
the receiver. In case a matching RTR is found, the
sender will immediately initiate the data transfer
using RDMA Write. The send request (Sreq) will be
also enqueued into a send request queue (Sendq) until
the communication is complete. On the other hand, if
no RTR is found, the sender will register the local
memory and start the negotiation by sending an RTS.

3.2.3. Progress Engine. The progress engine’s job in
the proposed protocol is in handling the incoming
RTR and RTS messages as well as finalizing the
communication (that is, sending done packet and
deregistering memory). Handling an incoming RTS
is similar to the current protocol. It is assigned to the
first matching Rreq in the Recvq. Then, the
corresponding data buffer is registered, and the data
is transferred using RDMA Read. If no matching
request is found in the Recvq, the RTS is placed in
the Unexq for future use.

Dealing with RTR is a bit different, though. If
no Sreq is matched against the arriving RTR, the

RTR will be placed in the Unexq to be assigned to a
future Sreq. Otherwise, the RTR will be assigned to
the first matching Sreq in the Sendq that has no RTR
assigned to it. However, there is a possibility that the
RTR from the receive call has been sent
simultaneously with an RTS from the peer send call.
In other words, the RTR and RTS messages may have
crossed each other. In such a case, we disregard the
RTR and let the receiver to perform the RDMA Read.
Therefore, the sender side buffer registration and
RDMA Write will take place only if no RTS has been
sent to the receiver before.

3.3. Race and Deadlock Hazards

Unlike the current Rendezvous negotiation
model, in which only the sender is responsible for
starting the Rendezvous, in the proposed protocol
both the sender and receiver are able to start the
negotiation. Therefore, the new protocol should be
checked for race and deadlock conditions. Due to
space limitations, we will briefly discuss the race and
deadlock conditions, and our proposed solutions.

3.3.1. Ambiguous RTS/RTR Destination Hazard.
Both peer MPI send and receive calls could be the
initiator of the Rendezvous protocol, and neither of
them can determine whether the other peer has
already sent an RTR/RTS message. Thus, when a
matching RTS/RTR arrives, the protocol cannot
determine the matching receive/send call for the
arrived RTS/RTR.

To prevent the above condition, an
acknowledgement (ACK) message will be sent to the
other side when an RTS/RTR is received. This way,
the other side will no longer expect any RTS/RTR
from the send/receive call that sends the ACK. Thus,
the subsequent incoming RTS/RTRs will be assigned
to the next matching send/receive calls.

MPI wait call

Non-blocking
send call

Receiver

Sender

MPI wait call

Rendezvous
complete

Done

Non-blocking
receive call

Rendezvous
RTS

RDMA Read

MPI wait call

Non-blocking
send call

Receiver

Sender

Non-blocking
receive call

MPI wait call Rendezvous
complete

Rendezvous
complete

Done
packet

Rendezvous
RTS

RDMA Read

(a) (b)

Rendezvous
complete

Figure 2. Timing diagram for the proposed Rendezvous protocol when the receiver arrives first.

3.3.2. Mispredicted RTR Race Hazard. Based on
the sender buffer size as well as its preference in
protocol selection, the receiver protocol prediction
may be different than the sender’s decision. If the
receiver mispredicts the Rendezvous protocol, it will
send an RTR, which will not be used by the sender
that is using the Eager protocol. This extra RTR can
be mistakenly assigned to another matching send call
that selects the Rendezvous protocol.

To avoid this hazard, for each message envelope,
each send call transferring an Eager message sets an
Eager-flag. This is used as a warning for the
subsequent matching Rendezvous send calls from the
same process to be aware of the possibility of
mispredicted RTRs. Such RTRs should be dropped.
In addition, a stop-RTR flag is sent to the receiver to
temporarily stop generating the RTR for that message
envelope, until all mispredicted RTRs are dropped.

3.3.3. Deadlock. For a message transfer, deadlock
happens when neither the sender nor the receiver
proceeds with the communication. In the proposed
protocol, there are certain cases that the receiver can
post a request into the Recvq without sending an
RTR. There are also cases that the sender drops the
arrived RTR. However, as described for the send
side in Section 3.2, either an arrived RTR is used or
an RTS is sent to the receiver. Therefore, the
communication will continue either by the sender
using RTR, or by the receiver using RTS. This leaves
no chance for deadlock for any message size.

4. Experimental Results and Analysis

We have implemented the proposed Rendezvous
protocol on MPICH2 over NetEffect 10-Gigabit
iWARP Ethernet. We first describe our experimental
platform, and then analyze the performance results.

4.1. Experimental Framework

The experiments were conducted on Dell
PowerEdge 2850 SMP servers, each with two
2.8GHz Intel Xeon processors (with 1MB L2 cache)

and 2GB SDRAM. The machines run Fedora Core 4
with kernel version 2.6.11. Our iWARP network
consists of the NetEffect NE020 10-Gigabit Ethernet
RNICs [16], each with PCI-Express x8 interface and
CX-4 board connectivity. A Fujitsu XG700-CX4 10-
Gigabit Ethernet switch connects the nodes. We use
MPICH2-iWARP, based on MPICH2 1.0.3 [13] over
NetEffect verbs 1.4.3, which uses the Rendezvous
protocol for messages larger than 128KB.

4.2. Experimental Results

In this section, we use the micro-benchmarks
proposed in [19] to evaluate how the new protocol
may affect overlap and progress. We use two timing
scenarios, to either force the sender to arrive earlier
(to use RTS), or to force the receiver to arrive earlier
(to use RTR). Assessment is done at both sender and
receiver sides. Interested reader is referred to [19]
for more details about the micro-benchmarks.

4.2.1. Receiver Side Overlap and Progress.
Enhancing the receiver side Rendezvous overlap and
progress ability has been the main goal of this work.
The performance results depicted in Figure 3 and
Figure 4 show that the new protocol has been highly
successful in its objectives. Improving the receiver
side overlap ability from less than 10% to more than
80% (more than 90% in most cases) in both timing
scenarios can be clearly observed in Figure 3. In our
judgment, this is a significant achievement. In the
case that the sender arrives first, the initial progress
engine call at the receiver side has helped to find the
already arrived RTS message. Thus, we have now
achieved the expected level of receiver side overlap
and progress. The overlap is more than 80% and the
progress benchmark latencies are not affected by the
inserted delay, confirming an independent progress.

The main achievement of the proposed
Rendezvous protocol is for the other scenario, in
which the receiver arrives earlier. Since the early-
arrival receiver speculatively sends an RTR message,
the late-arrival sender will find the RTR and start the
communication (unlike the current protocol where the

Non-blocking send call

Non-blocking receive call MPI wait call

Receiver

Sender
MPI wait call Rendezvous complete

Rendezvous complete

Done packet RDMA Write
(if Rendezvous)

Speculative RTR
for Rendezvous

early-arrival receiver would start communication
when it receives the RTS from the sender after its
computation phase). Therefore, complete progress
and almost full (more than 92%) overlap is achieved
during the computation phase.

MPICH2-iWARP Overlap Ability
(sender arrives first)

0
20
40
60
80

100

128K 256K 512K 1M
Message size (bytes)

O
ve

rla
p

ra
tio

 (%
)

Send overlap Receive overlap
Send overlap (new) Receiver overlap (new)

MPICH2-iWARP Overlap Ability
(receiver arrives first)

0
20
40
60
80

100

128K 256K 512K 1M
Message size (bytes)

O
ve

rla
p

ra
tio

 (%
)

Send overlap Receive overlap
Send overlap (new) Receiver overlap (new)

 Figure 3. Current and new Rendezvous
overlap ability for two timing scenarios.

4.2.2. Sender Side Overlap and Progress. As we
have targeted the receiver side overlap and progress,
we do not expect a major change in the send side
overlap or progress ability. The results in Figure 3
and Figure 4 for the send overlap and progress
comply with our expectations. Figure 4 presents the
results for 1MB messages. Similar results have been
observed for other long messages.

Comparing the current and the new send overlap
results, we observe that except for some message
sizes when the receiver arrives first, the overlap is
almost at the same level or even better. This is a
good achievement given our protocol has added some
extra overhead at the send side. For the case that the
receiver arrives earlier, the sender side overlap has
dropped slightly (2-14% based on the message size).
This could be due to the required RTR processing at
the sender, before launching the RDMA Write.

The send side progress results comply with the
overlap observations. When the sender arrives first,
the same negotiation scenario occurs as in the current

protocol. Therefore, we see similar progress results.
However, just like the overlap results for the case that
the receiver arrives earlier, the new send side
progress is a bit worse. Although the corresponding
results presented in Figure 4 suggest that the latency
has been shifted by the inserted delay (after a certain
point), examining the details of latency results
indicates that only 4-15% of the whole
communication latency (depending on the message
size) remains after the inserted delay.

MPICH2-iWARP Progress Ability
(sender arrives first)

0
500

1000
1500
2000
2500
3000

0 400 800 1200 1600 2000
Synthetic delay size (sec)

La
te

nc
y(

s)

Send progress Receive progress
Send progress (new) Receiver progress (new)

MPICH2-iWARP Progress Ability
(receiver arrives first)

0

1000

2000

3000

0 400 800 1200 1600 2000

Synthetic delay size (sec)

La
te

nc
y(

s)

Send progress Receive progress
Send progress (new) Receive progress (new)

Figure 4. Current and new Rendezvous
progress ability for two timing scenarios.

These results confirm that MPI has been able to

make progress in more than 85% of the
communication, which is in harmony with the
corresponding overlap results in Figure 3. This can
be attributed to the fact that we measure the latency at
the receiver side to make sure the message has
completely arrived. When the receiver arrives earlier
and sends an RTR, the sender will start the RDMA
Write after finding the RTR. Thus, the RDMA Write
will be overlapped with the sender-side synthetic
delay, inserted after the non-blocking call. However,
the receiver does not finish the operation until
receiving a done packet from the sender, which is
sent after the delay. This affects the benchmark
latency in the cases that the inserted delay is more
than the message latency.

5. Conclusions and Future Work

In this work, we analyzed the overlap and
communication progress ability and shortcomings of
a polling and RDMA Read based MPI Rendezvous
protocol on top of RDMA-enabled interconnects. To
address its shortcomings, we proposed a novel
speculative MPI Rendezvous protocol, and
implemented it on MPICH2 over NetEffect 10-
Gigabit iWARP Ethernet. Our experimental results
show that the new protocol is able to improve the
receiver side progress and overlap ability from almost
zero to nearly 100%, at the expense of only 2-14%
degradation for the send side overlap and progress.
Although we targeted iWARP Ethernet, we believe
this proposal can be applied directly to any other
RDMA-enabled networks.

As for the future work, we would like to evaluate
the proposed protocol on a larger testbed with some
real applications. We also intend to investigate the
protocol overhead, and study various overhead
avoidance techniques. Specifically, we would like to
improve the adaptability of our design to minimize
the protocol overhead on applications that may not
benefit from the proposed receiver-initiated
Rendezvous protocol.

6. Acknowledgement

This research is supported by the Natural
Sciences and Engineering Research Council of
Canada through grant RGPIN/238964-2005, Canada
Foundation for Innovation’s grant #7154, and Ontario
Innovation Trust’s grant #7154. The Authors would
like to thank NetEffect for the resources and technical
support.

7. References

[1] G. Amerson and A. Apon. Implementation and design
analysis of a network messaging module using Virtual
Interface Architecture. In 2004 IEEE International
Conference on Cluster Computing (Cluster’04), pages 255-265,
2004.
[2] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D.
Roweth, F. Petrini, and J. Nieplocha. QsNetII: Defining
high-performance network design. IEEE Micro, 25(4):34-
47, 2005.
[3] R. Brightwell, D. Doerfler and K.D. Underwood. A
comparison of 4X InfiniBand and Quadrics elan-4
technologies. In 2004 IEEE International Conference on
Cluster Computing (Cluster’04), pages 193-204, 2004.
[4] R. Brightwell, R. Riesen and K.D. Underwood.
Analyzing the impact of overlap, offload, and independent
progress for Message Passing Interface applications.

International Journal of High Performance Computing
Applications, 19(2):103-117, 2005.
[5] D. Doerfler and R. Brightwell. Measuring MPI send
and receive overhead and application availability in high
performance network interfaces. In EuroPVM/MPI 2006,
pages 331-338, 2006.
[6] G. Goumas, A. Sotiropoulos and N. Koziris.
Minimizing completion time for loop tiling with
computation and communication overlapping. In 15th
IEEE/ACM International Parallel and Distributed
Processing Symposium (IPDPS’01), 2001.
[7] InfiniBand Architecture, http://www.infinibandta.org/.
[8] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff and D.K. Panda.
Performance comparison of MPI implementations over
InfiniBand, Myrinet and Quadrics. In 2003 ACM/IEEE
Conference on Supercomputing (SC’03), 2003.
[9] S. Majumder, S. Rixner and V.S. Pai. An Event-
driven architecture for MPI Libraries. In Los Alamos
Computer Science Institute Symposium, 2004.
[10] A. Maquelin, G.R. Gao, H.H.J. Hum, K.B. Theobald
and X.-M. Tian. Polling watchdog: combining polling and
interrupts for efficient message handling. In 23rd Annual
International Symposium on Computer Architecture
(ISCA’96), Pages 17–188, 1996.
[11] Mellanox Technologies, http://www.mellanox.com/.
[12] MPI: A Message-Passing Interface standard, 1997.
[13] MPICH2, http://www-unix.mcs.anl.gov/mpi/mpich2/.
[14] MVAPICH, http://mvapich.cse.ohio-state.edu/.
[15] Myricom, http://www.myricom.con/.
[16] NetEffect, Inc., NetEffect NE020 10Gb iWARP
Ethernet channel adapter. http://www.neteffect.com/.
[17] F. Petrini, S. Coll, E. Frachtenberg and A. Hoisie.
Performance evaluation of the Quadrics interconnection
network. Journal of Cluster Computing, 6(2):125-142, 2003.
[18] Y. Qian and A. Afsahi. RDMA-based and SMP-aware
multi-port all-gather on multi-rail QsNetII

 SMP clusters. In
36th International Conference on Parallel Processing
(ICPP 2007), 2007.
[19] M.J. Rashti and A. Afsahi, Assessing the ability of
computation/communication overlap and communication
progress in modern interconnects, In 15th Annual IEEE Hot
Interconnects Symposium (HotI 2007), 2007.
[20] M.J. Rashti and A. Afsahi. 10-Gigabit iWARP
Ethernet: comparative performance analysis with
InfiniBand and Myrinet-10G. In 7th IEEE Workshop on
Communication Architecture for Clusters (CAC’07), 2007.
[21] D. Sitsky and K. Hayashi. An MPI library which uses
polling, interrupts and remote copying for the Fujitsu
AP1000+. In International Symposium on Parallel
Architectures, Algorithms, and Networks, 1996.
[22] S. Sur, H. Jin, L. Chai and D.K. Panda. RDMA Read
based rendezvous protocol for MPI over InfiniBand: design
alternatives and benefits. In 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP 2006), pages 32-39, 2006.
[23] R. Zamani, Y. Qian and A. Afsahi. An evaluation of
the Myrinet/GM2 two-port networks. In 3rd IEEE
Workshop on High-Speed Local Networks (HSLN 2004),
pages 734-742, 2004.

