
A Framework for Portable Shared Memory Programming

Martin Schulz and Sally A. McKee
School of Electrical and Computer Engineering

Cornell University
Ithaca, NY, 14853�

schulz,sam � @csl.cornell.edu

Abstract

Widespread adaptation of shared memory programming
for High Performance Computing has been inhibited by a
lack of standardization and the resulting portability prob-
lems between platforms and APIs. In this paper we present
the HAMSTER framework, which helps overcome these
problems via cross-platform support and easy retargetabil-
ity to a wide range of programming models. HAMSTER
currently supports models ranging from thread APIs to one-
sided put/get interfaces, all on top of a single, core middle-
ware architecture. The HAMSTER framework allows pro-
grammers to use any of these models — without modifica-
tion — on top of SMPs, NUMA-like clusters, and Beowulf
systems. In addition, our experiments show that HAMSTER
achieves this flexibility and portability without sacrificing
performance.

1 Motivation

Shared memory provides parallel application program-
mers with a clean, natural programming model close to that
for sequential programs. By abstracting away all details
of low-level interprocessor communication, shared mem-
ory eases the programmer’s burden, at least for initial im-
plementations. Despite these apparent advantages, shared
memory programming still plays a minor role in High Per-
formance Computing. Performance and religious issues
aside, shared memory still lags behind message passing
with respect to standardization. There exists a diversity
of shared memory programming models and APIs, many
of which are targeted towards different architectures, user
groups, and application domains. In addition, many APIs
are only available on top of specific research systems un-
suitable for production use. All these factors greatly reduce
portability and compatibility of the existing code base. This
is in contrast to the message paradigm, which achieves high
portability by having largely converged to one standard, the
Message Passing Interface (MPI) [32]. Very little standard-

ization exists for shared memory (OpenMP [22] constitutes
the most notable effort), and existing approaches have al-
ways targeted a specific class of machine, mainly SMPs.

This work presents HAMSTER, a comprehensive frame-
work that helps overcome these problems. It runs on top of a
set of very different architectures, ranging from tightly cou-
pled shared memory multiprocessors to Beowulf-style clus-
ters, and can be easily retargeted to any shared memory API
with little effort. HAMSTER effectively decouples the pro-
gramming model from the base architecture, enabling users
to leverage a range of programming models on any of the
supported architectures. The framework currently includes
programming model modules for thread APIs, various DSM
APIs, and one-sided communication libraries. Experimen-
tal results show that this list can be easily extended, and
hence our experience validates the claim that retargetabil-
ity can be achieved with minimal complexity. In addition,
the overhead induced by this framework is negligible, and
in some cases, the performance of the base system actually
increases.

Section 2 introduces the HAMSTER framework, which
we have designed to overcome these problems. Section 3
and Section 4 present a detailed discussion of HAMSTER’s
two main innovations: a) support for multiple architec-
tures, and b) retargetability to multiple programming mod-
els. Section 5 presents data on the complexity of porting
the framework to new APIs, along with experimental re-
sults. Section 6 provides an overview of ongoing research
on both the framework and the novel hardware on which it
was developed.

2 Software Framework

Overcoming the current limitations of shared mem-
ory programming requires a general and adaptable frame-
work that bridges the gap between different target architec-
tures and the vast range of existing programming models.
We present one such framework: HAMSTER. Originally,
HAMSTER provided DSM support for SCI-based [10, 8]
clusters [17]. Here we extend HAMSTER to other parallel

1



Kernel Components HAMSTER Components

Shared Memory

Eth. & TCP/IP SAN / HW−DSM / SMP

Parallel Systems (SMPs or Cluster)

Support
SAN

or
Hardware

Fast

Arbitrary Shared Memory Model

Shared Memory Application

Mem.

Mgmt.

Sync.

Mgmt. Mgmt.

Cons.
Comm.
through

Standalone OS
NIC Driver

Abstraction

Consistency APIHAMSTER Interface

Task

Mgmt.

C
lu

st
er

C
on

tr
ol

Figure 1. The HAMSTER Framework

architectures, as we implement a wider range of program-
ming models on top of it. These additions make HAMSTER
a generalized shared memory programming framework ca-
pable of unifying shared memory programming on parallel
architectures.

An overview of the HAMSTER framework is shown in
Figure 1. Shown at the top of the figure, applications ex-
ecute transparently within their native programming model
and are generally unaware of the underlying HAMSTER
system. This transparency is created by a thin programming
model layer implemented via services encapsulated within
the HAMSTER API. The approach ensures lean program-
ming model implementations, making it feasible to include
a large range of models concurrently on top of a single core.
Currently, models from thread APIs to remote put/get APIs
have been successfully implemented within this framework.

Several management modules provide the versatile ser-
vices enabling these programming models, with each mod-
ule responsible for a subset of services. Clean design
and usability requires that each of these modules be im-
plemented orthogonally, without cross-module side effects.
The modules rely on native operating system support and
require a global shared memory abstraction. The implemen-
tation of the global memory abstraction depends strongly on
the targeted architecture, which can range from straightfor-
ward SMPs to Beowulf-type clusters connected with Ether-
net.

The majority of the framework is implemented at user
level, easing development and deployment. For functional-
ity that requires privileged commands or access to protected
resources, HAMSTER relies on the respective native OS
and its associated drivers. The only exception is a kernel-
level component to establish the global memory abstraction
in NUMA clusters. This kernel driver module controls the
local application process’s access to physical memory on
all nodes, and hence the module must implement protection
mechanisms.

In summary, HAMSTER’s design achieves two main
goals: a) it supports very different target platforms while
hiding their specifics from the applications, and b) it retar-
gets easily to a range of programming models that are then
transparently exported to the user. Both contributions are
further described in the following sections.

3 Support for Multiple Platforms

The success of HAMSTER, or any similar framework,
depends on the ability to target many machine architectures.
HAMSTER is therefore designed to run on parallel archi-
tectures ranging from Symmetric MultiProcessors (SMPs)
with Uniform Memory Access (UMA) to Distributed Mem-
ory cluster architectures with NO Remote Memory Access
(NORMA) capabilities.

3.1 Requirements

The main requirement of any base architecture for the
HAMSTER system is support for a global memory abstrac-
tion. This means it must be possible to allocate memory
globally, and that any processor must be able to transpar-
ently issue reads and writes to these global memory regions.
In addition, the architecture must include adequate synchro-
nization mechanisms (e.g., in the form of locks, conditions,
or barriers), and must provide sufficient information about
the memory consistency model and its control mechanisms.

These functionalities need to be exported to the upper
layers by appropriate software layers (either the OS or a
special parallel run-time system). Due to the very different
natures of the targeted architectures, HAMSTER does not
enforce a common, standardized interface (which would be
difficult to achieve), but rather it integrates the various na-
tive APIs into its core. This allows both high performance
and easy adaptability, while keeping the impact on portabil-
ity reasonable. Note that we assume ports between architec-
tures will be much more rare than software ports providing
new APIs on top of a given hardware architecture.

3.2 Mapping HAMSTER onto Existing Systems

HAMSTER currently supports hardware shared mem-
ory systems from SMPs, to more scalable NUMA (Non
Uniform Memory Architectures) systems, and Beowulf-
type clusters connected with both System Area Networks
(SANs) and Ethernet.
Tightly Coupled Implementations. Hardware shared mem-
ory systems naturally fulfill the HAMSTER porting require-
ments. On these systems, the required functionality for
memory allocation and synchronization is provided by the
OS, mostly in the form of process control and/or native

2



thread APIs. In addition, those systems come with hard-
ware coherence, and hence do not require explicit consis-
tency control.
Loosely Coupled Implementations. At the other end of the
spectrum lie Beowulf-type clusters with straightforward
Ethernet interconnections. These systems contain no hard-
ware support for shared memory, and hence they require ex-
tra software components to artificially create a global mem-
ory abstraction that is transparent for the user. Such sys-
tems, known as Software Distributed Shared Memory, or
SW-DSM [21], have been the focus of research for almost
twenty years, beginning with Li’s Ivy [16]. Many differ-
ent systems have been developed since, among them Tread-
Marks [1], Shasta [24], the Coherent Virtual Machines [14],
and HLRC [23]. Most of the work in this area focuses on
consistency, giving rise to many relaxed models, including
Release Consistency [13], Scope Consistency [11], and En-
try Consistency [4].

A SW-DSM system is required to enable shared mem-
ory programming on top of loosely coupled architectures
within the HAMSTER framework. To avoid duplicating
the work of others (and creating yet another DSM system),
we integrate an existing, using it transparently to implement
HAMSTER services on Beowulf architectures. We choose
JiaJia [9], developed at the Chinese Academy of Science,
because it boasts the advantages of open source, ready avail-
ability, and reasonably widespread use1. To our knowledge,
JiaJia is the only existing implementation of Scope Consis-
tency that is freely available, making it well suited for the
fine-grain consistency mechanisms of HAMSTER services.
JiaJia performance has been validated and shown to be com-
petitive with DSM systems like the CVM [14].
Hybrid Systems. Many intermediate architectures lie in be-
tween the design extremes of tightly coupled multiproces-
sors and independent, networked nodes. These range from
tightly coupled NUMA systems, like the SGI Origin se-
ries, to clusters with System Area Networks, like Dolphin’s
SCI [10, 8], Myrinet [5], or Infiniband. Inherent OS support
for the former allows such machines to be managed much
like SMPs. The latter can be used directly to speed com-
munication within traditional software DSM frameworks,
as in HLRC [23], PM2 [20, 2], or NOA [18]. Such clus-
ters may also provide specialized hardware mechanisms for
improved consistency protocols, as in Shrimp [3] or Cash-
mere [30]. The structure of these systems resembles that
of software DSM systems like JiaJia, and hence we expect
their integration into HAMSTER to be similar.

An interesting design point in this spectrum are Cluster
SANs with remote memory read and write capabilities, so
called Shared Memory Clusters. They map any communi-
cation directly onto the hardware (without software proto-
col overhead), effectively yielding a NUMA system. Mem-

1JiaJia has been downloaded to over 120 sites [33].

ory management still needs to be distributed, and must be
handled in software to retain the possibility of executing
on the more scalable cluster architectures. The resulting
hybrid DSM system leverages both software and hardware
shared memory techniques. SCI represents the most dom-
inant SAN interconnect with these properties, and two ap-
proaches have been implemented on top of it: SciOS [15]
and the SCI-VM [25]. This work is based on the latter. Due
to its software-like DSM memory management, the integra-
tion of the SCI-VM can be handled similarly to JiaJia’s. The
main difference lies in the fact that models like the SCI-VM
recognize and handle remote data by extending the local
memory management scheme in the OS, and thus they re-
quire an additional kernel component.

3.3 Integration Issues

The HAMSTER system integrates these different base
architectures into a single framework. Special attention
must be paid to cleanly integrating these independent and
potentially conflicting systems. The critical issues for this
are a unified startup operation and the integration of the dif-
ferent communication frameworks.

The task model and system initialization differ signif-
icantly among the three base architectures: shared mem-
ory multiprocessors rely on the OS to perform the required
tasks; JiaJia contains internal mechanisms for remote job
starts; and the SCI-VM uses external, script-based remote
job execution. The latter two are integrated by removing Ji-
aJia’s internal startup mechanisms and replacing them with
the configuration mechanisms of the SCI-VM, including the
unification of the different node configuration files. The
multiprocessor platform is integrated two ways: a) mul-
tithreaded programming models directly leverage the na-
tive operating system APIs, or b) models oriented towards
process parallelism treat these systems as separate nodes.
The latter is accomplished by using the startup and mem-
ory management mechanisms of the SCI-VM library, but
applying them to UMA instead of NUMA systems. The ap-
propriate startup handling can then be chosen according to
the requirements of the target programming model.

Within the communication framework, conflicts can oc-
cur if two base systems use the same interconnection re-
sources without coordinating. In the multiprocessor sub-
system, the OS handles conflicts, but the problem is evi-
dent when integrating software and hybrid DSM. Both sys-
tems use socket-like communication for their internal mes-
saging2, and hence they compete for access to the network
and to signaling mechanisms. HAMSTER cleanly solves
this integration issue is by coalescing the two separate inter-
connection structures into one, which then forms the basis

2In the SCI-VM, only configuration data is initially passed using socket
communication; all application data is transferred through hardware DSM.

3



for both models and is also exposed to the user for external
messaging.

4 Programming Models

Portable programming models can be implemented with
ease on top of HAMSTER’s integrated, cross-architectural
platform. HAMSTER facilitates this portability by provid-
ing a set of services on top of the architectural abstrac-
tion discussed above. These services provide the neces-
sary mechanisms to support shared-memory programming,
hiding architectural differences to bridge between program-
ming models.

4.1 Design Criteria

The main design goal of these services is to provide
the necessary functionality to implement arbitrary program-
ming models. Their design and implementation is guided by
the following four criteria.
Comprehensiveness. The services must be sufficiently com-
prehensive to meet prerequisites for any shared memory
programming model. Mechanisms must be generic, avoid-
ing bias towards any particular programming model, while
retaining enough power and expressiveness to recreate any
shared memory functionality.
Flexibility. Individual services must be flexible and highly
parameterizable. Each service can then be custom-tailored
to a specific use, allowing a direct mapping of the many
calls in target APIs to these parameterized versions of the
underlying services.
Ease of Use. The services must be easy to apply and must
behave predictably, without side effects. Their design must
minimize the implementation complexity of a target pro-
gramming model.
Low-Overhead Implementation. HAMSTER services must
guarantee high efficiency. Overheads must be sufficiently
low and in some cases performance should even improve,
due to a tight integration between the API and the core sys-
tem (for instance, the integration of the two messaging lay-
ers can yield improved message performance).

4.2 Supported Services

HAMSTER services can be classified into five types,
with each set of services implemented as a separate, orthog-
onal module, without cross-modules dependencies. This
implementation philosophy keeps the framework’s learning
curve low.
Memory Management Module. Services dealing with mem-
ory allocation and distribution reside in the Memory Man-
agement module. Users may specify coherence constraints
and distribution annotations for any memory subsystem (as

long as the subsystem can accommodate the given parame-
ters). A capability test routine lets the user probe the under-
lying shared memory system to discover supported coher-
ence schemes.
Consistency Management Module. Relaxed coherence pro-
vides opportunities for improved application performance,
but requires appropriate control mechanisms. In conjunc-
tion with the Synchronization Management module’s con-
structs, the services in this module support creation of ap-
propriate relaxed consistency models.
Synchronization Management Module. Synchronization
primitives coordinate individual processes or threads in
any shared memory model. This module contains lock
and barrier implementations optimized for the appropriate
base architecture, and it provides mechanisms to implement
programming-model specific constructs. Whenever possi-
ble, these are either implemented on top of native synchro-
nization mechanisms offered by the base operating system
and its thread API or by using user-level communication
mechanisms in the underlying hardware.
Task Management Module. This module contains services
required to implement the correct task model. Note that
this module does not include specific thread routines for
creation or joins, but rather provides mechanisms for the
integration of such thread services into the programming
model. This design maintains the HAMSTER’s generality
and allows programming model implementations to bene-
fit from platform-dependent, native thread services, and to
maintain platform-specific semantics (by not introducing a
new thread API with different semantics).
Cluster Control Module. This module implements the func-
tionality for managing cluster configuration and provides
services for identifying nodes and querying node parame-
ters. It includes a simple messaging layer used for initial-
ization. This module differs in composition from the others
in that it provides services used by other modules in addi-
tion to those used to implement programming models.

4.3 Performance Monitoring

Performance monitoring is crucial to tuning shared
memory applications and systems for efficient operation.
Shared memory communication is implicit, out of the di-
rect control of the programmer. Some shared memory APIs
or models therefore include mechanisms to generate perfor-
mance statistics useful for application optimization, as in
the performance monitoring system on the SGI Origin se-
ries [6] and the performance statistics in TreadMarks [1]
and JiaJia [9]. These routines are very specific to the pro-
gramming model, are often badly documented, and in some
cases have been added in an ad hoc manner.

As a programming-model independent framework,
HAMSTER is designed with generalized monitoring mech-

4



anisms within its individual modules. From the user’s
perspective, each module provides independent services to
query and reset its statistics counters. The implementation
of these services maintains these statistics independently of
what the underlying architecture provides3.

These monitoring routines are useful in several scenar-
ios: the application may directly access these services (and
thereby circumvent the transparency of the programming
model implementation); a run-time system may use them
for dynamic optimization; or an independent monitoring
system may attach externally. The monitoring capabili-
ties therefore enable architecture-independent and program-
ming model-independent tool support, making it possible to
leverage toolsets across platforms.

4.4 Programming Model Implementation

The services described above constitute the HAMSTER
interface that provides the basis for the implementation of
shared memory programming models. Additional services
independent of the parallel programming environment (e.g.,
platform-independent support for application timing mea-
surements) augment the usability of the framework. Imple-
menting a concrete shared memory API on top of HAM-
STER first requires an analysis of the individual API calls,
many of which can be directly mapped onto a corresponding
HAMSTER service. The calls not having a direct counter-
part in the HAMSTER interface must be decomposed and
then implemented using a set of HAMSTER services.

When implementing a new API, the following three
components require special attention, for they may vary
largely between shared memory models: memory consis-
tency model, task structure, and initialization. The first
can be achieved by a proper combination of consistency-
enforcing routines and synchronization constructs. If the
task structure requires more than what is provided by HAM-
STER’s inherent SPMD model, it must be based on the
native architecture’s thread API. Initialization operations
are split into internal initialization of the share-memory
model’s support mechanisms and initialization of the ex-
ternal cluster configuration (and accompanying startup pro-
cedures). HAMSTER provides a set of standard templates
for both, and these can be reused when implementing new
models.

We have already implemented several fully functional
programming models on top of HAMSTER. A high-level
analysis of these models is included in the next section, and
more details about the implementation of DSM APIs [27]
and threading APIs [26] can be found elsewhere.

3The amount of information provided may depend on the base archi-
tecture capabilities.

4.5 Notes on Consistency

Efficient, flexible support for consistency is the most crit-
ical requirement for a framework like HAMSTER. Base ar-
chitectures and target programming models can differ radi-
cally in how they enable or enforce consistency, and proper
mapping between software and hardware is crucial to pro-
viding full functionality without sacrificing performance.

A weaker software model may always be mapped onto a
stronger hardware model, as consistency models simply de-
fine a lower bound on the expected memory coherence. A
good example is an implementation of relaxed consistency
(e.g., Release Consistency [13]) on top of Shared Memory
Multiprocessors with hardware cache coherence. The SMP
system provides a stronger model in hardware (usually Pro-
cessor Consistency [7]), but can still execute applications
written for the weaker model. In fact, most commonly used
thread libraries for SMPs, including POSIX threads [31]
and Win32 threads [19], are themselves based on weak con-
sistency models, despite the available hardware support for
stronger consistency models.

Distributed memory architectures whose interconnects
are LANs or SANs, however, require weak consistency
models for efficient execution. In almost all cases, the hard-
ware’s relaxed consistency scheme matches the program-
ming model’s or API’s. The exact semantics of the tar-
get architecture’s underlying model must be matched dur-
ing programming model implementation. For this purpose,
the HAMSTER framework includes a separate consistency
API containing optimized implementations of all widely
used models, including Release Consistency [13] and Scope
Consistency [11]. Other models can be implemented based
on the HAMSTER services alone, but this might yield de-
graded performance.

Ultimately, researchers and practitioners seek a generic
API for high-performance consistency control (which
would be part of HAMSTER’s consistency module). A first
step in this direction exists for NCC-NUMA systems [29];
the results are encouraging, but not yet easily transferable to
other DSM types. Transferability requires a general, formal
model for DSM consistency, along with significant changes
to and integration efforts for the target DSM systems.

5 Evaluation

We evaluate HAMSTER according to two main criteria:
a) a quantitative assessment of the ease with which HAM-
STER is retargeted, and b) a discussion of the HAMSTER
overheads compared to those for native execution. The raw
performance of the underlying DSM systems is not a prop-
erty of the HAMSTER system itself, and so we focus on re-
targetability and overhead. Wall-clock execution times are
given elsewhere [28, 9], but we also include some of these

5



Benchmark Working Set

Matrix Multiplication 1024x1024 matrix
Computation of � -
Successive Over Relaxation (SOR) 1024x1024 matrix
LU Decomposition 1024x1024 matrix
WATER (Molecular Simulation) 288 / 343 molecules

Table 1. Benchmarks and Their Working Sets
Programming Model #Lines #API calls Lines/call

SPMD model 502 23 21.8
SMP/SPMD model 581 25 23.2
ANL macros 146 20 7.3
TreadMarks API 326 13 25.1

HLRC API4 137 25 5.5

JiaJia API (subset)4 43 7 6.1
POSIX threads 725 51 14.2
WIN32 threads 988 42 23.5
Cray put/get (shmem) API 505 29 17.4

Table 2. Implementation Complexity of Programming
Models Using HAMSTER

results here to provide perspective on the performance of
the particular DSM examples discussed herein.

5.1 Experimental Setup

For all following experiments, we use a four-node Linux
cluster equipped with both SCI and a switched Fast Ether-
net. Each dual-SMP node contains Intel 450 MHz Xeon
processors with 512 MB main memories. For all DSM ex-
periments, we use only one CPU per node; for execution on
top of hardware DSM, we use one node alone.

The benchmarks are taken from the collection of codes
included in the JiaJia distribution. They are all well known
benchmarks that have been adapted and optimized to the
JiaJia API. Table 1 lists all benchmarks and their respective
working set sizes.

5.2 Implementation Effort

A framework like HAMSTER must a) support a range of
programming models, b) require only modest effort to port
each model, and c) extend easily to support new program-
ming models. Together with broad support for a variety of
target architectures, this flexibility is essential to the success
of the framework.

Table 2 lists the models that we have already ported
to HAMSTER. They span the spectrum of shared mem-
ory APIs, ranging from distributed thread APIs (for both
Linux [31] and Windows [19]) to one-sided communication
APIs with remote put/get capabilities, as in Cray’s shmem
API [12]. In addition, HAMSTER includes APIs from sev-
eral SW-DSM systems, as well as a custom SPMD-style
library. SPMD implements a more user-friendly abstrac-
tion for most HAMSTER services: its ease of use provides
a good basis for run-time systems supporting high-level,
shared memory programming.

4These results are based on a subset of the SPMD programming model.

Table 2 indicates the programming effort required for
each model, giving total lines of code used to implement
the model with respect to the size of the API. To ensure a
fair comparison, each count is computed by a simple script
that first removes comments and empty lines, and then (to a
certain degree) standardizes the coding style. These results
show that each programming model can be implemented
with limited complexity: on average, we invest fewer than
25 lines of code for each API call.

The HAMSTER DSM implementations represent one
end of the programming-model spectrum. Note that the
SPMD models require relatively many lines of code to ex-
port the underlying (harder-to-use) HAMSTER services to
the user, yielding API calls with broader functionality at the
cost of increased implementation complexity. This model
is the first implemented within the project [25], forming the
basis for similar programming models, including JiaJia [9]
or HLRC [23]. Like the SPMD model, these DSM APIs
use synchronous allocation routines involving all nodes. In
contrast, TreadMarks [1] uses single-node allocation, and
hence requires an additional, special routine to distribute al-
location data. The TreadMarks API thus lends itself to a
low-complexity implementation, since almost all routines
can be mapped directly to HAMSTER services (attesting
to the completeness of the HAMSTER design). Only the
one routine required to distribute data in the TreadMarks
single-node allocation scheme must be implemented fully
by hand: single-node allocation requires that the data re-
trieved from this additional allocation routine be delivered
to the other nodes (the other APIs implement global allo-
cation with an implicit barrier, paying overhead costs for a
consistency model that is not always required).

At the other end of the spectrum lie the more complex
POSIX and Win32 thread APIs. Both contain a forwarding
mechanism that enables the application to execute threading
routines either on the node on which the target thread runs,
or (as in the case of the thread-creation routine) on the node
on which the respective routine should execute. Again, for
flexibility’s sake the HAMSTER services intentionally omit
providing such a forwarding framework. Instead, forward-
ing can easily be built on top of the HAMSTER messag-
ing primitives: all communication uses some form of active
message present within the HAMSTER modules. The many
calls supported by these APIs means that the forwarding fa-
cility’s implementation will be frequently used, offsetting
the higher complexity of implementing the threading mod-
els (especially for the Win32 thread API [19]).

Our experience indicates that simpler programming
models (like most SW-DSM APIs) can usually be imple-
mented and tested within half a day. More complex models
(like the thread APIs) require more code, due to their com-
plex command-forwarding mechanisms. However, even
those APIs can usually be implemented within a day. Im-

6



Figure 2. Overhead of Execution with HAMSTER Com-
pared to Native Execution on JiaJia (4 Nodes)

plementing a wide range of programming models on top
of HAMSTER is not only feasible but straightforward: the
system meets its retargetability design goal.

5.3 Overhead

To evaluate the overhead induced by HAMSTER, we run
the above mentioned benchmarks on top of the same sys-
tem architecture, using both the standard distribution of Ji-
aJia without modifications, and a JiaJia API implemented
on top of HAMSTER. The latter is executed on top of the
integrated and modified JiaJia within HAMSTER.

The results of these experiments are shown in Figure 2.
Positive bars indicate a performance degradation when run
on top of HAMSTER, whereas negative bars indicate a per-
formance gain. For SOR, the results of both a transparent
run and an optimized run with locality optimizations are
shown. All other codes are used with locality optimizations.
In addition, LU results have been split into an overall time,
a time without initialization, the actual computational core
without synchronization, and the time spent in barriers.

In summary, this data shows a very small influence on
overall performance behavior: in single-digit percentages.
In many cases, we even observe slight performance in-
creases. This is most likely due to HAMSTER’s tight in-
tegration, especially of the communication subsystem.

5.4 Raw Performance

Using the same setup, we execute the benchmarks on dif-
ferent target platforms supported by HAMSTER. For this,
only the configuration of HAMSTER (in the form of a con-
figuration file) is changed between experiments; the actual
codes are not modified, and in fact we use the identical bi-
naries.

Figure 3 shows the performance ratio between running
on the Hybrid-DSM vs. the Software-DSM system on all
four nodes. Positive bars indicate an advantage for the

Figure 3. Performance of Hybrid-DSM with SW-DSM as
Baseline (4 Nodes)

Hybrid-DSM, whereas negative bars indicate faster perfor-
mance on the Software-DSM system. As expected, the
Hybrid-DSM outperforms its Software counterpart, as ap-
plications can take advantage of the special hardware fea-
tures. The difference, however, is not as high as expected,
due to small data set sizes used in these experiments and the
fact that these codes (as part of the JiaJia suite) have been
tweaked for optimal performance under Software-DSM.
Note, for instance, that the optimized SOR code exhibits
only a small performance difference, while the unoptimized
version is significantly better on the Hybrid-DSM system.
This indicates that the Software-DSM relies more heavily
on locality optimizations for good performance. As for
the LU code, the overall performance is significantly bet-
ter, as the typical write-only initialization is very expensive
in Software-DSM systems, while the actual core computa-
tion is faster. However, the Hybrid-DSM system balances
the overhead more evenly across the complete application,
as can be seen in the significantly lower barrier times.

Figure 4 shows the results of the same experiments on
only two nodes in relation to the performance of the same
codes run with the same SMP system as the target architec-
ture. As expected, the tight coupling of the SMP outper-
forms the other two DSM systems in most cases. The only
exception is the matrix multiplication, which is faster on the
DSM systems. This is due to the fact that this code is mem-
ory bound, and hence can profit from the use of separate
memory buses on the two nodes. As for a comparison be-
tween Hybrid-DSM and Software-DSM, no clear trend can
be deduced from the results given here, most likely due to
the small cluster size.

This paper represents but a preliminary study, and our
goal is to show the capabilities of HAMSTER and to
demonstrate (and quantify, to the extent possible) the flex-
ibility of the overall framework. Experiments with more
and larger codes, as well as with different and larger system
setups, are all part of ongoing work.

7



Figure 4. Performance of Hardware–, Hybrid–, and
Software–DSM (2 Nodes)

6 Future Research

HAMSTER provides the means to efficiently support
all major relaxed consistency models. Its implementation,
however, is currently oriented towards the model of the
underlying system architecture, and is aided by a specific
consistency API. While this approach provides the neces-
sary functionality, it would be preferable to include a fully
generic and user-centric consistency API that includes a
more formal mechanism for reasoning about memory con-
sistency. Such an API is already included in the SCI-
VM [25], the original base system from which HAMSTER
grew, but it needs to be adapted to the more complex consis-
tency structures of modern software DSM protocols. This
will allow memory consistency implementations to be more
easily verified, and will enable experiments with new, po-
tentially application-specific consistency models.

HAMSTER’s ability to concurrently support multiple
DSM systems within one framework offers the opportunity
for a direct and fair comparison among such systems. To
our knowledge, such a comparison between hybrid DSMs
and multiple software DSMs has not yet been performed,
largely due to the difficulties of comparing different soft-
ware systems on top of very different hardware architec-
tures. We expect that such a study would not demonstrate
the dominance of a single approach, but rather would reveal
that individual system performances are dependent upon ap-
plication characteristics (particularly memory and I/O ac-
cess patterns). If this turns out to be the case, HAMSTER
makes it possible to combine several different DSM mecha-
nisms within the execution of a single application, resulting
in custom-tailored, shared memory solutions for individual
applications.

7 Conclusions

Here we have described the HAMSTER framework to
support the shared memory paradigm. In principle, HAM-
STER allows programmers to use any shared memory API

without modification, running on top of SMPs, NUMA-like
clusters, and Beowulf systems. The framework currently
supports shared memory models ranging from thread APIs
to one-sided put/get interfaces, all on top of a single, core
middleware architecture. Our experience demonstrates that
HAMSTER achieves this flexibility and portability without
sacrificing performance. Compared to native execution on a
four-node JiaJia system, HAMSTER suffers less than 6.5%
overhead, and in other cases HAMSTER performance over-
heads range from about a 2% slowdown to almost a 4.5%
speedup.

Acknowledgments

Much of this work was performed at the Technische Uni-
versität München under the support of the Lehrstuhl für
Rechnertechnik und Rechnerorganisation (LRR).

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
Memory Computing on Networks of Workstations. IEEE
Computer, 29(2):18–28, Feb. 1995.

[2] G. Antoniu, L. Bouge, and R. Namyst. An Efficient and
Transparent Thread Migration Scheme in the PM2 Runtime
System. In Parallel and Distributed Processing, Proceed-
ings of IPDPS workshops including RTSPP, volume 1586 of
LNCS, pages 496–510. Springer Verlag, Berlin, Apr. 1999.

[3] A. Belias, L. Iftode, and J. Singh. Shared Virtual Memory
across SMP Nodes Using Automatic Update: Protocols and
Performance. In Proceedings of the 6th workshop on Scal-
able Shared-Memory Multiprocessors, Oct. 1996. Also as
Princeton Technical Report TR-517-96.

[4] B. Bershad and M. Zekauskas. Midway: Shared Mem-
ory Parallel Programming with Entry Consistency for Dis-
tributed Memory Multiprocessors. Technical Report CMU-
CS-91-170, School of Computer Science, Carnegie Mellon
University, Sept. 1991.

[5] N. Boden, D. Cohen, R. Felderman, J. S. A. Kulawik,
C. Seitz, and W.-K. Su. Myrinet: A Gigabit–per–Second
Local Area Network. IEEE Micro, 15(1):29–36, Feb. 1995.

[6] D. Cortesi and J. Fier. Origin2000 and Onyx2 Perfor-
mance Tuning and Optimization Guide. Technical Report
007-3430-002, Silicon Graphics, Inc., 1998. Available at
http://techpubs.sgi.com/.

[7] J. Goodman, M. Vernon, and P. Woest. Efficient Synchro-
nization Primitives for Large-Scale Cache-Coherent Multi-
processors. In Proceedings of 3rd International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 64–73, 1989.

[8] H. Hellwagner and A. Reinefeld, editors. SCI: Scalable
Coherent Interface. Architecture and Software for High-
Performance Compute Clusters, volume 1734 of LNCS
State-of-the-Art Survey. Springer Verlag, Oct. 1999. ISBN
3-540-66696-6.

8



[9] W. Hu, W. Shi, and Z. Tang. JiaJia: An SVM System
based on a New Cache Coherence Protocol. In Proceedings
of High Performance Computing and Networking (HPCN-
Europe), volume 1593 of LNCS, pages 463–472, Apr. 1999.

[10] IEEE Computer Society. IEEE Std 1596–1992: IEEE Stan-
dard for Scalable Coherent Interface. The Institute of Elec-
trical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY 10017, USA, August 1993.

[11] L. Iftode, J. Singh, and K. Li. Scope Consistency: A Bridge
between Release Consistency and Entry Consistency. The-
ory of Computer Systems, 31:451–473, 1998.

[12] C. Inc. SHMEM, in CRAY T3E C and C++ Optimiza-
tion Guide, chapter 3. SG–2178 3.0.1, Available at
http://www.cray.com/.

[13] P. Keleher. Lazy Release Consistency for Distributed Shared
Memory. PhD thesis, Rice University, Jan., 1995.

[14] P. Keleher. CVM: The Coherent Virtual Machine. Uni-
versity of Maryland, cvm version 1.0 edition, Nov. 1996.
http://www.cd.umd.edu/projects/cvm/.

[15] P. Koch, J. Hansen, E. Cecchet, and X. R. de Pina. SciOS:
An SCI-based Software Distributed Shared Memory. In Pro-
ceedings of the First International Workshop on Software
Distributed Shared Memory (WSDSM), June 1999. Avail-
able at http://www.cs.umd.edu/˜keleher/wsdsm99/.

[16] K. Li. Shared Virtual Memory on Loosely Coupled Multipro-
cessors. PhD thesis, Yale University, Sept. 1986. Available
as TR492.

[17] M. Schulz. Efficient deployment of shared memory mod-
els on clusters of PCs using the SMiLEing HAMSTER ap-
proach. In A. Goscinski, H. Ip, W. Jia, and W. Zhou, editors,
Proceedings of the 4th International Conference on Algo-
rithms and Architectures for Parallel Processing (ICA3PP),
pages 2–14. World Scientific Publishing, Dec. 2000.

[18] D. Mentre and T. Priol. NOA: A Shared Virtual Memory
over a SCI cluster. In H. Hellwagner and A. Reinefeld, edi-
tors, Proceedings of SCI-Europe ’98, a conference stream of
EMMSEC ’98, pages 43–50. Cheshire Henbury, Sept. 1998.
ISBN: 1-901864-02-02.

[19] Microsoft Cooperation. Microsoft Platform Software De-
velopment Kit, chapter About Processes and Threads. Mi-
crosoft, 1997. available with Microsoft’s SDK.

[20] R. Namyst and J.-F. Mehaut. PM2: Parallel Multithreaded
Machine, a Computing Environment for Distributed Archi-
tectures. In Proceedings of ParCo 1995, pages 279–285,
Sept. 1995.

[21] B. Nitzberg and V. LO. Distributed Shared Memory: A Sur-
vey of Issues and Algorithms. IEEE Computer, pages 52–
59, Aug. 1991.

[22] OpenMP Architecture Review Board. OpenMP C and
C++ Application, Program Interface, Oct. 1998. Ver-
sion 1.0, Document Number 004-2229-01, Available from
http://www.openmp.org/.

[23] M. Rangarajan, S. Divakaran, T. Nguyen, and L. Iftode.
Multi-threaded Home-based LRC Distributed Shared Mem-
ory. In Proceedings of the 8th Workshop on Scalable Shared
Memory Multiprocessors (held in conjunction with ISCA),
May 1999.

[24] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A
Low Overhead, Software–Only Approach for Supporting

Fine–Grain Shared Memory. Technical Report WRL Re-
search Report 96/2, Digital Western Research Laboratory,
Nov. 1996.

[25] M. Schulz. True shared memory programming on SCI-based
clusters, chapter 17, pages 291–311. Volume 1734 of Hell-
wagner and Reinefeld [8], Oct. 1999. ISBN 3-540-66696-6.

[26] M. Schulz. Multithreaded Programming of PC clusters.
In Proceedings of International Conference on Parallel
Architectures and Compilation Techniques (PACT) 2000,
Philadelphia, PA, USA, pages 271–278. IEEE, Oct. 2000.

[27] M. Schulz. Overcoming the Problems Associated with the
Existence of Too many DSM APIs. In H. Bal, K. Löhr, and
A. Reinefeld, editors, Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid — DSM2002: Distributed Shared Memory on Clusters,
pages 319–324. IEEE, May 2002.

[28] M. Schulz and W. Karl. Hybrid-DSM: An Efficient Al-
ternative to Pure Software DSM Systems on NUMA Ar-
chitectures. In L. Iftode and P. Keleher, editors, Proceed-
ings of the Second International Workshop on Software Dis-
tributed Shared Memory (WSDSM), May 2000. Available at
http://www.cs.rutgers.edu/˜wsdsm00/.

[29] M. Schulz, J. Tao, and W. Karl. Improving the Scalability of
Shared Memory Systems through Relaxed Consistency. In
R. Bianchini and L. Iftode, editors, WC3’02, Second Work-
shop on Caching, Coherency, and Consistency, June 2002.

[30] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. CASHMERE-
2L: Software Coherent Shared Memory on a Clustered
Remote-Write Network. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP), Oct.
1997.

[31] Technical Committee on Operating Systems and Applica-
tion Environments of the IEEE. Portable Operating Sys-
tems Interface (POSIX) — Part 1: System Application In-
terface (API), chapter including 1003.1c: Amendment 2:
Threads Extension [C Language]. IEEE, 1995 edition, 1996.
ANSI/IEEE Std. 1003.1.

[32] WWW:. MPI – The Message Passing Interface Standard
. http://www.mcs.anl.gov/mpi/index.html, Dec. 1999.

[33] WWW:. Thanks for your interest in JIAJIA Software Dis-
tributed Shared Memory System
. http://www.cs.wayne.edu/ weisong/jiajia.html, Oct. 2002.

9


