
Edge Partition of Planar Graphs into
Two Outerplanar Graphs

Daniel Gonçalves
∗

LaBRI, U.M.R. 5800, Université Bordeaux 1
351, cours de la Libération 33405 Talence Cedex, France.

goncalve@labri.fr

ABSTRACT
An outerplanar graph is a planar graph that can be embed-
ded in the plane without crossing edges, in such a way that
all the vertices are on the outer boundary. In this paper,
we prove a conjecture of Chartrand, Geller, and Hedetniemi
that any planar graph G = (V,E) has a bipartition of its
edge set E = A ∪ B such that the graphs induced by these
subsets, G[A] and G[B], are outerplanar.
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General Terms
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1. INTRODUCTION
Much work has been done in partitioning the edge sets of

graphs such that each subset induces a subgraph of a certain
form. See for example the concepts of chromatic index [15] ,
arboricity [13], thickness [12], or the track number of a graph
[11]. In this vein, Chartrand, Geller and Hedetniemi ([2] and
Problem 6.3 in [9]) made the famous [m,n]-conjecture. They
defined the graphs with property Pm as the graphs contain-
ing no subdivision of Km+1 or K�m/2�+1,�m/2�+1. Observe
that the graphs with property P4 (resp. P3) are the planar
graphs (resp. outerplanar graphs). The [m,n]-conjecture
was that any graph with property Pm has an edge partition
into m− n+ 1 graphs with property Pn, for m ≥ n ≥ 2. In
[8], Gutin, Kostochka and Toft proved that the conjecture
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is false when m > cn2, for some constant c. In this paper,
we prove that the conjecture holds for m = 4 and n = 3,
that is, that planar graphs have an edge partition into two
outerplanar graphs. There have been various results toward
this special case of the conjecture. Several proofs have been
claimed, but later proved to be incorrect. Colbourn and
El-Mallah [5] gave a first partial result showing that every
planar graph has an edge partition into two partial 3-trees.
Then Kedlaya [10] and Ding et al. [4] proved that a parti-
tion into two partial 2-trees exists. Another result in [4] is
that planar graphs have an edge partition into two outer-
planar graphs and a vee-forest (each connected component
is a K1,1 or a K1,2).

A simple case of planar graphs that can be divided into
two outerplanar graphs are the hamiltonian planar graphs.
The first outerplanar graph is constructed with the edges
of an hamiltonian cycle together with the edges in the in-
terior of this cycle, and the second one with the edges of
this hamiltonian cycle together with the edges in the exte-
rior of this cycle. There is a lot of flexibility in this type of
partition since the edges of the hamiltonian cycle can be in
both subgraphs. In [16], Whitney proved that 4-connected
triangulations are hamiltonian. In [14], Tutte generalized
this result to 4-connected planar graphs. So we know that
the conjecture holds for 4-connected planar graphs. We note
that with this type of partition the two graphs obtained are
outerplanarly embedded. This means that, given an embed-
ding of the planar graph, the embedding it induces for each
subgraph is such that there is a face containing all the ver-
tices on its boundary. But there is not always a bipartition
into outerplanarly embedded subgraphs. An interesting re-
sult of Kedlaya [10] is that embedded planar graphs cannot
always by partitioned into two outerplanar graphs, one of
them being outerplanarly embedded. This implies for ex-
ample that there are planar graphs with no edge partition
into an outerplanar graph and a forest (forests being always
outerplanarly embedded).

A triangulation is an embedded maximal planar graph.
Since every planar graph is a subgraph of a triangulation
and since every subgraph of an outerplanar graph is outer-
planar, we can restrict our work to triangulations. Given
a triangulation T , let T ∗ be the triangulation created by
adding to T one vertex in each bounded face of T , this ver-
tex being connected to all the vertices of that face. If a
triangulation T ∗ has an edge partition into two outerpla-
nar graphs, then the partition it induces in T also divides
it into two outerplanar graphs. We say that this partition
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Figure 1: An Outerplanar Sprout

of T is extendable. If all the triangulations (e.g. T ∗) have
an edge bipartition into outerplanar graphs, then all the tri-
angulations T have an extendable one. In this paper, we
construct extendable bipartitions because they allow simple
inductions. It is possible to extend to T ∗ an extendable out-
erplanar bipartitions of T , but it is not simple. Consider a
triangulation T with an extendable outerplanar bipartition
A∪B. Let z be the vertex of T ∗ we added in the face uvw of
T . At least two of the edges zu, zv and zw have to be in the
same subset. If we put zu and zv in A, we may destroy the
outerplanarity of T ∗[A]. There are various possible combi-
nations, and we know that at least one is correct. We need
more information on the outerplanar graphs induced by A
and B; It is why we introduce the concept of outerplanar
sprout in the next section. In Section 3 and 4, we present
a theorem that implies the conjecture. In the conclusions,
we discuss on the consequences of our result for other graph
problems, and we raise two open questions.

2. OUTERPLANAR SPROUTS
In a triangulation T , we denote by VT , ET , and FT the

vertex set, the edge set, and the inner face set of T . The
edges and the faces of T are respectively denoted as ab and
abc, according to their adjacent vertices. Given an out-
eplanar graph H , we define its growing capacity function,
ΓH : EH → {0, 1, 2}, of an edge e, as the number of times we
pass through e going around the outer boundary of H , in an
outerplanar embedding of H . The bridges of H have grow-
ing capacity two, the other edges of the outer boundary have
growing capacity one, and the rest of the edges of H have
growing capacity zero. Observe that ΓH(uv) corresponds to
the maximal number of new vertices we can connect to both
u and v while maintaining the outerplanarity of H .

An outerplanar sprout S = (S, σ) is defined in a given
triangulation T . The first element of this pair is an edge set
S ⊆ ET that induces an outerplanar graph T [S]. The second
element is a function σ : ET −→ P2(FT ). If uv ∈ S, then we
have σ(uv) ⊆ {uvx, uvy}, where uvx and uvy are the two
faces incident to uv in T , and ΓT [S](uv) − |σ(uv)| ≥ 0. If
uv /∈ S, then σ(uv) = ∅. With these outerplanar sprouts,
it will be easier to extend a bipartition of T to T ∗ : Let
ET = A∪B be an edge bipartition of T into two outerplanar
graphs. If A is the edge set of an outerplanar sprout A =
(A,α) and if the face uvw is in α(uv) then if we add a vertex
z in uvw linked to u, v and w, we know that we can add
the edges uz and vz to A (since, ΓT [A](uv) ≥ |α(uv)| ≥ 1),
and the edge wz in B while keeping the graphs induced by
A and B outerplanar. If f ∈ α(e) we allow the outerplanar

Figure 2: The graph S3

Figure 3: Lemma 1

sprout A to expand its 2-connected component containing
the edge e inside the face f . So the function of α is to
indicate how some 2-connected components of A can grow.
When drawing an outerplanar sprout A = (A,α), we will
denote the fact that a face f belongs to α(e), for an edge e,
by drawing an arrow from e to f (see Figure 1).

Next we extend some concepts of outerplanar graphs to
outerplanar sprouts. For the rest of the section we consider
two outerplanar sprouts A = (A,α) and B = (B, β) in a
triangulation T . The outerplanar sprout A is a connected
component of B if T [A] is a connected component of T [B]
and if α(e) = β(e) over A. We say that A and B intersect
in the subgraph G = (VT [A]∩VT [B], A∩B) of T . The outer-
planar sprout A is spanning, if the vertex set of T [A] is VT .
The outerplanar sprout A is chordal, if T [A] is chordal, this
is without chordless cycle of length more than three. The
outerplanar sprout A is S3-free (see Figure 2 for S3), if T [A]
is S3-free, this is without subgraphs isomorphic to S3. The
growing capacity function ΓA : A → {0, 1, 2} of the outerpla-
nar sprout A is equal to ΓT [A](e)−|α(e)|, for any edge e ∈ A.
ΓA denotes the remaining growing capacity of the outerpla-
nar graph T [A], considering the constraints imposed by α.
Observe that ΓA(uv) corresponds to the maximal number
of vertices w /∈ VT [A] adjacent to both u and v such that
adding the edges uw and vw to A and extending α to them
with |α(uw)| ≤ 1 and |α(vw)| ≤ 1, the pair A = (A,α) re-
mains an outerplanar sprout. We define the bridges of A as
the edges e ∈ A with growing capacity two. These are the
bridges e of T [A] with α(e) = ∅. We say that A covers the
edge e (resp. the face f) if e ∈ A (resp. f ∈ α(e), for some
e ∈ A).

We define the union of two outerplanar sprouts A ∪ B as
the pair (M,µ) where M = A ∪ B and µ(e) = α(e) ∪ β(e),
for any edge e. Note that the union of two outerplanar
sprouts may not be an outerplanar sprout, if T [M ] is not an
outerplanar graph, or if ΓT [M](e)− |µ(e)| < 0 for some edge
e ∈ M . In the next lemmas, we present some cases in which
the union produces an outerplanar sprout. These lemmas
are used in the proofs of Theorem 1 and Theorem 2, it is
why we just deal with some specific cases.
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Figure 4: Lemma 2

Lemma 1. If two chordal outerplanar sprouts, A and B,
intersect in at most one vertex, their union M = (M,µ) =
A ∪ B is also a chordal outerplanar sprout. Then ΓM(e) =
ΓA(e), for e ∈ A, and ΓM(e) = ΓB(e), for e ∈ B. Further-
more, if two vertices are in distinct connected components of
A (resp. B) they remain in distinct connected components
in M.

Proof. The graph T [M ] is clearly outerplanar, and this
union cannot produce any new chordless cycle. Since ΓT [M]

equals T [A] or T [B], the same occurs with ΓM, ΓA and
ΓB.

Let us observe some implications of this lemma needed in
the proofs of Theorem 1 and Theorem 2. Since the growing
capacity does not change, note that the bridges of A and B
are still bridges in M. This lemma confirms that an out-
erplanar sprout is the union of its connected components.
Another simple example of this lemma is when B is just a
bridge (B = {uv} and β(uv) = ∅) such that u ∈ VT [A] and
v /∈ VT [A]. This implies that, if an edge e ∈ ET has just one
end in VT [A] and if we add this edge to A and let α(e) = ∅,
then A remains an outerplanar sprout.

Lemma 2. If two chordal outerplanar sprouts, A and B,
intersect in a path P = (v1, ..., vk) such that the edges vivi+1

are bridges of B, their union M = (M,µ) = A ∪ B is also
a chordal outerplanar sprout. Then ΓM(e) = ΓA(e), for
e ∈ A, and ΓM(e) = ΓB(e), for e ∈ B\A. Furthermore, if
two vertices are in distinct connected components of A (resp.
B) they remain in distinct connected components in M.

Proof. Remove the edges of the path from B, and then
just apply Lemma 1 for each connected component of B.

Lemma 3. If two chordal outerplanar sprouts, A and B,
intersect in an edge e1 such that ΓA(e1) ≥ 1 and ΓB(e1) ≥ 1,
their union M = (M,µ) = A ∪ B is also a chordal outer-
planar sprout. Then ΓM(e) = ΓA(e), for e ∈ A\{e1}, and
ΓM(e) = ΓB(e), for e ∈ B\{e1}. Furthermore, if two ver-
tices are in distinct connected components of A (resp. B)
they remain in distinct connected components in M.

Proof. If e1 is a bridge in A or B, then just apply Lemma
2. Otherwise, if e1 is a bridge in T [A] (resp. T [B]) with
α(e1) = {f}, then remove e1 from A, add f to β(e1) (since
ΓB(e1) ≥ 1) and then add each connected component of A
using Lemma 1.

Figure 5: Lemma 3

Figure 6: Lemma 4

Otherwise, if e1 is, in both T [A] and T [B], an edge of the
outer boundary of a 2-connected component, with α(e1) =
β(e1) = ∅. In this case outerplanarly draw T [A] in the plane,
in such a way that T [A] is in a half-plane delimited by a line
prolonging e1. Then, outerplanarly draw T [B] in the other
half-plane. It is clear that the graph obtained is outerplanar
and that ΓM differs just for e1.

Let us observe some implications of this lemma needed
in the proofs of Theorem 1 and Theorem 2. Let uv be an
edge of A with ΓA(uv) ≥ 1. If B is such that B = {uv}
and β(uv) = {uvw} the lemma just shows us that, since
ΓA(uv) ≥ 1, we can add the face uvw to α(uv). Another
simple example of this lemma is when B forms a face (B =
{uv, vw, uw}, β(uv) = β(uw) = ∅ and β(vw) = {uvw}).
This implies that, if a face uvw ∈ FT has an incident edge
uv ∈ ET [A] such that ΓA(uv) ≥ 1 and if we add the edges
uw and vw to A and let α(uw) = ∅ and α(vw) = {uvw},
then A remains an outerplanar sprout.

Lemma 4. Consider a chordal outerplanar sprout A and
a face uvw ∈ FT , such that the edges uw and vw are in
A with ΓA(uw) = 2 and ΓA(vw) ≥ 1. If we add this face
uvw to α(uw) and the edge uv to A with α(uv) = ∅, then A
remains a chordal outerplanar sprout. The growing capacity
ΓA(e) remains unchanged for every edge e ∈ A\{uw, vw, uv}
; for the edge uv, ΓA(uv) = 1. Furthermore, if two vertices
were in distinct connected components of A they remain in
distinct connected components.

Proof. See Figure 6.
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3. THE GENERAL CASE
The following theorem is the main result of this paper (see

the sktech on the right of Figure 7).

Theorem 1. Given a triangulation T and any external
vertex triplet (a, b, c) of T , there are two spanning chordal
outerplanar sprouts A = (A,α) and B = (B, β) that cover
all the edges and all the inner faces of T such that :

• A is connected.

• B has two connected components, one with b and one
with c.

• The edge ab is in A and ΓA(ab) ≥ 1.

• The edge bc is a bridge of A (i.e. ΓA(bc) = 2).

• The edge ac is a bridge of B (i.e. ΓB(ca) = 2).

All triangulations are 3-connected. The 4-connected tri-
angulations are the triangulations in which each cycle of
length three delimits a face. A separating 3-cycle is a cycle
of length three that does not delimit a face. If a triangu-
lation T has a separating 3-cycle we can split T into two
smaller triangulations, the first one, Tint, with the edges of
the cycle and the edges inside the cycle, and the other one,
Text, with the edges of the cycle and the edges outside the
cycle.

Proof. We now proceed by induction on the number of
vertices in T . If T is a 4-connected triangulations, the proof
follows from Theorem 2 presented in the next section. So
we assume that T is not 4-connected and let C be one of its
separating 3-cycles. Let Tint and Text be the two triangu-
lations respectively in the interior and in the exterior of C.
They both have less vertices than T so that the induction
hypothesis holds. Let Aext = (Ae, αe) and Bext = (Be, βe)
be the two outerplanar sprouts in Text for the triplet (a, b, c).
Now consider the face delimited by C in Text. The induc-
tion hypothesis ensures that this face is covered by Aext or
Bext. Without loss of generality let Aext be a sprout cover-
ing this face. We denote by a′, b′ and c′ the vertices of C,
so that a′b′ ∈ Ae and a′b′c′ ∈ αe(a

′b′) (see Figure 7). Note
that, since bc and ac are bridges, we have that a′b′ �= bc and
a′b′ �= ac. By the induction hypothesis, let Aint = (Ai, αi)
and Bint = (Bi, βi) be the two outerplanar sprouts in Tint

for the triplet (a′, b′, c′).
We want to construct A and B by respectively consider-

ing the union of Aext with Aint and the union of Bext with

Bint; but we have to slightly modify Aext, Aint and Bint

before. First, since there is no more face delimited by C to
be covered in T , we remove this face from αe(a

′b′). Since
there is one element less in αe(a

′b′), the growing capacity
ΓAext(a

′b′) increases by one. Secondly, the edges b′c′ and
c′a′ being already covered by Aext or Bext we remove them
from Aint and Bint. Since b′c′ was a bridge of Aint, by
removing it from Aint, we have not uncovered any face of
Tint, and now b′ and c′ are in distinct connected compo-
nents of Aint. Similarly, since a′c′ was a bridge of Bint, by
removing it from Bint, we have not uncovered any face of
Tint. Furthermore, since b′ was already in a distinct con-
nected component from a′ and c′, now a′, b′ and c′ are in
three distinct connected components of Bint. Now we can
let A = Aext ∪Aint and B = Bext ∪ Bint.

Now we prove that A and B are well-defined spanning
chordal outerplanar sprouts. For B, let the outerplanar
sprouts B1

int, B2
int, and B3

int be the connected components
of Bint. We have that B = Bext∪B1

int∪B2
int∪B3

int. Since a′,
b′ and c′ are in distinct components Bi

int, for each of these
unions, the outerplanar sprouts have at most one vertex in
common. So, by Lemma 1, we have that B is a well-defined
spanning chordal outerplanar sprout where ΓB(ca) = 2 and
with b and c in distinct connected components. Further-
more, since Bext is spanning (it covers a′, b′, and c′), none
of the Bi

int creates a new connected component. So there are
still two connected components, one with b and one with c.
For A, let the outerplanar sprouts A1

int and A2
int be the

connected components of Aint, such that a′b′ is in A1
int. We

have that A = Aext ∪A1
int ∪A2

int. Since ΓAext(a
′b′) has de-

creased by one, we have that ΓAext(a
′b′) = 2, if a′b′ = ab, or

that ΓAext(a
′b′) ≥ 1, if a′b′ �= ab. We know that the union

of Aext with A1
int is correct, by Lemma 2 if a′b′ = ab, or by

Lemma 3 otherwise. For the other union, since the outerpla-
nar sprouts intersect in at most one vertex, c′, we can apply
Lemma 1. We then obtain that A is a well-defined chordal
outerplanar sprout with ΓA(ab) ≥ 1 and ΓA(ca) = 2. Since
Aext and Aint were spanning, and since all the Ai

int intersect
Aext, A is spanning and connected.

Since all the edges and all the inner faces were covered
before the unions, they are all covered by A or B.

Note that if the face delimited by C in Text was covered
by Bext, instead of Aext, the only difference would be that
B = Bext ∪ Aint and A = Aext ∪ Bint.
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4. PARTIAL 4-CONNECTED
TRIANGULATIONS

Given a cycle C in a triangulation T , we say that the graph
T ′ induced by the edges of C and the edges inside C is a
partial triangulation. We say that T ′ is a partial 4-connected
triangulation if T is a 4-connected triangulation. In this
case, T ′ may not be 4-connected but it has no separating
3-cycles. Consider a partial 4-connected triangulation T ′

bounded by the cycle C, and let C be partitioned into three
paths of length at least one denoted (a1a2...ap), (b1b2...bq)
and (c1c2...cr) with ap = b1, bq = c1, cr = a1. We say
that T ′ is (a1a2...ap)-(b1b2...bq)-(c1c2...cr)-bounded, or that
(a1a2...ap)-(b1b2...bq)-(c1c2...cr) is the 3-bound of T ′, if there
are no chords aiaj , bibj or cicj .

Theorem 2. Any (a1...ap)-(b1...bq)-(c1...cr)-bounded par-
tial 4-connected triangulation T has two spanning chordal
outerplanar sprouts A = (A,α) and B = (B, β) that cover
all the edges and all the inner faces of T and such that :

• A is connected.

• B has two connected components, one with b1 and one
with bp.

• The edge a1a2 is in A and ΓA(a1a2) ≥ 1.

• The edges aiai+1 are bridges of B, for i ≥ 2 (i.e.
ΓB(aiai+1) = 2).

• The edges bibi+1 are bridges of A (i.e. ΓA(bibi+1) =
2).

• The edges cici+1 are bridges of B (i.e. ΓB(cici+1) = 2).

• A and B are outerplanarly embedded.

• A and B are S3-free.

This theorem implies Theorem 1 for 4-connected triangu-
lations. Given a 4-connected triangulation T and a triplet
(a, b, c) of its vertices on the outer boundary, we can apply
Theorem 2 to T and the 3-bound (ab)-(bc)-(ca) and obtain
two sprouts A and B that satisfy all the conditions of The-
orem 1.

Proof. Note that the two last items are consequences of
the rest of the theorem. If A was not outerplanarly em-
bedded, it would have a cycle and a vertex inside. A being

chordal, this vertex would be inside a cycle of length three,
contradicting the definition of partial 4-connected triangu-
lation (Without separating 3-cycle). If A had a subgraph
S3 outerplanarly embedded, it would be impossible to cover
the face in the center. So, we focus on the other properties.

Now we proceed by induction on the number of vertices in
T . The base case is the K3 with its (a1, a2)-(b1, b2)-(c1, c2)-
bound. For this graph, we set A = {a1a2, b1b2}, B = {c1c2},
α(a1a2) = {a1b1c1}, α(b1, b2) = ∅ and β(c1c2) = ∅. Now to
prove the induction, we consider different cases according to
the presence of a chord aibj or aicj in T .

Case 1: There is a chord aibj, for i ≥ 2 (Figure 8).
First note that i �= p and j �= 1; otherwise, we would have a
chord b1bj or a chord aiap. If there are various such edges,
we consider the one that maximizes j, so there is no edge
aibk with k > j. We split T into two smaller partial 4-
connected triangulations, Tl and Tr, which are respectively
to the left and to the right of aibj . Each of these partial
triangulation has a 3-bound. For Tl (resp. Tr), we con-
sider (a1a2...ai)-(aibj ...bk)-(c1...ck) (resp. (aibj)-(bj ...b1)-
(ap...ai)). Indeed, there is no chord akal, bkbl, or ckcl and
no chord aibk, for k > j. The partial triangulation Tl (resp.
Tr) having also less vertices than T , since b1 /∈ VTl (resp.
a1 /∈ VTr ), we can apply the induction hypothesis for these
3-bounds and let Al and Bl (resp. Ar and Br) be its two
covering outerplanar sprouts.

Now let A = Ar ∪ Al and B = Bl ∪ Br. Since Al and
Ar have just the edge aibj in common and since it is a
bridge of Al, A is a well-defined spanning chordal outer-
planar sprout, by Lemma 2. Lemma 2 also implies that
a1a2 ∈ A with ΓA(a1a2) ≥ 1 and that all the edges bibi+1

are bridges of A. Since Bl and Br have just the vertices ai

and bj in common and since these vertices are in distinct
connected components of Br, B is a well-defined spanning
chordal outerplanar sprout, by Lemma 1. This lemma im-
plies that all the edges cici+1 and all the edges aiai+1, for
i ≥ 2, are bridges of B. It also implies that the vertices ai

and bp are in distinct connected components of B, as they
were in Bl. So, ai and b1 being in the same connected com-
ponent of B, b1 and bp are in distinct connected components
of B. Finally, since all the edges and all the inner faces of
Tl and Tr were covered, all the edges and all the inner faces
of T are now covered by A or B.
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Case 2: There is a chord aicj, for i ≥ 2 (Figure 9).
This case is very similar to the previous one. Since the
case with a chord aic1 has already been treated, let j �= 1
Since there is no chord a1ai, let j �= r. If there are var-
ious such edges, we consider the one that maximizes i, so
there is no edge cjak with k > i. We split T into two
smaller partial 4-connected triangulations, Tl and Tr, which
are respectively to the left and to the right of aicj . Each
of these partial triangulations has a 3-bound. For Tl (resp.
Tr), we consider (a1a2...ai)-(aicj)-(cj ...ck) (resp. (cjai...ap)-
(b1...bq)-(c1...cj)). Indeed, there is no chord akal, bkbl or ckcl

and no chord cjak, for k > i. The partial triangulation Tl

(resp. Tr) having also less vertices than T , since c1 /∈ VTl

(resp. cr /∈ VTr ) we can apply the induction hypothesis for
these 3-bounds and let Al and Bl (resp. Ar and Br) be the
two covering outerplanar sprouts.

Now let A = Ar ∪ Al and B = Br ∪ Bl. Since Al and Ar

have just the edge aicj in common and since it is a bridge
of Al, by Lemma 2, we have that A is a well-defined span-
ning chordal outerplanar sprout. Lemma 2 also implies that
a1a2 ∈ A with ΓA(a1a2) ≥ 1 and that all the edges bibi+1

are bridges of A. Since Bl and Br have just the vertices ai

and cj in common and since these vertices are in distinct
connected components of Bl, by Lemma 1, we have that B
is a well-defined spanning chordal outerplanar sprout. This
lemma implies that all the edges cici+1 and all the edges
aiai+1, for i ≥ 2, are bridges of B. It also implies that the
vertices b1 and bp are in distinct connected components of
B, as they were in Br. Finally, since all the edges and all
the inner faces of Tl and Tr were covered, all the edges and
all the inner faces of T are now covered by A or B.
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Figure 11: Case 4

Case 3: There is a chord a1b2 and p = 2 (Figure 10).
Observe that q > 2; otherwise, we would have a chord
c1cr. We denote by T ′ the partial 4-connected triangulation
bounded by (a1b2...bqc2...cr−1). Considering the 3-bound
(b2a1)-(cr...c1)-(bq...b2), we apply the induction hypothesis
and let A′ and B′ be its two outerplanar sprouts. We just
have to add a1b1b2 to α(b2a1), using Lemma 3, and add the
edges b2b1 and a1a2 to B with β(b2b1) = β(a1a2) = ∅, using
Lemma 1, to obtain the desired outerplanar sprouts.

Case 4: There is no such chord (Figure 11). Let d1 be
a neighbour of b1 and b2. This vertex is not in the outer
boundary of T ; otherwise, we would have a chord apx. Since
there is no separating 3-cycle in T there is a face b1b2d1. Let
Na be the set of neighbours of the vertices ai for i ≥ 2, ex-
cluding the vertices ai with i ≥ 2 and the vertex b2. This
set contains the vertices d1 and a1 and induces a connected
graph. Let (d1d2...dsa1) be the shortest path in this induced
graph from d1 to a1. Note that, by the construction, this
path has no chord. Let T ′ be the partial 4-connected trian-
gulation bounded by the cycle (b2...bqc2...crds...d1b2)). We
observe that there could be in T ′ a chord linking d1 to bi, for
i ≥ 3, or a chord linking b2 to x, x being cr or a vertex dj , for
j ≥ 2; but we cannot have both. So T ′ is either 3-bounded
by (b2d1...dscr)-(cr...c1)-(bq...b2) or by (d1b2...bp)-(c1...cr)-
(crds...d1). Since T ′ has less vertices than T (b1 /∈ VT ′)
we can use the induction hypothesis with one of these 3-
bounds. Unlike the notations of Theorem 2, we denote as
B = (B,β) the outerplanar sprout covering the edge d1b2
and as A = (A,α) the other one. With both 3-bounds, we
obtain two outerplanar sprouts with similar characteristics.
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Indeed, in both cases, the edge d1b2 ∈ B with ΓB(d1b2) ≥
1, all the edges cici+1 are bridges of B, all the edges bibi+1,
the edge didi+1, and the edge dscr are bridges of A, and the
vertices c1 and cr are in distinct connected components of
A.

We now extend A and B to construct the two outerplanar
sprouts covering T . We start with the face b1b2d1. Using
Lemma 3, we add this face to β(d1b2). Then, since d1 and
b2 are in distinct connected components of A, using Lemma
1, we add the edges b1d1 and b1b2 to A with α(b1d1) =
α(b1b2) = ∅. Now the partial triangulation bounded by
(b1...bqc2...crds...d1b1) is covered by A and B, and the edges
cici+1 are bridges of B while the other edges on the outer
boundary are bridges of A.

Consider an ordering of the edges dxay with y ≥ 2 from
the right to the left. The edge dxay appears before dzaw if
x < z or if x = z and y > w. We now present a process
that will extend A and B. In each step of this process, a new
edge dxay is covered by A following the ordering we defined.
At a given step of this process, if we denote as dxay the last
edge added in A, the spanning chordal outerplanar sprouts
A and B are such that :

• All the edges and all the inner faces of the partial tri-
angulation bounded by (dxay...apb2...bqc2...crds...dx)
are covered by A or B.

• A is connected

• B has two connected components, one with b1, and one
with bp.

• The edge dxay is in A and ΓA(dxay) ≥ 1.

• The edges aiai+1 for i ≥ y are bridges of B.

• The edges bibi+1 are bridges of A.

• The edges cici+1 are bridges of B.

• The edge crds and the edges di+1di for i ≥ x are
bridges of A.

Note that these conditions are satisfied at the beginning
of the process when d1ap is the only edge of the ordering
covered by A. For a given step, we denote by dxay the last
edge of the ordering covered by A and by dzaw the next one.
We have to consider different cases according to the relation
between dzaw and dxay.
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Figure 13: Case B
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Figure 14: Case C

Case A: z = x and w = y − 1 (see Figure 12). Since
there are no separating 3-cycles, there is a face dxayaw.
Using Lemma 3, we add dxayaw to α(dxay). Then, using
Lemma 1, we add the edge dxaw to A (resp away to B) with
α(dxaw) = ∅ (resp. β(away) = ∅). All the conditions are
fulfilled and we can proceed to the next step.

Case B: z = x and w < y − 1 (see Figure 13). We de-
note by e1 = ay, e2, ..., et and aw the neighbours of dx,
going from ay to aw. There are at least two vertices ei; oth-
erwise, there would be a chord away. Since ΓA(dxe1) ≥ 1,
according to Lemma 3 we add to A the edges dxe2 and
e1e2 with α(dxe2) = ∅ and α(e1e2) = {dxe1e2}. We simi-
larly add the edges dxei and eiei−1 until reaching et. Then
according to Lemma 1 we add the edge awet to B with
β(awet) = {awetdx}.

Consider now the partial 4-connected triangulation T ′′

bounded by (aw...aye2...etaw). There is no chord eiej ; oth-
erwise, (eiejdx) would be a separating 3-cycle. So T ′′ is
3-bounded by (etaw)-(aw...ay)-(e1...et). We apply the in-
duction hypothesis and obtain two outerplanar sprouts A′′

and B′′. By Lemmas 1 and 2, let A = A∪B′′, and by Lem-
mas 1 and 3, let B = B∪A′′. All the conditions are satisfied
and we can proceed to the next step.

Case C: z = x+ 1 and w = y (see Figure 14). We con-
sider the face aydxdz and by Lemma 4 we add the edge dzay

to A with α(dzay) = ∅ and put aydxdz in α(dxdz). All the
conditions are satisfied and we can proceed to the next step.

Case D: z = x + 1 and w < y (see Figure 15). We de-
note by e1 = ay, e2, ..., et and dz the neighbours of dx going
from ay to dz. There are at least two vertices ei; other-
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wise, we would have the previous case with w = y. Since
ΓA(dxay) ≥ 1, according to Lemma 3 we add to A the edges
dxe2 and e2ay with α(dxe2) = ∅ and α(e2ay) = {dxe2ay}.
We similarly add the edges dxei and eiei−1 until reaching
et. Then according to Lemma 4 we can add the edge dzet

to A with α(dzet) = ∅ and put the face dxdzet in α(dxdz).
We denote by f1 = aw, f2, ..., fu = et the neighbours of

dz going from aw to et. Using Lemma 1, we add the edge
dzf1 to A with α(dzf1) = ∅. Then according to Lemma 3
we add the edges dzfi and fi−1fi to A with α(dzfi) = ∅ and
α(fi−1fi) = {dzfi−1fi} until reaching fu−1. Then, using
Lemma 1, we put the edge fu−1fu in B with β(fu−1fu) =
{fu−1fudz}.

Consider now the partial 4-connected triangulation T ′′

bounded by (aw...aye2...etfu−1...f1). There is no chord eiej

(resp. fifj); otherwise, (eiejdx) (resp. (fifjdz)) would
be a separating 3-cycle. So T ′′ is 3-bounded by (fu...f1)-
(aw...ay)-(e1...et). We apply the induction hypothesis and
obtain two outerplanar sprouts A′′ and B′′. Let A = A∪B′′

by applying Lemma 2 with the path (e1...et) and then with
the path (f1...fu−1). Using Lemmas 1 and 3, let B = B∪A′′.
All the conditions are fulfilled and we can proceed to the
next step.

This process terminates with an edge dsay, where y ≥ 2.
Now we have just two more cases to complete the proof.

Case E: y = 2 (see Figure 16). In this case, we simply
use Lemma 4 to add the edge a1a2 to A with α(a1a2) = ∅
and put the face dsa1a2 in α(a1ds). Then we finally ob-
tain the two outerplanar sprouts A and B that fulfill all the
conditions of the theorem.
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Figure 17: Case F

Case F: y > 2 (see Figure 17). We denote by e1 = ay,
e2 , ..., et = a1 the neighbours of ds going from ay to a1.
There are at least three vertices ei; otherwise, there would
be a chord a1ay. Since ΓA(dse1) ≥ 1, according to Lemma
3 we add to A the edges dse2 and e2e1 with α(dxe2) = ∅
and α(e2e1) = {dxe2e1}. We similarly add the edges dxei

and eiei−1 until reaching et−1. Then according to Lemma
4 we add the edge et−1et to A with α(et−1et) = ∅ and put
the face et−1etds in α(etds).

Consider now the partial 4-connected triangulation T ′′

bounded by (a1...aye2...et−1). There is no chord eiej ; other-
wise, (eiejds) would be a separating 3-cycle. So we consider
the following 3-bound of T ′, (a2a1)-(et...e1)-(ay...a2). We
apply the induction hypothesis and obtain two outerplanar
sprouts A′′ and B′′. Using Lemma 2, let A = A ∪ A′′, and
using Lemma 1, let B = B ∪ B′′. Then we finally obtain the
two outerplanar sprouts A and B that fulfill all the condi-
tions of the theorem.

5. CONCLUSION
The proof being constructive, using appropriate data struc-

tures, we easily obtain a linear-time algorithm that, given a
planar graph, computes a bipartition of its edges into two
outerplanar graphs.

Observe that in a triangulation with n vertices, there
is a gap between 6n − 6 (= 2 × (3n − 3)), the number
of edges or faces covered by two outerplanar sprouts, and
5n− 11 (= 3n− 6+ 2n− 5), the number of edges and inner
faces. Nevertheless, it is impossible for any planar graph,
to cover k times its edges with s outerplanar subgraphs,
if s

k
< 2. Indeed, in K2,2s+1 (with vertex sets {a1, a2} and

{b1, ..., b2s+1}), since outerplanar graphs are K2,3-free, there
is at least one path (a1, bi, a2) that is included in none of the
outerplanar subgraphs. So there are at least k subgraphs
covering the edge a1bi, and k other subgraphs covering a2bi.
So, s ≥ 2k. This implies, since we have ratio 2, that our
result is tight in this sense.

The track number t(G) of a graph G, is the minimal num-
ber of interval subgraphs of G needed to cover the edges of
G. In [6], it is proved that planar graphs have track number
at most four, and in [7], it is proved that this bound is tight.
Since outerplanar graphs have track number two [11], our
result provides a new proof of the upper bound four.

The thickness θ(G) (resp. outerthickness θo(G)) of a graph
G is the minimal number of planar (resp. outerplanar) sub-
graphs we need to cover all the edges of G (see [12] for a
survey). We now have the relation θo(G) ≤ 2 × θ(G), for
any graph G.
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This result has also consequences in universal graphs: It
decreases the number of vertices needed to construct a graph
containing, as induced subgraphs, all planar graphs with a
fixed number of vertices and a fixed maximum degree [3].

In [4], it is proved that if a graph G can be embedded in a
surface S , then its edge set has a bipartition into two graphs
with bounded tree-width. We can extend the definition of
outerplanar graphs to other surfaces. Given a surface S ,
we say that a graph H is outer-S if it can be embedded in
S in such a way that there is a face with all the vertices
of H in its boundary. Can any graph embedded in S be
edge-partitioned into two outer-S graphs ? It is true for 5-
connected toroidal triangulations. In [1], the authors proved
that 5-connected toroidal triangulations have a contractible
hamiltonian cycle. In this case the triangulation is divided
into an outerplanar graph and an outertoroidal graph. Can
any graph embedded in S be edge-partitioned into an out-
erplanar graph and an outer-S graph ?
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