
Vol. 9 No. 1 J. of Comput. Sci. & Technol. 1994

A n O(k2n 2) A l g o r i t h m t o F i n d a k - P a r t i t i o n
in a k - C o n n e c t e d G r a p h 1

Ma Jun (D ~) and Ma Shaohan (-~ ~ ~)
Department of Computer Science, Shandong University, Jinan 250100

Received December 16, 1991; revised August 14, 1993.

A b s t r a c t

Although there are polynomial algorithms of finding a 2-partition or a 3-partition for
a simple undirected 2-connected or 3-connected graph respectively, there is no general
algorithm of finding a k-partition for a k-connected graph G = (V, E), where k is the
vertex connectivity of G. In this paper, an O(k2n 2) general algorithm of finding a
k-partition for a k-connected graph is proposed, where n -- IV].

K e y w o r d s : Graph algorithm, graph vertex connectivity, k-partition of a graph.

1 I n t r o d u c t i o n

Let G = (V, E) be a simple undirected graph. V and E represent the vertex set and the
edge set of G respectively, n = IVI and m -- IEI. Two vertices u, v are said to be adjacent if
the edge e -- (u, v) E E. The number of edges incident to a vertex v E V is called the degree
of v. G is connected if for any u, v E V, there is a pa th in G joining u and v; otherwise G
is unconnected. A vertex cut of a connected graph G is a subset V r of V such tha t G - V '
becomes disconnected, where G - V ~ is the subgraph of G gained by deleting all vertices of
V ~ and those edges incident to the vertices of V ' from G. G is called k-connected graph if
the min imum vertex cut of G consists of k vertices of G, while k is called the connect ivi ty of
G and noted as k(G). If G is a complete graph, k(G) is defined as n - 1. T h r o u g h o u t this
paper we assume tha t V -- {1, 2 , - . . , n}, and N, R represent the na tura l number set and the
real number set respectively.

Let G' be a subgraph of G. We use the symbols V(G') and E(G') to denote the vertex
set and edge set of G' . A subtree of G is a connected subgraph of G wi thout cycles in it.
Let V ~ be a subset of V. The subgraph of G whose vertex set is V ~ and whose edge set is
the set of those edges of E incident to the vertex of V ~ is called the subgraph of G induced
by V ~ and is denoted by G [V'] . The problem of finding a k-par t i t ion of G is described as
follows.

Inpu t (1) G -- (V, E) : a simple undirected graph;
(2) a l , a2,...,a~: k different vertices of G;
(3) n l , n 2 , . ' - , nk: k positive integers such tha t n l + n2 + . . . -{- •k = n.

O u t p u t (V1, V 2 , . . . , Vk), for all i, 1 < i < k, such tha t
(t) a~ e v~;
(2) G[Vi] is a connected subgraph of G;
(3) [Vii -- ni and Vi N Vj = r for i ~ j .

IThe research was supported by National Natural Science Foundation of China.

No. 1 Algorithm to Find k-Partition in k-Connected Graph 87

An example of 3-partition of a 3-connected graph is given in Fig.l, and the applications
of the k-partition of a graph G are given in [1].

ll 3
Fig. 1

Obviously, it is not always the case that for any graph G and for a k 9 N (k > 1), a k-
partition of G exists and it has been proved that for a general graph G, to find a k-partition
of G is an NP complete problem [2]. In this paper, we limit G to be a k-connected graph.
Gyhri [3] and Lovs [4] proved that if G is a k-connected graph, a k-partition of G exists.
But from their proofs, only a polynomial algorithm for k = 2 can be induced. Suzuki et al.
presented an O(n ~) algorithm for 3-connected graph in 1990 [5] . But the general polynomial
algorithm for finding a k-partition for a k-connected graph has not been found. In this paper,
we propose an O(k2n 2) general algorithm to find a k-partition in a k-connected graph.

2 k - P a r t i t i o n A l g o r i t h m for a k - C o n n e c t e d G r a p h
L e m m a 1 [6] . A graph G = (V ,E) (IV I >> k + 1) is a simple undirected graph and k 9 N .

G is a k-connected graph i f f f o r any vertices w , v 9 V, there are k paths in G joining w , v
without intersecting inner vertex.

C o r o l l a r y 1. I f G is a k-connected graph and al,a2," " , ak are k different vertices of
G, for any vertex v 9 V - (al , a 2 , ' " , ak } and a~(1 < i < k), there is at least a path P in G
joining ai and v with no inner vertex of P belonging to { a l , " ' , ak}.

It is obvious that for given k different vertices a l , a 2 , . . . , a ~ and k positive integers
n l , n 2 , . . . , n k such that nl § n2 + ' " + nk = n, if we can find k subtrees T 1 , T 2 , ' " , T k of
G such that,

a~ 9 V(T~) i = l , 2 , . . . , k ; (1)
IV(T~)I=n~ a n d V (T ~) n Y (T j) - - r f o r i C j l < i , j <_k. (2)

the k vertex sets of V (T 1) , V (T 2) , . . . , V (T k) form a k-partition of G. The idea of our
algorithm is to find such k subtrees in a k-connected graph.

In the following discussion, if a vertex v 9 V(Ti) , 1 < i < k, v is called a tree vertex;
otherwise, it is called an untree vertex. The value of function P at v is called the P value
of v for short. Two subtrees T~ and Tj are adjacent if there exists an edge e -- (u, v) such
that u 9 V(Ti) and v 9 V (T j) , i • j .

The technique used in our algorithm are similar to these used in the algorithm of finding
the maximum flow in a network IT] with little change. We use a vertex flow function P to
control the process of expanding k subtrees, and we define the vertex flow function P :v--*R
as follows:

P(v) = 0, if v is an untree vertex;
P(v) = n J I V (T ,) I , if v 9 V(T{).

(3)
(4)

88 J. of Comput . Sci. & Technol. Vol. 9

Clearly, the P value of every vertex of T{ is the same, 1 < i < k. It decreases only if more
vertices are added to Ti.

Our algori thm is a dynamic one. First it lets T{ consist of hi, and the P value of ai be
hi. Then it expands the subtree Ti(1 < i < k) in cycles. T{ satisfies that :

 9 there is untree vertices adjacent to the vertices of T{, or
 9 there is subtree Tj adjacent to Ti and the P value of vertices of Tj is smaller than tha t

of Ti.
Ti is called the subtree which can be expanded. The process will not t e rmina te until the
P value of every tree vertex becomes 1. In fact for every vertex v E V, v becomes a tree
vertex. If this process ends, clearly, T1, T 2 , ' - ' , Tk must satisfy Eqs. (1) and (2). The formal
algori thm is as follows.

Algorithm. k-partition

Input : (1) G = (V, E) : the adjacency matr ix of a k-part i t ion graph;
(2) k : k = k (a) ;
(3) a l , a 2 , . . . , a k : k different vertices of G;
(4) n l , n 2 , . . . , n k : k positive integers such tha t nx + n2 + ' " + nk = n

Outpu t : A k-part i t ion of G.
The auxiliary da ta s t ructure are:
(1) Tree-node[1..n]: array of set of { a l , a 2 , . ' . ,ak} . If aj 9 Tree-node[i], it means tha t

the vertex i is or has been a vertex of Tj.
(2) P [1 . . n] : array of real, 0 _< P [i 7 < n,O < i < n. P[i] is the value of funct ion P at

vertex i.
In the process of expanding k subtrees, if v 9 V(Ti) , we use T d (v , i) to represent the

degree of v in Ti.

Step 1 . / / In i t ia l iza t ion/ /
1 input the adjacency matrix of G;
2 Ta = {at}; T2 = {a2}; -" "; T~ = {ak}; / /subtree Ti has one vertex ai as its root//(
3 Tree-node[al] := {a~}, for 1 < i < k;
4 Tree-node[j] := r f o r j 9 V - {a l , a2 , . . . , ak } ;
5 P[a i] :---- hi, for 1 < i < k;
6 P[j] : - -0 f o r j 9
7 i := 1; / / i is the index of subtree Ti to be expanded//

Step 2. / /Calcula t ion/ /
k s whne E ~ = I IV(T~)I < ~ do

9
I0

11
12
13
14
15
16
17
18
19
20
21
22

if P [a i] > l then
auxv := (vlv does not belong to V(T,) U {ax ,a2, . . . ,a~,} and v is adjacent to

a vertex of Ti};
N E W := {vlv 9 auxv and Tree-node[v] = r
O L D := {vlv 9 auxv and Tree-node[v] • r
if N E W r r then

if N E W > (n, - lY(Ti)l) then
choose (hi - IV(Ti)I) vertices of N E W randomly, add those vertices to Ti;
for every vertex v of Ti do

(1) Tree-node[v] :=Tree-node[v] U {a,};
(2) Ply] :---- 1;

endfor
else

add all vertices of N E W to Ti;
for every vertex v of Ti do

No. 1 A lgo r i t hm to F i n d k - P a r t i t i o n in k -Connec t ed G r a p h 89

23
24
25
26
27
28
29
30

31

32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55

Step 3.
Step 4.

(1) Tree-node[v]:=Tree-node[v] U {ai};
(2) P[v] := n,/lV(Tdl;

endfor
endif

else
OLD1 := {vlv E OLD and al does not belong to Tree-node[v]};
if OLD1 = r then goto line 54; endif;
OLD2 := {vlv E OLD1 and P[v] = the minimum value of p for

the vertices in OLD1};
if p[v] >_ p[ai], for a v E OLD2 then goto line 54; endif; / / t h e r e is no subtree

adjacent to Ti whose vcrtex function P value is less than tha t of Ti / /
for t : = 1 t o k - 1 do

j := (i + t) mod (k + 1); / / j is an index o f a j / /
if there is a vertex v E OLD2 and aj E Tree-node[v] then

exit the for loop; endif;
endfor;
OLD3 := {vlv E OLD2, aj E Tree-node[v]}; / / OLD3 is the vertex set of the

subtree Tj adjacent to Ti with the minimum vertex flow function value/ /
find a vertex w E OLD3 and Td(w, j) = mint EOLDZ Td(t , j);
if Td(w, j) = 1 then

delete w from Tj and add w to T,;
Tree-node[w] :-- Tree-node[w] U {ai};

else
cut off the subtree T ' rooted at w in Tj ;
Tree-node[w] := Tree-node[w] U {ai};
add w to Ti;
for all v ,v E T' - {w}

1~'ee-node[v] := r p[v] :---- 0;
endfor
for every v E Ti do P[v] := ni/IV(Ti)I endfor;
for every v e Tj do Ply] :----- nj/IV(Tj)I endfor;

endif
endif

endif
i := i mod k + 1; / / expanding next sub t r ee / /
endwhile
Output V(T1), V(T2), . . . , Y(Tk);
Stop

An i m p l e m e n t a t i o n of k -a lgor i thm is shown in Fig. 2.

L e r n m a 2. After 2k loops of Step 2 in the implementation of k-partition algorithm, the
number of tree vertices will increase.

k Proof. L e t Si = ~"~d=l]V(Ti)I ' where i E N and Si represents the number s of k sub t rees
ver t ices a t t he beginning of the i - th loop in S tep 2 (i = 1 , 2 , . . .) . To avoid confusion,
let 7'/ a lways represent the sub t ree be ing e x p a n d e d in the i m p l e m e n t a t i o n of k -pa r t i t i on
a lgor i thm. Because $1 -- k (< n) and Coro l l a ry 1, a t t he beg inn ing of t he i - t h (i - - 1, 2 , . - -)
loop, auxv ~ r If N E W r r in l ine 13, all or a pa r t of unt ree vert ices of N E W are a d d e d
to Ti, o therwise , because auxv ~ r O L D r r The vert ices in O L D are the vert ices of
sub t rees a d j a c e n t to Ti. We use the set OLD1 to s tore the vert ices t h a t are in OLD and
have not been the vert ices of Ti before. I t is i m p l e m e n t e d by checking if ai is in Tree-node[v]
in l ine 23. T h e purpose of using a r r ay Tree-node is to prevent from more t h a n two t imes

90 J. of Comput . Sci. & Technol. Vol. 9

0 0 0

a l a2 a l a2 a l ~ 2

a3 a3 a3

(1) (2) (3)

0 0 1

e l a2 a l a2 a l a 2

a3 a3 a3

(4) (s) (6)

Fig. 2. The bold lines describe the process of expanding Ti, where nl = 2, n2 = 2, n3 = 3, the
number near vertex v is the value of function P at v, the number i in the brackets represents the

i-th cycle of Step 2 of the partition algorithm.

exchanging a vertex v between Ti and Tj, i ~ j . If OLD1 = r Ti cannot be expanded, go
to the (i + 1)-th loop of Step 2 directly; otherwise we use OLD2 to store the vertices with
the min imum P value in the set OLD1. If for a v E OLD2, P(v) > P (a i) , t ha t is, the P
value of the vertices of subtrees adjacent to Ti is greater than the P value of vertices of Ti,
we give up expanding Ti, go to the (i + 1)-th loop of Step 2. Because we expand subtrees

k in cycles, if ~"]~j=x IV(Tj)[< n, at least one of the subtrees can be expanded will be found
after O(k) null loop of Step 2. Let us also use Ti to represent the subtree being expanded.
If there are some untree vertices being added to T~ in line 13-26, the number of tree vertices
increases, otherwise, because Ti is a subtree tha t can be expanded, there are some subtrees
adjacent to Ti, the P values of the vertices of these subtrees are smaller t h a n the P value
of the vertices of Ti. We use the set OLD3 to store the vertices of Tj, where Tj is the
subtree with the min imum P value in the subtrees adjacent to T~ arid if there are more than
two subtrees wi th the min imum value of P , the index of j is the first index in the order of
i + 1,i + 2 , . . . , i + k, 1 , 2 , . . - , i - 1. This is because we want to expand k subtrees evenly.
In line 38 we find a vertex w, such that , w is of the minimum degrees in the vertices of Tj
which are adjacent to the vertices of T~. If T(w, j) = 1, w is a leaf of Tj, in lines 39-41, we
delete the w f rom Tj and add w to Ti; otherwise cut off the subtree T ' roo ted at w of Tj,
add w to T~, and let the P value of the rest of vertices of T ~ be zero. Clearly, only in the
last case, the number of tree vertices decreases. But if we noted tha t in the next following
k loops of Step 2, the rest vertices of T ' can be added to Tj or to other subtrees, because Tj
becomes a subtree which needs to be expanded and can be expanded. So we know tha t after
2k loops of Step 2, the number of tree vertices will not decrease. In addit ion, we expand
k subtrees in cycles, and if ~-~j=l IV(Tj)I < n, there must be some untree vertices adjacent
to a subtree Tb, such that , the P values of the vertices of Tb > 1. During 2k loops, Tb can
be expanded, and when Tb is expanded, according to the implementat ion of our algori thm,
some untree vertices will be added to Tb in lines 13-26. This means t h a t the number of
tree vertices increases t ruely after 2k loops of Step 2 in the implementa t ion of k-par t i t ion
algori thm, so L e m m a 2 is correct. []

No. 1 Algor i thm to Find k-Par t i t ion in k-Connected Graph 91

T h e o r e m 1. k-partition algorithm can find a k-partition in a k-connected graph correctly
in O(knm) time.

Proof: In Step 1, Ti consists of one vertex ai as its root, and P[ai] = ni; P[v] = 0, for
v E V - { a x , a 2 , . . . , a k } , 1 < i < k. Clearly, Step 1 can be implemented in O(n).

Because $1 = k and the number of untree vertices at the beginning of Step 2 is n - k , based
 9 9 9 k on Lemma 2, it is obvious tha t after at most 2k(n - k) loops of Step 2, ~-~j=l IV(Tj)I -- n.

Because the inequatilies]V(T~)[< n~ (1 < i < k), are unchanged in the implementa t ion of
k-part i t ion algorithm, when ~ IV(Tj)I = n, it must be IY(Ti)l = n~(1 < i < k). Because in
the implementat ion of our algorithm, subtree Ti keeps its connect ivi ty and never a vertex v
is a vertex of both Ti and Tj, i ~ j , so k subtrees TI, T2," - 9 Tk obtained in Step 3 satisfy
(2.1), (2.2). So our a lgor i thm is correct.

Because every sentence in Step 2 can be implemented in O(m) and Step 3 can be imple-
mented in O(m), based on L e m m a 2, the number of loops in Step 2 is less t han or equal to
2k(n - k), so the time complexi ty of k-par t i t ion is O(knm). []

3 C o n c l u s i o n
We have coded k-part i t ion algori thm in Pascal. The implementat ion of k-par t i t ion shows

tha t the running time of k-part i t ion relies on the distr ibution of a l , a2, 9 9 9 ak in G strongly
and tha t in most cases the number of loops in Step 2 << 2k(n - k). H. Nagamochi and T.
Ibaraki gave an O(m) algor i thm which could find a sparse k-connected spanning subgraph
G' = (V, E ') , such that , [E'[= O(kn) for any k~connected graph Is] . I f we use this a lgor i thm
as the preprocessing procedure of the k-par t i t ion algorithm, tha t is, first we find G ~ by the
algori thm of [8], and then let k-par t i t ion a lgor i thm run on G I. I t is obvious tha t the t ime
complexity of the combined algori thm becomes O(k2n2).

R e f e r e n c e s
[1] Manabe I. Building networks with some fixed routing and the ability to resist some obstacles.

Electronic Information Communication Research Materials (in Japanese), COMP 86-70, 1987:
95-105.

[2] Dyer M E, Frieze A M. On the complexity of partitioning graphs into connected subgraphs.
Discrete Appl Math, 1985, 10: 139-153.

[3] Gy6ri E. On division of graph to connected subgraphs, combinatorics. In: Proc Fifth Hungarian
Combinatorial Coil, Keszthely, Bolyai: North-Holland, 1978, 485-494.

[4] Lovdsz L. A homology theory for spanning trees of a graph. Acta Math Acad, 1977, 30: 241-251.
[5] Hitoshi S, Naomi T, Takao N, Hiroshi M, Shuichi U. An algorithm for tripartitioning 3-

connected graphs(in Japaneses). J otf Infomation Processing, 1990, 30(5): 584-592.
[6] Swamy N N S, Thulasiraman K. Graphs, networks and algorithms. John Wiley & Sons Inc,

1981, 143.
[7] Even S. The max flow algorithm of Dinic and Karzanov, an exposition. MIT/LCS/TM-80,

1976.
[8] Nagamochi H, Ibaraki T. A linear-time algorithm for finding a Sparse k-connected spanning

subgraph of a k-connected graph. Algorithmica, 1992, 7: 583-596 9

