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Abstract. The goal of the VESSEL12 challenge is to compare methods
for automatic (and semi-automatic) segmentation of the vessels in the
lungs from chest computed tomography scans taken from both healthy
and diseased populations. The challenge has a workshop in conjunction
with the ISBI 2012 conference.
We registered to the challenge with team LKEBChina. The goal of our
submission is to determine what advanced and fully automatic vessel
enhancement filters can achieve compared to the competition. We ap-
plied four different filters to the problem. All of them derive a vesselness
function from the Hessian eigenvalues, and sometimes in addition the
gradient magnitude. The first is the well known Frangi vesselness filter
(V Frangi, [1]), the second a medialness Hessian-based vesselness filter de-
rived from work of Krissian and using a Gaussian kernel (V med, [2]), the
third a variation of the second using a bi-Gaussian kernel (V med

BG , Xiao
et al. [3]), and the fourth a filter based on stress-strain principles in me-
chanics (V SE, Xiao et al. [4]). All filters are embedded in a multi-scale
scheme. After the vesselness computation the response was converted to
the range 0 - 255, as required by the organizers.
The algorithms were applied to 20 data sets provided by the organizers.
Overall optimal specificity and sensitivity as reported by the organizers
were (0.914, 0.960), (0.956, 0.953), (0.948, 0.953) and (0.941, 0.921), for
V Frangi, V med, V med

BG and V SE, respectively. The methods differed in their
responses to sub-categories: V Frangi was substantially underperforming
on airways; V med

BG and V SE performed best on dense abnormalities and
bronchi; V SE was less sensitive on vessels within dense abnormalities.
Quite high scores were obtained for all filters.
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1 Introduction

The goal of our contribution is to determine what advanced, general purpose,
and fully automatic vessel enhancement filters can achieve compared to the com-
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petition. To this end we selected some existing vessel enhancement filters, our
prior work, and added new ones.

2 Methods

All vessel enhancement filters below derive structural information from the Hes-
sian eigenvalues |λ1| ≤ |λ2| ≤ |λ3|. The Hessian H is computed using Gaussian
derivatives at a scale σ, except for the filter described in Section 2.3, where a
new bi-Gaussian kernel is used. The Gaussian second order derivative of image
I at scale σ and point x is given by

∂2Iσ
∂x2

= I(x) ∗ ∂2G(σ, x)

∂x2
. (1)

All filters define a vesselness function V (σ, x) and can be embedded in a
multi-scale framework using

V (x) = max
σ

V (σ, x), σmin < σ < σmax (2)

All filters used in this paper are fully automatic, are applicable to any kind of
vasculature data (not restricted to pulmonary vasculature), and do not require
training. Most filters do have parameters, which were tuned by visual inspection.

2.1 Frangi vesselness

In his seminal 1998 paper [1] Frangi introduced three measures to describe struc-
ture in images: RB = |λ1|/

√|λ2λ3|, RA = |λ2|/|λ3|, and S = ‖H‖F =
√∑

i λ
2
i ,

which quantify deviation from a blob-like structure, the difference between plate-
like and line-like structures, and background noise, respectively. These measures
were combined in a vesselness function as:

V Frangi(σ, x) =

{
0 λ2, λ3 > 0(
1− exp

(
−R2

A
2α2

))
· exp

(
− R2

B
2β2

)
·
(
1− exp

(
− S2

2c2

))
otherwise

(3)

with α, β and c real-valued positive user-defined parameters.

2.2 Krissian-inspired vesselness

A second vesselness measure is inspired by the work of Krissian et al. [2]. They
defined a central adaptive medialness for the detection of tubular structures,
which we approximate by the sum of the two largest eigenvalues λ2 + λ3. They
also showed that the ratio λ2/λ3 decreases from the center of a vessel. We com-
bine this information in a new vesselness measure as follows:

V med(σ, x) =

{
0 λ1 + λ2 + λ3 ≥ 0

−λ2

λ3
· (λ2 + λ3) otherwise

(4)
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Fig. 1. Second order derivative of the Gaussian and the bi-Gaussian kernel. Here, the
magnitudes of all the kernels are normalized to 1 for comparison, and the x coordinates
are represented in multiples of scale σ. The big circles indicate the cross-sections of
desired tubular objects, and the smaller circles denote adjacent disturbances.

Here, the sum of eigenvalues is used to define the contrast, which has a negative
response to bright objects according to our previous work [4]. The two largest
eigenvalues are used to measure the structure strength, and their ratio is mul-
tiplied to punish deviation from the tubular center. By omitting λ1, the filter
tends to preserve axial continuity, since the intensity change in this direction is
neglected.

2.3 Krissian-inspired vesselness using a bi-Gaussian kernel

The traditional Gaussian operator has infinite support and its response is there-
fore influenced by structures adjacent to a vessel. To avoid the problem, we
propose [3] to replace the low-level Gaussian kernel with a bi-Gaussian func-
tion, which allows independent selection of foreground and background scales.
By taking a narrower local neighborhood for contrast computation, the proposed
method will obtain a good property in separating closely located adjacent struc-
tures, while keeping the intra-vessel region noise suppressing and size adapting
ability of conventional Gaussian scale space.

The bi-Gaussian kernel takes the form

BG(σ, σb, x) =

⎧⎪⎨
⎪⎩
k ·G(σb, x− σb + σ) x ≤ −σ

G(σ, x) + c |x| < σ

k ·G(σb, x+ σb − σ) x ≥ σ

(5)

where σ is the original scale used within the structure, and σb the background

scale. The constants k and c are deduced to be k = σ2
b/σ

2 and c = e−1/2√
2π

(σb/σ−
1)/σ, in order to fulfill some scale-space conditions. Additionally, we take a
fixed ratio ρ = σb/σ < 1, also to fulfill scale-space criteria. When ρ = 1, the bi-
Gaussian kernel will degenerate to a Gaussian kernel. The second order derivative
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Fig. 2. 3D synthetic image filtering using the Krissian-inspired vesselness filter with
different kernels, the left column is the 3D visualization and the right column corre-
sponds to the contours of 2D cross-sections located at the axial midpoint.

of the Gaussian and bi-Gaussian kernel are depicted in Figure 1. It can be noticed
that disturbances close to the vessel are not inside the kernel. More details will
be published later.

We adopt the modified Krissian vesselness filter from Equation (4), but with
the bi-Gaussian function as the underlying kernel to compute the Hessian and its
eigenvalues, resulting in a vesselness function V med

BG (σ, x). To show the difference
between V med and V med

BG we have plotted their vesselness responses to a synthetic
object in Figure 2.

2.4 Strain energy vesselness

We have previously proposed a Strain Energy (SE) filter based on stress-strain
principles from mechanics to measure vesselness [4]. The above filters assumed
a simplified cylindrical vessel model with a Gaussian profile, which the SE filter
tries to remedy.

The Hessian matrix is considered a stress tensor from solid mechanics, and
decomposed in a mean stress component and an anisotropic component. Three
orthogonal tensor invariants (measures) can be derived from this decomposition,
each measuring an independent descriptor of material distortion, or in our con-
text image structure. Translated into images they measure intensity contrast,
structure strength (related to Frangi’s S measure), and shape. These measures
are combined with a measure of intensity continuity along the vessel, and a
measure to ensure the dominance of second-order over first-order derivatives to
suppress undesired step edges (e.g. the lung boundary). This was finally com-



bined into a vesselness measure as follows:

V SE(σ, x) =

{
0 1

3 (λ1 + λ2 + λ3) > −αλm

exp
(
−β ‖∇I‖

λm

)
ρ(H, ν)V κ(x) otherwise

(6)

with λm the maximum eigenvalue, (λ1 + λ2 + λ3) the brightness contrast term,
‖∇I‖/λm the measure of relative Hessian strength to suppress step edges, ρ(H, ν)
the measure of structure strength, and V κ(x) the measure of vessel shape. More
details can be found in [4]. The parameters 0 ≤ α < 1, β > 0,−1 ≤ ν ≤ 0.5, and
κ > 0 are user-defined parameters.

2.5 Conversion of vesselness value to [0, 255]

The presented enhancement filters give their real-valued response each in a dif-
ferent range, and need to be standardized to the range [0, 255] ⊂ N as required
by the organizers. All output images were first rescaled to a range [0, 106] and
rounded to the nearest integer. Subsequently, histogram equalization was em-
ployed in order to have an equal distribution of the responses at a certain thresh-
old. Finally, the result is rescaled to the range [0, 255] and stored in unsigned
char format.

3 Experiments and Results

The data was made available by the VESSEL12 organizers. We did not train
on any other data. Tuning of the parameters was done visually. For the multi-
scale framework we selected the scales σ ∈ {1, 2, 3} mm, used for all filters. The
free parameters of V Frangi were chosen as α = β = 0.5 as recommended in [1]
and c = 500 (related to the intensity range in lung CT data); V med has no free
parameters; V med

BG : ρ = 0.1; and V SE: α = 0.5, β = κ = 0.2 and ν = 0.0.
The filters V Frangi, V med and V SE were implemented in C++ using the ITK,

while the filter V med
BG was implemented in MatLab. The C++ source code is made

publicly available via the toolkit ITKTools (https://github.com/ITKTools/
ITKTools), see the tool pxenhancement.

3.1 Data

The data set contains both scans from asymptomatic subjects as well as scans
from patients with respiratory diseases which affect the lungs in such a way that
the task of identifying vessels becomes challenging.

The scans come from a variety of sources and represent a variety of clinically
common scanners and protocols. The scans have been selected such that in
approximately half of the scans contrast agent was used. About half of the scans
contain abnormalities such as emphysema, nodules or pulmonary embolisms. The
maximum slice spacing present is 1 mm and most scans are (near) isotropic. To



Table 1. Runtime in seconds. First patient, three scales, entire image.

method time [s]

V Frangi 92

V med 586

V med
BG 461

V SE 111

ensure consistent evaluation, reference vessel segmentations for the data cannot
be downloaded and will not be made available in the future.

For each scan in the VESSEL12 dataset a binary lungmask is available on
the download page. Only voxels inside these lung masks will be used in the
evaluation. The lung masks are provided as-is, without a claim of being perfect.
We have used the lung masks to remove vesselness responses outside the mask.

3.2 Runtime

The filters V Frangi and V SE were run on an Intel Xeon E5620 @ 2.4 GHz, 24GB
RAM, Ubuntu Linux 64 bit. The filters V med and V med

BG were run on an Intel
i3-2100 @ 3.1 GHz, 8GB RAM, Windows 7 64 bit. The run time for the first
patient of size 512 × 512 × 355 is given in Table 1. Filtering was performed on
the entire image, and could be accelerated by using the lung mask to restrict
computation: the lung spanned only 11% of the entire image for this patient.
The Matlab implementations can obviously be sped up by moving to C++; a
draft C++ implementation of the filter V med decreased the runtime from 586s
to 91s.

3.3 Results

Visual inspection showed that all scans were successfully enhanced. Automatic
scoring was performed on the final result by the VESSEL12 organizers. The
results are given in Table 2. Full results and a comparison to other participants
can be found at http://vessel12.grand-challenge.org/Results.

Overall optimal specificity and sensitivity were (0.914, 0.960), (0.956, 0.953),
(0.948, 0.953) and (0.941, 0.921), for V Frangi, V med, V med

BG and V SE, respectively.
The methods differed in their responses to sub-categories: V Frangi was substan-
tially underperforming on airways; V med

BG and V SE performed best on dense ab-
normalities and bronchi; V SE underperformed on vessels within dense abnormal-
ities.

4 Discussion and Conclusion

The goal of our contribution was to determine what standard and generic, but
fully automatic, vessel enhancement algorithms can achieve compared to the



Table 2. Results, taken from the website. Az means area under the ROC curve. Non =
non-vessels, DA = dense abnormalities, bronchi = mucus-filled bronchi, DA2 = Vessels
in dense abnormality/Dense abnormalities (Contrast scans only).

V Frangi V med V med
BG V SE

Dataset Az Spec Sens Az Spec Sens Az Spec Sens Az Spec Sens
All 0.975 0.914 0.960 0.984 0.956 0.953 0.981 0.948 0.947 0.956 0.941 0.921
01 0.990 0.901 0.985 0.995 0.931 0.985 0.986 0.882 0.963 0.976 0.918 0.963
02 0.961 0.936 0.944 0.976 0.985 0.933 0.969 0.980 0.933 0.956 0.975 0.933
03 0.980 0.950 0.967 0.989 0.977 0.967 0.988 0.968 0.945 0.977 0.963 0.934
04 0.986 0.910 0.985 0.975 0.912 0.954 0.970 0.896 0.947 0.926 0.869 0.870
05 0.976 0.912 0.963 0.984 0.967 0.963 0.987 0.960 0.953 0.969 0.960 0.953
06 0.967 0.916 0.969 0.979 0.988 0.929 0.982 0.988 0.898 0.954 0.952 0.918
07 0.987 0.789 1.000 0.993 0.886 0.990 0.985 0.862 0.990 0.914 0.841 0.867
08 0.969 0.936 0.918 0.974 0.995 0.882 0.972 0.980 0.918 0.952 0.990 0.894
09 0.975 0.918 0.949 0.983 0.973 0.929 0.987 0.984 0.929 0.952 0.978 0.908
10 0.979 0.960 0.928 0.988 0.985 0.947 0.984 0.982 0.928 0.963 0.978 0.914
11 0.987 0.965 0.950 0.990 0.984 0.944 0.988 0.988 0.931 0.961 0.996 0.931
12 0.982 0.959 0.911 0.986 0.983 0.930 0.986 0.978 0.949 0.954 0.970 0.930
13 0.985 0.967 0.930 0.990 0.991 0.912 0.994 0.991 0.921 0.983 0.986 0.956
14 0.969 0.850 1.000 0.988 0.934 0.989 0.981 0.920 0.957 0.927 0.916 0.862
15 0.973 0.966 0.933 0.986 1.000 0.944 0.993 0.993 0.944 0.970 1.000 0.867
16 0.988 0.957 0.981 0.994 0.957 0.961 0.983 0.957 0.971 0.986 0.942 0.971
17 0.979 0.909 0.966 0.972 0.960 0.914 0.970 0.949 0.931 0.942 0.939 0.897
18 0.981 0.916 0.979 0.988 0.949 0.979 0.984 0.945 0.959 0.963 0.934 0.938
19 0.970 0.934 0.972 0.995 0.979 0.972 0.995 0.983 0.966 0.976 0.983 0.945
20 0.985 0.819 0.992 0.994 0.911 0.992 0.988 0.911 0.984 0.955 0.884 0.929

Small/Non 0.952 0.893 0.947 0.979 0.935 0.956 0.978 0.931 0.953 0.964 0.934 0.953
Medium/Non 0.975 0.927 0.971 0.982 0.960 0.957 0.983 0.952 0.958 0.955 0.964 0.913

Large/Non 0.995 0.976 0.978 0.991 0.983 0.977 0.981 0.977 0.940 0.949 0.981 0.896
vs. Airways 0.738 0.615 0.691 0.940 0.855 0.908 0.941 0.856 0.912 0.953 0.950 0.930

vs. DA 0.623 0.282 0.960 0.683 0.460 0.953 0.740 0.523 0.947 0.761 0.622 0.921
vs. Bronchi 0.462 0.061 0.960 0.513 0.204 0.953 0.619 0.286 0.947 0.661 0.429 0.921

vs. DA2 0.750 0.439 0.863 0.734 0.486 0.836 0.752 0.580 0.774 0.652 0.600 0.589

competition. Overall results in terms of area under the ROC curve are good
(Az > 0.956) for all algorithms. The methods differed in their responses to sub-
categories: V Frangi was substantially underperforming on airways and bronchi;
V med
BG and V SE performed best on dense abnormalities and bronchi; V SE was

less sensitive on vessels within dense abnormalities. In general V SE had a higher
specificity than the other filters, at the cost of some sensitivity. It underperformed
on larger vessels.
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