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A b s t r a c t  

Although there are polynomial algorithms of finding a 2-partition or a 3-partition for 
a simple undirected 2-connected or 3-connected graph respectively, there is no general 
algorithm of finding a k-partition for a k-connected graph G = (V, E), where k is the 
vertex connectivity of G. In this paper, an O(k2n 2) general algorithm of finding a 
k-partition for a k-connected graph is proposed, where n -- IV]. 

K e y w o r d s :  Graph algorithm, graph vertex connectivity, k-partition of a graph. 

1 I n t r o d u c t i o n  

Let G = (V, E )  be a simple undirected graph. V and E represent the vertex set and the 
edge set of G respectively, n = IVI and m -- IEI. Two vertices u, v are said to be adjacent  if 
the edge e -- (u, v) E E.  The  number  of edges incident to a vertex v E V is called the degree 
of v. G is connected if for any u, v E V, there is a pa th  in G joining u and v; otherwise G 
is unconnected.  A vertex cut  of a connected graph  G is a subset V r of  V such tha t  G - V '  
becomes disconnected,  where G - V ~ is the subgraph  of G gained by deleting all vertices of 
V ~ and those edges incident to the vertices of  V '  from G. G is called k-connected graph if 
the min imum vertex cut  of G consists of k vertices of  G, while k is called the connect ivi ty  of 
G and noted as k(G). If  G is a complete graph,  k(G) is defined as n - 1. T h r o u g h o u t  this 
paper  we assume tha t  V -- {1, 2 , - . . ,  n}, and N, R represent the na tura l  number  set and the 
real number  set respectively. 

Let  G' be a subgraph  of  G. We use the symbols V(G') and E(G') to denote  the  vertex 
set and edge set of G' .  A subtree of G is a connected subgraph of G wi thout  cycles in it. 
Let V ~ be a subset  of  V. The  subgraph of G whose vertex set is V ~ and whose edge set is 
the set of  those edges  of  E incident to the vertex of  V ~ is called the  subgraph  of  G induced 
by V ~ and is denoted  by G [V' ] .  The  problem of finding a k-par t i t ion of G is described as 
follows. 

Inpu t  (1) G -- (V, E) :  a simple undirected graph;  
(2) a l ,  a2,...,a~: k different vertices of G; 
(3) n l ,  n 2 , . ' - ,  nk: k positive integers such tha t  n l  + n2 + . . .  -{- •k = n. 

O u t p u t  (V1, V 2 , . . . ,  Vk), for all i, 1 < i < k, such tha t  
(t) a~ e v~; 
(2) G[Vi] is a connected subgraph of  G; 
(3) [Vii -- ni and Vi N Vj = r for i ~ j .  
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An example of 3-partition of a 3-connected graph is given in Fig.l, and the applications 
of the k-partition of a graph G are given in [1]. 

ll 3 
Fig. 1 

Obviously, it is not always the case that for any graph G and for a k  9 N (k > 1), a k- 
partition of G exists and it has been proved that  for a general graph G, to find a k-partition 
of G is an NP complete problem [2]. In this paper, we limit G to be a k-connected graph. 
Gyhri [3] and Lovs [4] proved that if G is a k-connected graph, a k-partition of G exists. 
But from their proofs, only a polynomial algorithm for k = 2 can be induced. Suzuki et al. 
presented an O(n ~) algorithm for 3-connected graph in 1990 [5] . But the general polynomial 
algorithm for finding a k-partition for a k-connected graph has not been found. In this paper, 
we propose an O(k2n 2) general algorithm to find a k-partition in a k-connected graph. 

2 k - P a r t i t i o n  A l g o r i t h m  for a k - C o n n e c t e d  G r a p h  
L e m m a  1 [6] . A graph G = (V ,E ) ( IV  I >> k + 1) is a simple undirected graph and k  9 N .  

G is a k-connected graph i f f f o r  any vertices w , v   9 V,  there are k paths in G joining w , v  
without intersecting inner vertex. 

C o r o l l a r y  1. I f  G is a k-connected graph and al,a2," " ,  ak are k different vertices of 
G, for any vertex v  9 V - (al ,  a 2 , ' " ,  ak } and a~(1 < i < k), there is at least a path P in G 
joining ai and v with no inner vertex of P belonging to { a l , " ' ,  ak}. 

It is obvious that for given k different vertices a l , a 2 , . . . , a ~  and k positive integers 
n l , n 2 , . . . , n k  such that nl § n2 + ' "  + nk = n, if we can find k subtrees T 1 , T 2 , ' " , T k  of 
G such that, 

a~  9 V(T~) i =  l , 2 , . . . , k ;  (1) 
IV(T~)I=n~ a n d V ( T ~ ) n Y ( T j ) - - r  f o r i C j  l < i , j  <_k. (2) 

the k vertex sets of V ( T 1 ) , V ( T 2 ) , . . . , V ( T k )  form a k-partition of G. The idea of our 
algorithm is to find such k subtrees in a k-connected graph. 

In the following discussion, if a vertex v  9 V(Ti) ,  1 < i < k, v is called a tree vertex; 
otherwise, it is called an untree vertex. The value of function P at v is called the P value 
of v for short. Two subtrees T~ and Tj are adjacent if there exists an edge e -- (u, v) such 
that  u  9 V(Ti)  and v  9 V ( T j ) , i  • j .  

The technique used in our algorithm are similar to these used in the algorithm of finding 
the maximum flow in a network IT] with little change. We use a vertex flow function P to 
control the process of expanding k subtrees, and we define the vertex flow function P :v--*R 
as follows: 

P(v)  = 0, if v is an untree vertex; 
P(v)  = n J I V ( T , ) I  , if v  9 V(T{). 

(3) 
(4) 
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Clearly, the P value of every vertex of T{ is the same, 1 < i < k. It  decreases only if more 
vertices are added to Ti. 

Our algori thm is a dynamic  one. First  it lets T{ consist of hi, and the P value of ai be 
hi. Then  it expands the subtree Ti(1 < i < k) in cycles. T{ satisfies that :  

 9 there is untree vertices adjacent  to the vertices of T{, or 
 9 there is subtree Tj adjacent to Ti and the P value of vertices of Tj is smaller than  tha t  

of Ti. 
Ti is called the subtree which can be expanded.  The  process will not  t e rmina te  until the 
P value of every tree vertex becomes 1. In fact for every vertex v E V, v becomes a tree 
vertex. If  this process ends, clearly, T1, T 2 , ' - ' ,  Tk must  satisfy Eqs. (1) and (2). The  formal 
algori thm is as follows. 

Algorithm. k-partition 

Input :  (1) G = (V, E) :  the adjacency matr ix  of  a k-part i t ion graph;  
(2) k :  k = k ( a ) ;  
(3) a l , a 2 , . . . , a k :  k different vertices of G; 
(4) n l , n 2 , . . . , n k :  k positive integers such tha t  nx + n2 + ' "  + nk = n 

Outpu t :  A k-part i t ion of G. 
The  auxiliary da ta  s t ructure  are: 
(1) Tree-node[1..n]: array of set of { a l , a 2 , . ' .  ,ak} .  If  aj  9 Tree-node[i], it means tha t  

the vertex i is or has been a vertex of Tj. 
(2) P [ 1 . . n ] :  array of real, 0 _< P [ i  7 < n,O < i < n. P[i]  is the value of funct ion P at 

vertex i. 
In the process of expanding k subtrees, if v  9 V(Ti ) ,  we use T d ( v , i )  to  represent the 

degree of v in Ti. 

Step 1 . / / In i t ia l iza t ion/ /  
1 input the adjacency matrix of G; 
2 Ta = {at}; T2 = {a2}; -" "; T~ = {ak}; / /subtree  Ti has one vertex ai as its root//( 
3 Tree-node[al ] := {a~}, for 1 < i < k; 
4 Tree-node[j] := r f o r j   9 V -  {a l , a2 , . . . , ak } ;  
5 P[a i ]  :---- hi, for 1 < i < k; 
6 P[ j ]  : - -0  f o r j   9  
7 i := 1; / / i  is the index of subtree Ti to be expanded//  

Step 2. / /Calcula t ion/ /  
k s whne E ~ = I  IV(T~)I < ~ do 

9 
I0 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

if P [a i ]  > l then 
auxv := (vlv does not belong to V(T,) U {ax ,a2, . . .  ,a~,} and v is adjacent to 

a vertex of Ti}; 
N E W  := {vlv  9 auxv and Tree-node[v] = r 
O L D  := {vlv  9 auxv and Tree-node[v] • r 
if N E W  r r then 

if N E W  > (n, - lY(Ti)l) then 
choose (hi - IV(Ti)I) vertices of N E W  randomly, add those vertices to Ti; 
for every vertex v of Ti do 

(1) Tree-node[v] :=Tree-node[v] U {a,}; 
(2) Ply] :---- 1; 

endfor 
else 

add all vertices of N E W  to Ti; 
for every vertex v of Ti do 
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23 
24 
25 
26 
27 
28 
29 
30 

31 

32 
33 
34 
35 
36 
37 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
5O 
51 
52 
53 
54 
55 

Step 3. 
Step 4. 

(1) Tree-node[v]:=Tree-node[v] U {ai}; 
(2) P[v] := n,/lV(Tdl; 

endfor 
endif 

else 
OLD1 := {vlv E OLD and al does not belong to Tree-node[v]}; 
if OLD1 = r then goto line 54; endif; 
OLD2 := {vlv E OLD1 and P[v] = the minimum value of p for 

the vertices in OLD1}; 
if p[v] >_ p[ai], for a v E OLD2 then goto line 54; endif; / / t h e r e  is no subtree 

adjacent to Ti whose vcrtex function P value is less than tha t  of Ti / /  
for t : =  1 t o k - 1  do 

j := (i + t )  mod (k + 1); / / j  is an index o f a j / /  
if there is a vertex v E OLD2 and aj E Tree-node[v] then 

exit the for loop; endif; 
endfor; 
OLD3 := {vlv E OLD2, aj E Tree-node[v]}; / /  OLD3 is the vertex set of the 

subtree Tj adjacent to Ti with the minimum vertex flow function value/ /  
find a vertex w E OLD3 and Td(w, j )  = mint EOLDZ Td(t , j);  
if Td(w, j )  = 1 then 

delete w from Tj and add w to T,; 
Tree-node[w] :-- Tree-node[w] U {ai}; 

else 
cut off the subtree T '  rooted at w in Tj ; 
Tree-node[w] := Tree-node[w] U {ai}; 
add w to Ti; 
for all v ,v  E T'  - {w} 

1~'ee-node[v] := r p[v] :---- 0; 
endfor 
for every v E Ti do P[v] := ni/IV(Ti)I endfor; 
for every v e Tj do Ply] :----- nj/IV(Tj)I endfor; 

endif 
endif 

endif 
i := i mod k + 1; / / expanding  next sub t r ee / /  
endwhile 
Output  V(T1), V(T2), . . . ,  Y(Tk); 
Stop 

An  i m p l e m e n t a t i o n  of k -a lgor i thm is shown in Fig.  2. 

L e r n m a  2. After 2k loops of Step 2 in the implementation of k-partition algorithm, the 
number of tree vertices will increase. 

k Proof. L e t  Si = ~"~d=l ]V(Ti)I '  where  i E N and  Si represents  the  number s  of k sub t rees  
ver t ices  a t  t he  beginning  of the  i - th  loop in S tep  2 (i = 1 , 2 , . . . ) .  To avoid  confusion, 
let  7'/ a lways  represent  the  sub t ree  be ing  e x p a n d e d  in the  i m p l e m e n t a t i o n  of k -pa r t i t i on  
a lgor i thm.  Because  $1 --  k ( <  n)  and  Coro l l a ry  1, a t  t he  beg inn ing  of  t he  i - t h  (i  - -  1, 2 , . -  -) 
loop,  auxv ~ r If  N E W  r r in l ine 13, all  or a pa r t  of unt ree  vert ices of  N E W  are a d d e d  
to Ti, o therwise ,  because  auxv ~ r O L D  r r The  vert ices in O L D  are  the  vert ices of 
sub t rees  a d j a c e n t  to Ti. We use the  set OLD1 to s tore  the  vert ices t h a t  are  in OLD and 
have not  been  the  vert ices of Ti before.  I t  is i m p l e m e n t e d  by checking if ai  is in Tree-node[v] 
in l ine 23. T h e  purpose  of  using a r r ay  Tree-node  is to prevent  from more  t h a n  two t imes 
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0 0 0 

a l  a2 a l  a2 a l  ~ 2  

a3 a3 a3 

(1) (2) (3) 

0 0 1 

e l  a2  a l  a2  a l  a 2  

a3  a3  a3  

(4) (s) (6) 

Fig. 2. The bold lines describe the process of expanding Ti, where nl = 2, n2 = 2, n3 = 3, the 
number near vertex v is the value of function P at v, the number i in the brackets represents the 

i-th cycle of Step 2 of the partition algorithm. 

exchanging a vertex v between Ti and Tj, i ~ j .  If  OLD1 = r Ti cannot  be expanded,  go 
to the (i + 1)-th loop of Step 2 directly; otherwise we use OLD2 to  store the  vertices with 
the min imum P value in the set OLD1. If  for a v E OLD2, P(v) > P (a i ) ,  t ha t  is, the P 
value of the vertices of subtrees adjacent  to  Ti is greater than  the P value of  vertices of Ti, 
we give up expanding Ti, go to the (i + 1)-th loop of Step 2. Because we expand  subtrees 

k in cycles, if ~"]~j=x IV(Tj)[ < n, at  least one of  the subtrees can be expanded  will be found 
after O(k) null loop of Step 2. Let us also use Ti to represent the subtree being expanded.  
If  there are some untree vertices being added to T~ in line 13-26, the  number  of  tree vertices 
increases, otherwise, because Ti is a subtree tha t  can be expanded,  there are some subtrees 
adjacent to Ti, the P values of the vertices of these subtrees are smaller t h a n  the P value 
of the vertices of Ti. We use the set OLD3 to store the vertices of Tj, where Tj is the 
subtree with the  min imum P value in the subtrees adjacent to T~ arid if there  are more than  
two subtrees wi th  the min imum value of  P ,  the  index of j is the first index in the  order of 
i + 1,i  + 2 , . . .  , i  + k, 1 , 2 , . . - , i  - 1. This is because we want to expand k subtrees  evenly. 
In line 38 we find a vertex w, such that ,  w is of  the minimum degrees in the  vertices of Tj 
which are adjacent  to the vertices of T~. If  T(w, j )  = 1, w is a leaf of Tj,  in lines 39-41, we 
delete the w f rom Tj and add  w to Ti; otherwise cut  off the subtree T '  roo ted  at  w of Tj,  
add w to T~, and let the P value of the rest of  vertices of T ~ be zero. Clearly, only in the 
last case, the number  of tree vertices decreases. But  if we noted tha t  in the  next  following 
k loops of  Step 2, the rest vertices of T '  can be added to Tj or to other  subtrees,  because Tj 
becomes a subtree which needs to be expanded and can be expanded.  So we know tha t  after 
2k loops of Step  2, the number  of tree vertices will not  decrease. In  addit ion,  we expand 
k subtrees in cycles, and if ~-~j=l IV(Tj)I < n, there must  be some untree vertices adjacent  
to a subtree Tb, such that ,  the P values of the vertices of Tb > 1. During 2k loops, Tb can 
be expanded,  and  when Tb is expanded, according to the implementat ion of  our  algori thm, 
some untree vertices will be added  to Tb in lines 13-26. This means t h a t  the  number  of  
tree vertices increases t ruely after 2k loops of Step 2 in the implementa t ion  of k-par t i t ion 
algori thm, so L e m m a  2 is correct. [] 



No. 1 Algor i thm to Find k-Par t i t ion  in k-Connected Graph  91 

T h e o r e m  1. k-partition algorithm can find a k-partition in a k-connected graph correctly 
in O(knm) time. 

Proof: In Step 1, Ti consists of one vertex ai as its root,  and P[ai] = ni; P[v] = 0, for 
v E V - { a x , a 2 , . . . , a k } ,  1 < i < k. Clearly, Step 1 can be implemented in O(n). 

Because $1 = k and the number  of untree vertices at the beginning of Step 2 is n - k ,  based 
 9  9  9 k on Lemma 2, it is obvious tha t  after at  most  2k(n - k) loops of Step 2, ~-~j=l IV(Tj)I -- n. 

Because the inequatilies ]V(T~)[ < n~ (1 < i < k), are unchanged in the implementa t ion  of 
k-part i t ion algorithm, when ~ IV(Tj)I = n, it must  be IY(Ti)l = n~(1 < i < k). Because in 
the implementat ion of our algorithm, subtree Ti keeps its connect ivi ty and never a vertex v 
is a vertex of both  Ti and Tj, i ~ j ,  so k subtrees TI,  T2," -  9 Tk obtained in Step 3 satisfy 
(2.1), (2.2). So our a lgor i thm is correct. 

Because every sentence in Step 2 can be implemented in O(m) and Step 3 can be imple- 
mented in O(m), based on L e m m a  2, the number  of loops in Step 2 is less t han  or equal to 
2k(n - k), so the time complexi ty of k-par t i t ion is O(knm). [] 

3 C o n c l u s i o n  
We have coded k-part i t ion algori thm in Pascal.  The  implementat ion of k-par t i t ion shows 

tha t  the running time of k-part i t ion relies on the distr ibution of a l ,  a2,  9  9  9 ak in G strongly 
and tha t  in most  cases the number  of loops in Step 2 << 2k(n - k). H. Nagamochi  and T. 
Ibaraki gave an O(m) algor i thm which could find a sparse k-connected spanning subgraph 
G'  = (V, E ' ) ,  such that ,  [E'[ = O(kn) for any k~connected graph Is] . I f  we use this a lgor i thm 
as the preprocessing procedure of the k-par t i t ion algorithm, tha t  is, first we find G ~ by the 
algori thm of [8], and then let k-par t i t ion a lgor i thm run on G I. I t  is obvious tha t  the t ime 
complexity of the combined algori thm becomes O(k2n2). 
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