
Future Generation Computer Systems 19 (2003) 761–776

ARS: an adaptive runtime system for locality optimization

Jie Tao∗, Martin Schulz, Wolfgang Karl
LRR-TUM, Institut für Informatik, Technische Universität München, 80290 München, Germany

Abstract

Shared memory programs running on Non-Uniform Memory Access (NUMA) machines usually face inherent performance
problems stemming from excessive remote memory accesses. A solution, called the Adaptive Runtime System (ARS), is
presented in this paper. ARS is designed to adjust the data distribution at runtime through automatic page migrations. It uses
memory access histograms gathered by hardware monitors to find access hot spots and, based on this detection, to dynamically
and transparently modify the data layout. In this way, incorrectly allocated data can be moved to the most appropriate node
and hence data locality can be improved. Simulations show that this allows to achieve a performance gain of as high as 40%.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Page migration; Data locality optimization; Shared memory programming on NUMA; Hardware monitor

1. Introduction

Due to their excellent price–performance ratio,
clusters built from commodity nodes have become
increasingly popular as platforms for parallel pro-
cessing. Among them, clusters of standard PCs in-
terconnected with high-speed System Area Networks
(SANs) are especially attractive and have been widely
established. At the same time, the developments in
interconnection technologies also formed the basis for
the rise of Non-Uniform Memory Access (NUMA)
architectures, i.e. systems with physically distributed
memories, but with a global address space allowing
an efficient but non-uniform access to any memory
location in the system. These kinds of systems, espe-
cially when offered as non-cache coherent NUMA for
loosely coupled commodity architectures, can easily
be implemented in a straightforward manner without
major hardware efforts. They form a favorable ar-

∗ Corresponding author.
E-mail addresses: tao@in.tum.de (J. Tao), schulzm@in.tum.de
(M. Schulz), karlw@in.tum.de (W. Karl).

chitectural tradeoff by combining the scalability and
cost-effectiveness of standard clusters with a shared
memory support close to symmetric multiprocessors.

The non-uniform memory access characteristic,
however, introduces a distinction between local and
remote memory causing different memory access la-
tencies. In systems with such characteristics, a remote
memory access can take up to one or two orders of
magnitude longer than a local one. For the program-
mer, this difference is generally indistinguishable as
shared memory programming models work on the
assumption of a single uniform global address space.
This situation can lead to extensive remote memory
accesses, especially with rising numbers of nodes,
and hence to a higher percentage of remote mem-
ory accesses in the overall system. Therefore, many
shared memory applications initially do not achieve a
good parallel speedup when running on NUMA-like
architectures.

Manual optimizations[11,12,18,21]with respect to
data placement can improve data locality, but they can-
not solve this problem completely since these meth-
ods are not suitable for applications with dynamically

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(02)00183-8



762 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

changing access patterns. Therefore, also a dynamic
approach for locality optimization needs to be added
which is capable of significantly reducing remote data
accesses via an automatic runtime data redistribution.

Such an approach, called the Adaptive Runtime
System (ARS), is presented in this paper. ARS is
intended to adjust the data distribution at runtime dur-
ing the execution of an application. It uses memory
access histograms as the basis for its analysis of ac-
cess patterns, and based on this analysis, dynamically
and transparently modifies the location of data. Ac-
cess hot spots and communication bottlenecks can be
corrected in this way resulting at the end in a better
runtime data layout and a performance gain.

The memory access histograms deployed by ARS
for determining migrations are collected by hardware
monitors. This hardware-based monitoring facility is
designed to snoop all network transactions on a node,
hence enabling a non-intrusive monitoring and an ac-
quisition of comprehensive performance data which
allows to explore novel migration algorithms with a
larger decision base.

Based on these capabilities, several page migration
algorithms, calledOut-U, Out-W, and In-W, are in-
vestigated within ARS. These algorithms vary in their
base, i.e. the amount and type of monitoring informa-
tion, for making migration decisions. TheOut algo-
rithms make their migration decisions about whether
to move a local page to a remote node according to
the monitoring of outgoing memory traffic initiated
by the local node. They implement hence a kind of
push-migration. Correspondingly, theIn algorithm,
which implements apull-migration, decides whether
to bring a remote page to the local node depending
on the monitoring of incoming memory traffic from
remote nodes. On the other hand, theU algorithm
establishes its analysis on information from memory
accesses performed on a single page, while theW
algorithms base their analysis on memory references
to multiple shared pages, in a way that the accesses
to a set of pages are combined using a weighted
distribution.

First experimental results suggest that theW algo-
rithms are in most cases better than the corresponding
U algorithms due to their increased decision base lead-
ing to earlier and more correct migrations. Comparing
the Out and theIn algorithms, it depends on the in-
dividual application and its memory access behavior

whether one algorithm is more efficient than the other.
While theIn algorithm behaves better in some cases,
the Out algorithm introduces higher performance im-
provement in some other cases.

Besides these novel migration algorithms, ARS
provides a graphical user interface which has been
developed to visualize the actual data migration and
page movement performed in the system. This al-
lows a study of the migration behavior and an im-
provement of migration algorithms. The ARS GUI
complements a previously developed tool called the
Data Layout Visualizer (DLV)[21] which is used to
present an application’s memory access behavior in
a human-readable and easy-to-use way, enabling the
understanding of an application’s access pattern as
well as the location of memory access bottlenecks
and communication hot spots. This can be used to ex-
plicitly optimize the source code with respect to data
locality. These two approaches, i.e. static optimization
supported by DLV and dynamic migration performed
by ARS, complement each other and together form a
general approach for improving data locality of appli-
cations with either static or dynamic access patterns.

The remainder of this article is structured as follows.
Section 2briefly outlines a few previous approaches
for improving data locality using data migrations.
Section 3introduces the target system in combination
with the hardware monitor providing performance
data. This is followed by a detailed discussion of the
ARS approach inSection 4, including the framework,
the proposed migration algorithms, and the graphical
user interface. InSection 5, first experimental results
are presented with a focus on the selection of the
migration criteria and the comparison of the migra-
tion algorithms. The paper is rounded up with some
concluding remarks inSection 6.

2. Related work

Data locality on NUMA machines has been ad-
dressed over the last years. A significant amount of
approaches has therefore been proposed for improv-
ing data locality through reducing accesses to remote
memories. In addition to those schemes focusing on
static data-reordering based on compilers[3,6,11,18],
several approaches based on page migration have been
implemented. This section briefly describes a few of



J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776 763

such approaches. In addition, a few approaches for
thread migration have to be mentioned, as their tech-
niques can in principle be applied to page migration
as well.

Verghese et al.[22] study the performance improve-
ment on CC-NUMA systems with OS supported dy-
namic migration and replication. This kind of page
migration is based on the information about full-cache
misses collected via instrumentation in the OS. Hot
pages, i.e. pages on which a large number of misses
occur, are migrated if referenced primarily by one pro-
cess or replicated if referenced by many processes.
Results of their experiments show a performance in-
crease of up to 29% for some workloads. This ap-
proach, however, relies on software instrumentation
and hence introduces high overheads.

Nikolopoulos et al.[13] present two algorithms for
moving each virtual memory page to the node that per-
forms the most references. The purpose of the page
movement is to minimize the maximum latency due to
remote memory accesses. One algorithm works with
iterative parallel programs and is based on the assump-
tion that the page reference pattern of one iteration
will be repeated throughout the execution of the com-
plete program. The other algorithm checks periodi-
cally for hot memory areas and migrates pages with
excessive remote references. Both algorithms assume
compiler support for identifying hot memory areas,
i.e. memory areas which are likely to concentrate ex-
cessive remote accesses. Performance evaluations on
an SGI Origin2000 show a significant improvement
in throughput. However, this approach is based on the
limited static analysis done by the compiler and hence
is incapable of adjusting to runtime behavior. The in-
formation for making migration decision is therefore
incomplete and potentially inaccurate.

Amber [2] is a multithreaded object-based system
for distributed computations on networks of worksta-
tions. In Amber data is not moved (or replicated) to the
location of the accessing thread, but rather, a thread
that invokes an operation on a remote object is moved
to the node where the object resides. This kind of mi-
gration is done explicitly by programmers using mo-
bility primitives. In this approach, the programmer is
burdened with the task of controlling the location of
objects, which again requires extensive knowledge.

The RAHM (Remote Access Histories Mechanism)
[8,16] is a technique that uses remote access histories

for thread migration in order to improve the locality
of memory references in distributed shared memory
systems. The goal of the thread migration is maxi-
mal locality. Therefore, only those threads are selected
to migrate, whose migration is expected to minimize
the number of remote memory references for both the
source and destination host. The information support-
ing thread selections are remote-reference histories
collected from a statistical component in the underly-
ing DSM system.

MCRL [5] is a multithread, distributed shared mem-
ory system that implements a dynamic choice between
data and computation migration. MCRL data objects
(programmer-defined regions) are managed using a
home-based sequentially consistent protocol. When a
processor accesses a region that is not cached locally,
MCRL contacts the region’s home node. The home
node then decides between data or computation mi-
gration. This decision is made depending on two poli-
cies: the “static” policy always migrates computation
for remote writes and data for remote reads, while
the “repeat” policy always migrates computation for
remote writes and dynamically chooses data migra-
tion or computation migration for remote reads. These
policies can improve performance if the computation
accesses a single large data region, but imposes un-
necessary overhead if small regions are accessed by
only one processor.

In the Olden[1] project, compiler support is used to
statically determine whether to migrate computation
or data. In this approach, the programmer is required
to give the compiler indirect knowledge about the data
layout. Such a strategy works well for applications
with a predictable data structure layout and predictable
access patterns. However, a static decision between
computation and data migration does not work for ap-
plications with unpredictable or dynamically changing
data access patterns.

Overall, these previously proposed approaches have
shown that dynamic migrations are capable of intro-
ducing significant performance gains. However, all of
them make the migration decisions depending on the
memory access histograms gathered by software with
support of the operating system, the compiler, or other
memory management mechanisms. This information
has to be either inaccurate, incomplete, or associated
with a high probe overhead. In order to avoid this
problem, the ARS approach establishes its migration



764 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

decision on information gathered by hardware moni-
tors with only a minimal probe overhead and without
the involvement of compilers and the necessity to in-
trude the operating system. Besides this, ARS explores
algorithms which use a larger decision base enabling
a comprehensive analysis and earlier migrations.

In addition, unlike all previous approaches, ARS
deploys graphical views to show the actual data move-
ment and the migration flow of virtual pages. This
allows a better understanding of a program’s mem-
ory access behavior and an improvement of migration
mechanisms. In combination with the Data Layout Vi-
sualizer[21], the user is capable of understanding the
runtime behavior of the application and to spot and
correct performance bottlenecks or misbehaviors of
the automatic adaptation heuristics.

3. Target system

ARS is currently established on top of the NUMA
characterized SMiLE-like PC clusters. SMiLE stands
for Shared Memory in a LAN-like Environment [15]
and is a project broadly investigating in SCI-based
cluster computing.1 SCI (Scalable Coherent Interface)
[4] is an IEEE-standardized[7] interconnection tech-
nology with extremely low latency (<2�s) and very
high bandwidth (>300MB/s for modern PC architec-
tures). In addition, SCI provides a single physical
address space across processor nodes in hardware,
supporting the establishment of a distributed shared
memory. This forms the base for hybrid DSM sys-
tems. Such a system, called the SCI Virtual Memory
(SCI-VM) [10], has been developed within SMiLE
and serves as the base for a software framework
HAMSTER (Hybrid-dsm-based Adaptive and Modu-
lar Shared memory archiTEctuRe)[14]. This frame-
work enables the establishment of arbitrary shared
memory programming models on top of a single core.
Based on HAMSTER, existing shared memory appli-
cations can easily be ported to and executed on the
SMiLE-like PC clusters.

Like it is the case on any of the other NUMA ma-
chine, shared memory programs initially do not show
a high speedup on the SMiLE system due to excessive
remote references. In order to understand the shared

1 More information athttp://smile.in.tum.de/.

memory traffic, a hardware monitor[9] has been de-
signed which is capable of observing the interconnec-
tion fabric with minimized probe overhead. Based on
this monitoring device, an integrated monitoring in-
frastructure has been built with the goal of optimiz-
ing the data locality of NUMA-based shared memory
applications.

As shown inFig. 1, the monitoring infrastructure
is composed of three modules: the execution envi-
ronment forming the data acquisition system, the tool
middleware responsible for creating a global view of
the acquired information and for interoperability is-
sues, and the shared memory tools capable of steering
the execution of parallel programs.

The execution environment itself (right inFig. 1) is
clearly layered with the SMiLE components described
above including the hardware, i.e. the cluster, the SCI
adapter card, and the hardware monitor, as well as the
software infrastructure, i.e. the drivers and APIs, the
SCI-VM, HAMSTER, and the programming models.
Combined, they contribute information about mem-
ory accesses which is gathered by the hardware mon-
itor and information about, e.g. address mapping and
synchronizations which is provided by the software
layers.

As the main component supplying performance
data, the SMiLE hardware monitor has been developed
to trace shared memory transactions on SCI-based
clusters. The need for a hardware monitoring facility
stems from the fact that shared memory traffic by
default is of implicit nature and performed at runtime
through transparently issued load and store operations
to remote data locations. In addition, shared memory
communication is very fine-grained (normally at word
level). This renders code instrumentation record-
ing each global memory operation infeasible since
it would slow down the execution significantly and
thereby distort the final monitoring to a point where
it is unusable for an accurate performance analysis.
The only viable alternative is therefore to deploy a
hardware monitoring facility for observing the actual
link traffic of the NUMA interconnection network.
Only this guarantees fine-grained information about
the actually inferred communication with a minimal
influence onto the actual execution behavior.

The SMiLE hardware monitor is designed to be at-
tached to an internal link on current PCI–SCI bridges,
the so-called B-Link. This link connects the SCI link

http://smile.in.tum.de/


J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776 765

Fig. 1. The SMiLE monitoring infrastructure.

chip to the PCI side of the adapter card and is hence
traversed by all SCI transactions intended for or orig-
inating from the local node. Due to the bus-like im-
plementation of the B-Link, these transactions can be
snooped without influencing or even changing the tar-
get system and can then be transparently recorded and
preprocessed by the SMiLE hardware monitor. As the
monitoring data is low-level and fine-grained, a soft-
ware infrastructure including a driver and a C-API has
been developed to further process the monitoring in-
formation. The results are so-calledmemory access
histograms which show the numbers of memory ac-
cesses across the complete virtual address space of
an application’s working set separated with respect to
target node IDs. These histograms form the base for
any locality optimizations.

Locality optimization is a complex and difficult task
requiring the support of performance tools. Currently,
two shared memory tools have been implemented in-
cluding the DLV and the ARS. DLV[21] visualizes the
memory access behavior and pattern allowing an easy
detection of communication bottlenecks. In addition,
DLV projects virtual addresses into the data structure
enabling an explicit optimization of the source code
with respect to data placement.

However, it is found that DLV is not adequate for
applications with irregular access patterns. For these
cases, ARS, an Adaptive Runtime System, has been
implemented in order to handle the dynamic behav-

ior of applications. Together, DLV and ARS form a
general solution for locality issues on NUMA archi-
tectures, where DLV enables an initial data placement
and ARS allows a runtime adjustment.

4. The ARS approach

Shared memory programs running on NUMA ma-
chines suffer from the memory access latency induced
by excessive remote memory references. While the
performance of some applications can be improved by
manually optimizing the source code with respect to
data placement, others that exhibit dynamically chang-
ing access patterns can only be tuned by runtime re-
distribution of data or computation. ARS implements
such a mechanism that migrates shared data during
the execution of a program.

4.1. Framework

ARS is capable of analyzing the monitoring
information, finding the communication hot spots, de-
termining the optimal location of shared data, and ini-
tiating appropriate page migrations. For this purpose,
both a decision-making mechanism and a migration
mechanism are implemented. The decision-making
mechanism reads data from the hardware monitor.
The monitoring data is not directly transferred to



766 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

Fig. 2. Data transfer between ARS, DLV, tool middleware, and the hardware monitors.

ARS, but delivered via a distributed tool middleware
[19] shown inFig. 1. This enables the integration of
arbitrary tools with the system execution environment.

The ARS decision-making mechanism periodically
checks for migrations. It calculates the memory ac-
cesses and makes its decision according to the cho-
sen migration algorithms. The migration decisions are
then delivered to the migration mechanism, which
informs the memory management module of HAM-
STER to perform the corresponding changes in the
SCI-VM. In addition, migration information is trans-
ferred to the ARS GUI via the tool middleware for the
visualization of the runtime migrations.

Fig. 2 shows the communications between these
components. The decision-making module of ARS is-
sues service requests to the tool middleware in order
to acquire the monitoring information, while the latter
interacts with the concerned hardware monitor(s) and
replies the ARS requests with monitoring data. The
decision-making module of ARS analyzes the memory
access behavior and detects the incorrectly allocated
pages. In case a migration decision is made, the mi-
gration mechanism as well as HAMSTER is informed.
The latter performs the modification in the shared vir-
tual memory and delivers the migration information
as service replies further to the GUI of ARS enabling
the visualization of the migration behavior.

Migration algorithms play a central role in de-
veloping a migration system. Commonly used page

migration mechanisms[17,22] are based on com-
petitive algorithms which migrate a page if the
difference between the number of local references
and the number of remote references from one
node exceeds a predefined threshold. This scheme
is easy to implement, hence a similar one, called
Out-U, is also applied within ARS as a baseline for
comparison.

In addition to Out-U, two new page migration
algorithms are proposed. These novel algorithms,
calledOut-W andIn-W, respectively, deploy not only
the memory accesses on the relevant page but also
access information about pages spatially neighbor-
ing this page. Since they take the spatial locality of
memory accesses into account and use a larger de-
cision base, these algorithms are likely to perform
more accurate and timely page migrations. The main
difference betweenOut-W andIn-W is that they base
their migration decisions on different monitoring
information: Out-W only uses the outgoing mem-
ory traffic initiated by the local node, whileIn-W
is based on the incoming traffic from all remote
nodes.

As the hardware monitor does not observe local
memory accesses, migration decisions made by these
algorithms are based on the accesses performed by
remote nodes. This possibly causes Ping-Pongs, in
which a page is migrated to a remote node and later
moved back again to the local node. However, first



J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776 767

experimental results have shown that ARS is capa-
ble of avoiding high Ping-Pongs by using an adequate
threshold.

4.1.1. The Out-U algorithm
Out-U makes decisions whether to move a page

from the local node to a remote node and can hence be
classified aspush-migration. The decision is based on
the references performed to the single page from all
remote nodes. If the difference between the accesses
from the dominant note and the average accesses ex-
ceeds a given threshold, it is decided to move this page
to this dominant remote node.

The main challenge connected with this approach
is the tradeoff between earlier and correct migrations.
Using this algorithm, a correct migration decision
can be made only after a large amount of references
have been issued, resulting in late migrations and
thereby a loss in performance. On the other hand, if
a decision is made based on only a small amount of
references, many incorrect migrations may be caused.
In order to solve this problem, another two algorithms
are proposed which base their migration decisions on
references performed on multiple pages and therefore
are able to make a migration decision earlier, but still
correct.

4.1.2. The Out-W algorithm
Out-W uses the number of relative references in

order to decide the location of a page. The number of
relative memory accesses to pageP from nodeN is
thereby calculated as the sum of weighted references
from the same node to the pages spatially neighboring
pageP using the following formula:

RPN =
n∑

i=0

WiCi

In this formula,Wi is a weight representing the impor-
tance of theith page to pageP andCi is the number
of references to pagei, while n is the number of pages
located on nodeN. The weight is assigned according
to the distance of a page to pageP, whereby a closer
page is assigned with a higher weight due to the spa-
tial locality of memory accesses. Concretely, pageP
has a weight of 1, pageP − 1 andP + 1 a weight of
(1 − 1 × (2/n)), pageP − 2 andP + 2 a weight of
(1 − 2 × (2/n)), and so on. Besides that, the neigh-

borhood is restricted to the pages located on the same
node of pageP. This avoids the overhead of trans-
ferring the monitoring information to other nodes, by
using only the monitoring information provided by
the local hardware monitor.

In order to determine the location of a page, the rel-
ative references from all remote nodes are compared.
If the difference between the number of relative ac-
cesses from the dominant node and the average rela-
tive accesses exceeds a threshold, it is decided to move
the page to the dominant remote node. Here, the same
threshold asOut-U is used.

The advantage ofOut-W over Out-U comes from
the fact that theoretically spatially neighboring pages
have similar access behavior due to the spatial locality
of memory accesses. This means that if a node pre-
dominately accesses a page, it is also likely to access
its neighboring pages in the same way. Therefore, the
behavior of neighboring pages can be used to deter-
mine the location of this page. The benefit is that, due
to the higher number of accesses, a migration decision
can be reached earlier since the sum of the memory ac-
cesses (even weighted) performed by a node on a page
and on its neighboring pages can be several times the
accesses to the single page. As theOut-W algorithm
calculates the relative accesses of a node on a page,
which is a sum of weighted memory accesses from
this node to the page and to its neighboring pages,
the value for comparing used byOut-W (difference
between the dominant relative accesses and the aver-
age relative accesses) is greater than the one used by
Out-U (difference between the dominant accesses and
the average accesses).

As the migration decision is made by comparing
this value with the same threshold,Out-W has the ten-
dency to migrate a page earlier thanOut-U due to its
bigger comparison value gained by aggregating the in-
formation of neighboring pages. This has the potential
to result in a higher gain in performance if the deci-
sion is correct. The first experimental results, which
will be presented in the next section, have shown the
correctness of migrations performed by theOut-W
algorithm.

4.1.3. The In-W algorithm
While Out-W determines whether to move a local

page to a remote node, i.e. performs apush-migration,
In-W decides whether to migrate a remote page to



768 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

the local node, i.e.pull-migration. For this purpose, it
uses the monitoring information about the incoming
memory traffic from remote nodes to determine the
frequency of a remote page being accessed by the local
node.

To make the migration decisions,In-W calculates
the number of relative references to all remote pages
accessed by the local node. It uses the same for-
mula as theOut-W algorithm, but involves accessed
remote pages (not local pages) into the calculation.
If the difference between the number of relative ac-
cesses on a remote page and the average relative
accesses performed on all remote pages exceeds a
threshold, this remote page is brought to the local
node.

WhileOut-W relies only on local pages,In-W allows
to integrate consecutive remote pages. Hence,In-W
can potentially be more accurate thanOut-W for some
data allocation schemes, likeRound-robin which allo-
cates shared data cyclically over all nodes on the sys-
tem. Consider a four-node system usingRound-robin,
for example. According to this data allocation scheme,
pages 0, 4, 8, . . . , 4i + 0, . . . are placed on node 0,
pages 1, 5, 9, . . . , 4i + 1, . . . are placed on node 1,
pages 2, 6, 10, . . . , 4i + 2, . . . are placed on node
2, and pages 3, 7, 11, . . . , 4i + 3, . . . are placed on
node 3 (see the upper graph inFig. 3). When deter-
mining the optimal location for page 100 which is
located on node 0, for instance,Out-W takes pages
. . . , 94, 96, 104, 108, . . . as its neighbors, which are
located on the same node as page 100. However, it
is clear that these pages are not directly neighbor-
ing page 100 and those with a longer distance po-
tentially have a different access behavior. In contrast,
In-W uses the incoming traffic from all remote nodes.
Again for page 100,In-W decides whether to bring it
from node 0 to node 1, 2, or 3. For node 1, for exam-
ple, it uses pages. . . , 98, 99, 102, 103, . . . (see the
second column of the lower graph inFig. 3) to make
the decision. As it handles all direct neighbors except
those located on the local node,In-W has the poten-
tial to better use the spatial locality of the memory
accesses.

The In-W algorithm, however, is more expensive.
All nodes, except the one on which a page is located,
are possibly the new locations for a page. Hence, each
node performs the decision process for one page in-
troducing more overhead thanOut-W.

Fig. 3. Data allocation using Round-robin and incoming traffic
seen by processor nodes.

4.2. Graphical user interface

In order to allow an understanding of the migration
behavior and an improvement of the migration algo-
rithms, a graphical user interface has been developed.
This GUI provides several representations to show the
actual data migrations, page movements, and data lo-
cations.Fig. 4 illustrates three sample displays. The
runtime migration (middle) presents the actual page
movements using items composed of circles and ar-
rows, with the top circle representing the source node,
the bottom circle representing the destination node,
and the label next to the arrow, which stands for the
direction of the migration, showing the number of the
migrated page. Items are dynamically added to the
window whenever a migration occurs.

The page show (left in Fig. 4) illustrates all page
movement during the entire execution. The most left
rectangle stands for the initial location of a page and



J.
Tao

et
al./F

uture
G

eneration
C

om
puter

System
s

19
(2003)

761–776
769

Fig. 4. ARS GUI display windows.



770 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

the most right stands for its final location, while the
rectangle(s) in the middle are the nodes where the
page has ever resided in the case of repeated migra-
tions. This view is especially helpful for detecting
Ping-Pong scenarios. An example is page 5 which is
initially allocated on node 1, migrated to node 0, and
finally migrated back again to node 1. This enables
the evaluation and improvement of the data migration
algorithms.

The last windowpage location (right in Fig. 4)
shows the initial and final location of all shared pages.
This window can be used to understand the parallel
nature and the data structure of applications.

5. Experimental results

In order to evaluate the migration algorithms de-
scribed above and the ARS approach itself, a large
number of experiments have been done using standard
benchmark applications. These experiments focus on
three issues:

1. Which threshold is suitable?
2. Is there a single “best” migration algorithm?
3. What is the impact for not having local access in-

formation?

5.1. Benchmark applications

The benchmark applications are mostly chosen
from the SPLASH-2 Benchmark suite[23], except the
Successive Over Relaxation (SOR) code, a self-coded
numerical kernel used to iteratively solve partial dif-
ferential equations.Table 1shows a brief description
of these applications and their simulated working set
sizes.

Table 1
Applications and their workload sizes

Applications Description Working set size

FFT Fast Fourier transformation 2× 14 data points
LU LU decomposition for dense

matrices
28× 128 matrix

RADIX Integer radix sort 262 144 keys
WATER Evaluation of water

molecule systems
343 molecules

SOR Successive over relaxation 200× 200 grid

FFT performs a fast Fourier transformation with
a regular communication pattern between processor
nodes. LU performs an LU decomposition for dense
matrices, where the matrix is divided into blocks and
assigned to different processors for parallel compu-
tation. RADIX implements an integer radix sort and
relies on an all-to-all communication. SOR is a nu-
merical kernel that is used to iteratively solve partial
differential equations. Its main working set is a large
dense matrix which is split into blocks of equal size
during the parallelization process. Each processor
computes one block and requires only the data as-
signed to the neighboring processors for exchanging
boundary rows.

Unlike the above applications in which data is reg-
ularly accessed by processors, WATER shows a dif-
ferent access pattern. WATER is anN-body molecular
dynamics application that evaluates forces and poten-
tials in a system of water molecules in the liquid state.
It uses a predictor–corrector method to integrate the
motion of the water molecules over time. Both the cal-
culation process and the helper process access the data,
but in an irregular way. Hence, this program requires
a dynamic processing with respect to data allocation.

5.2. Evaluation platform

As the hardware monitor is still under develop-
ment, an event-driven multiprocessor simulator, called
SIMT, has been developed serving as an evaluation
platform. SIMT[20] was originally designed to sim-
ulate the SMiLE hardware monitor and to provide the
exact monitoring information when a hardware moni-
tor is not available. Besides this initial task, it has been
consequently continued to the point that it allows the
simulation of other NUMA machines and a transparent
transformation between the simulation platform and
the real hardware. It therefore forms a general tool for
system design and performance evaluation.

SIMT comprises a front-end which simulates the
parallel execution of a program and a backend which
simulates the target architecture. The front-end is a
memory reference generator capturing events like
memory references and synchronization events. The
backend consists of functionality simulating the han-
dling of these events on real hardware. As SIMT
focuses on the simulation of the complete memory
hierarchy, the main components of the backend are a



J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776 771

flexible cache simulator with several cache coherence
protocols, a shared memory simulator with various
memory management policies, a network mechanism
modeling the data transfer across the NUMA fab-
ric, and a monitor simulator modeling the SMiLE
hardware monitor. In addition, at the end of each sim-
ulation, SIMT provides performance data such as the
monitoring output and information about the cache
behavior.

5.3. Selection of the threshold

The first step for the performance evaluation is to
find an appropriate threshold for the migration algo-
rithms. This threshold is defined as a factor (referred
to as threshold factor in the following) of the average
accesses on the page under consideration. In order to
study the impact of threshold factors, all benchmark
applications were executed using different factors.
Figs. 5 and 6present the results.

Fig. 5 shows the simulated execution time versus
the factor used in the threshold. It can be seen that for
all applications the execution time is the same with a
factor of over 3. This stems from the fact that memory
accesses from any node cannot exceed three times of
the average accesses on a four-node system. Hence
no migration is performed. For other cases, a factor
of 2 behaves well with WATER and RADIX. For LU,

Fig. 5. Simulation time using different threshold factors.

FFT, and SOR there is no significant change when the
factor varies from 1 to 3.

The better performance at a factor of 2 with WATER
and RADIX is caused by correct migrations which is
illustrated inFig. 6. This figure presents the migration
behavior of WATER on the left side and RADIX on
the right side. They-axis shows the simulated execu-
tion time (line graph), the number of migrations (dark
bars), and the performed Ping-Pongs (light bars). The
x-axis shows the factors used in the thresholds. For
WATER it can be seen that 22 Ping-Pongs over the to-
tal 98 migrations are caused when using factors 1 and
1.5, and no Ping-Pong occurs with factors 2 and 2.5.
For factor 2.5, however, since many pages which are
predominantly accessed by remote nodes are not mi-
grated, the execution is slower than that achieved with
a factor of 2. For RADIX, 48 Ping-Pongs and a to-
tal of 201 migrations are performed with factor 1, 22
Ping-Pongs among 154 migrations are caused at fac-
tors 1.5, 1.7, and 1.9, and no Ping-Pong can be seen
for factors 2–2.5. Therefore, factors 2–2.5 outperform
the other cases, where factors 2 and 2.1 introduce the
best performance due to their sufficient and correct
migrations.

According to the above observation, a factor of 2
is chosen for the following evaluation of the migra-
tion algorithms. This threshold, even if specific for
the benchmark applications, can be potentially used



772
J.

Tao
et

al./F
uture

G
eneration

C
om

puter
System

s
19

(2003)
761–776

Fig. 6. Migration behavior of WATER (left) and RADIX (right).



J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776 773

Fig. 7. Simulation time for different programs using Round-robin.

for other applications as well since it is chosen on the
analysis of a large number of programs. In the next
line of this research work, a flexible threshold will
be considered with the ability of being automatically
modified during the run of an application depending
on the changes of the application’s access pattern.

5.4. Evaluation of the migration algorithms

In order to evaluate the migration algorithms, the
benchmark applications are executed on a four-node
system using the simulated evaluation platform SIMT.
Since SIMT, in contrast to the final hardware moni-
tor, is capable of providing information about local
references, for bothOut-U andOut-W, additional al-
gorithms are implemented. These algorithms, called
Out-U-local and Out-W-local correspondingly, ex-
ploit local access information in order to examine
the relevance of information about local references.
Within them, the number of the dominant accesses
are not compared with the average accesses as it is
the case forOut-U and Out-W, but with the local
references.

Fig. 7 illustrates the experimental results by apply-
ing the various migration algorithms. In all cases, the
Round-robin scheme is used as the default allocation
policy to initially distribute data. In addition, simula-
tion results of an unoptimized as well as a manually,
but statically optimized run are included for com-
parison. This kind of optimization is done within the
source code by explicitly placing pages on the nodes
which most frequently access them.

Examining the migration versions and the transpar-
ent default version, it can be seen that all programs

run faster after enabling migration, independent of the
deployed migration algorithm. The best performance
improvement is gained by the SOR code, where a
speedup as high as 1.88 is achieved. This stems from
SOR’s regular access behavior, where each page is ac-
cessed by only one node. When comparing the migra-
tion result with the manually optimized code, it can be
observed that in most cases the optimized version is
better. This can be explained by the fact that manual
optimization enables an initial optimal data placement,
timely and without overhead. However, the WATER
code behaves differently: the migration version per-
forms better than the optimized version. This is caused
by the dynamically changing access pattern of WA-
TER, where the same data is alternately accessed by
different nodes in different phases. Due to its ability
of moving data onto the accessed node in each phase,
the ARS approach performs well for applications with
such access patterns.

Comparing the individual migration schemes, it
can be noted that the distance between the results of
migration with or without local access information
is insignificant. The information shown inTable 2
can give an explanation for this behavior. This ta-
ble presents the number of total migrations, multiple
migrations (a page is moved to a node and then to an-
other node), incorrect migrations (a page is accessed
primarily by the local node, but migrated to a remote
node), and Ping-Pongs. The numbers of incorrect mi-
grations in this table show that theOut-U andOut-W
algorithms rarely migrate a page mainly accessed by
the local node to a remote node, even though the infor-
mation about local references is not available. Also,
only one Ping-Pong is performed for all applications.



774 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

Table 2
Migration behavior (mig: total number of migration; p-p: Ping-Pong; mul: multiple migration; err: incorrect migration)

Application Out-U-local Out-W-local Out-U Out-W In-W

mig p-p mul err mig p-p mul err mig p-p mul err mig p-p mul err mig p-p mul err

FFT 41 0 0 0 89 0 0 0 69 0 0 0 27 0 0 0 96 0 0 3
LU 28 0 3 0 30 0 3 0 16 0 1 1 20 0 0 1 30 0 3 0
RADIX 81 0 0 0 191 0 0 0 98 0 1 1 98 0 0 0 106 0 0 0
WATER 26 0 0 0 89 0 29 0 48 0 1 0 119 0 43 0 33 1 1 0
SOR 24 0 0 0 24 0 0 0 25 0 0 1 27 0 0 2 26 0 0 2

Both indicate that the chosen threshold is adequate.
In addition, Table 2 explains the abnormal behav-
ior of WATER. It can be seen that many multiple
migrations are performed, identifying that pages are
alternatively accessed by more nodes. A static op-
timization placing a page on a fixed node is there-
fore not suitable and hence the migration result is
better.

For theU- and theW-algorithm,Fig. 7 shows that,
as expected,Out-W outperformsOut-U in case of LU
and WATER. For FFT, RADIX, and SOR both algo-
rithms behave similarly. The gain in performance by
Out-W for LU and WATER is caused by more migra-
tions, which can be seen inTable 2. The table also
shows that these additional migrations are correct. In
addition, these migrations have been analyzed using
the GUI of ARS and it is found that they are performed
in the earlier phase of the program’s execution. Pro-
grams thereby benefit from the local references that
would be remote if no migration was performed, de-
spite the overhead introduced by the migrations. For
In-W, however, the result is not as expected. In princi-
ple, In-W should be better thanOut-W since it should
be able to better use the spatial locality of the memory
accesses. However, only the SOR code exhibits a gain.
This is probably caused by the fact thatIn-W migrates
a page from the local node to one of the remote nodes
and the page is moved to the first node performing the
check in case the migration threshold is exceeded. In
this case, a page can be fixed on a node that does not
perform the maximal accesses. For the SOR code, ba-
sically all pages are accessed by only one node. Hence
all migrations, if performed, are correct as initiated by
In-W.

In summary, the results of these first experi-
ments show that a significant improvement has been

achieved by the ARS approach. More importantly, it
has been found that migrations based only on remote
accesses do not introduce significant Ping-Pongs.
This means that similar performance gain can be ex-
pected when applying the ARS approach on top of
hardware monitors. As for the migration algorithms,
it has been observed that theW algorithms generally
behave better than theU algorithm, while theIn algo-
rithm does not show its expected benefit on a general
basis, but can improve the performance for some
applications.

6. Conclusions

High memory access locality is essential for good
performance in NUMA-based environments. This is
caused by the sometimes extreme differences in ac-
cess latencies between local and remote memory mod-
ules. In addition to static optimization mechanisms
and tools, it is also beneficial to provide dynamic and
adaptive mechanisms. These can work without user
interaction and require no prior knowledge of the ap-
plication or even code modifications. In addition, they
are also applicable to dynamic or irregular applica-
tions in which static optimizations fail.

In this work, a runtime system capable of perform-
ing such dynamic locality adaptations is presented.
This system, called ARS, uses memory access his-
tograms to analyze the memory access behavior
and correct the access hot spots at runtime during
the execution of an application. First experiments
show that ARS is capable of significantly improving
performance.

Unlike similar systems, ARS deploys hardware
monitors to gather performance data and hence



J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776 775

performs data migrations with very low overhead. In
addition, the hardware monitor supplies complete and
accurate information, allowing ARS to investigate in
migration algorithms capable of achieving timely and
correct migrations. As an important feature, ARS also
includes a graphical user interface which is capable
of reporting the dynamic runtime behavior of the ap-
plication back to the user in an on-line fashion. This
gives the user, together with the DLV, a data layout
visualization tool, a deep insight into the memory
access patterns of the application and thereby enables
further optimizations.

References

[1] M.C. Carlisle, A. Rogers, Software caching and computation
migration in olden, in: Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP’95, Santa Barbara, CA, July 1995,
pp. 29–38.

[2] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, R.J.
Littlefield, The amber system: parallel programming on a
network of multiprocessors, in: Proceedings of the 12th ACM
Symposium on Operating System Principles, December 1989,
pp. 147–158.

[3] E.D. Granston, H.A.G. Wijshoff, Managing pages in shared
virtual memory systems: getting the compiler into the game,
in: Proceedings of ACM 1993 International Conference on
Supercomputing, Tokyo, Japan, July 1993, pp. 11–20.

[4] H. Hellwagner, A. Reinefeld (Eds.), SCI: Scalable Coherent
Interface: Architecture and Software for High-Performance
Computer Clusters, Lecture Notes in Computer Science, vol.
1734, Springer, Berlin, 1999.

[5] W.C. Hsieh, M.F. Kaashoek, W.E. Weihl, Dynamic
computation migration in DSM system, in: Proceedings of the
Supercomputing’96, ACM Press and IEEE Computer Society
Press, Pittsburgh, November 1996.

[6] Y.C. Hu, A. Cox, W. Zwaenepoel, Improving fine-grained
irregular shared-memory benchmarks by data reordering,
in: Proceedings of the SC2000 on High Performance
Networking and Computing, Dallas, TX, USA, November
2000, pp. 61–74.

[7] IEEE Computer Society, IEEE Std 1596–1992: IEEE Standard
for Scalable Coherent Interface, The Institute of Electrical
and Electronics Engineers Inc., New York, NY, USA, August
1993.

[8] A. Itzkovitz, A. Schuster, L. Shalev, Thread migration and its
applications in distributed shared memory systems, J. Syst.
Softw. 42 (1) (1998) 71–87.

[9] W. Karl, M. Leberecht, M. Oberhuber, SCI monitoring
hardware and software: supporting performance evaluation
and debugging, in: SCI Scalable Coherent Interface
Architecture and Software for High-Performance Compute

Clusters, Lecture Notes in Computer Science, vol. 1734,
Springer, Berlin, 1999, Chapter 24, pp. 417–432.

[10] W. Karl, M. Schulz, Hybrid-DSM: an efficient alternative
to pure software DSM systems on NUMA architectures,
in: Proceedings of the Second International Workshop on
Software DSM (held together with ICS 2000), May 2000.
http://www.cs.rutgers.edu/∼wsdsm00/.

[11] A. Krishnamurthy, K. Yelick, Analyses and optimization for
shared space programs, J. Parallel Distrib. Comput. 38 (2)
(1996) 130–144.

[12] A.G. Navarro, E.L. Zapata, An automatic iteration/data
distribution method based on access descriptors for DSMM,
in: Proceedings of the 12th International Workshop on
Languages and Compilers for Parallel Computing (LCPC’99),
San Diego, La Jolla, CA, USA, August 1999.

[13] D.S. Nikolopoulos, T.S. Papatheodorou, C.D. Polychrono-
poulos, J. Labarta, E. Ayguade, User-level dynamic
page migration for multiprogrammed shared-memory multi-
processors, in: Proceedings of the 29th International
Conference on Parallel Processing, Toronto, Canada, August
2000, pp. 95–103.

[14] M. Schulz, Efficient deployment of shared memory models
on clusters of PCs using the SMiLEing HAMSTER approach,
in: A. Goscinski, H. Ip, W. Jia, W. Zhou (Eds.), Proceedings
of the Fourth International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP), World
Scientific Publishing, December 2000, pp. 2–14.

[15] M. Schulz, J. Tao, C. Trinitis, W. Karl, SMiLE: an integrated,
multi-paradigm software infrastructure for SCI-based clusters,
in: Proceedings of the IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid), Berlin,
Germany, May 2002.

[16] A. Schuster, L. Shalev, Using remote access histories
for thread scheduling in distributed memory system,
Technical Report LPCR-9701, Computer Science Department,
Technion, Haifa, Israel, January 1997.

[17] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo,
A. Gupta, J. Hennessy, Flexible use of memory for
replication/migration in cache-coherent DSM multiprocessors,
in: Proceedings of the 25th Annual International
Symposium on Computer Architecture (ISCA-98), June 1998,
pp. 342–356.

[18] S. Tandri, T.S. Abdelrahman, Automatic partitioning of data
and computations on scalable shared memory multiprocessors,
in: Proceedings of the 1997 International Conference on
Parallel Processing (ICPP’97), Washington, Brussels, Tokyo,
August 1997, pp. 64–73.

[19] J. Tao, W. Karl, A tool environment for efficient execution of
shared memory programs on NUMA systems, in: Proceedings
of the Fourth International Workshop on Advanced Parallel
Processing Technologies (APPT’01), Ilmenau, Germany,
September 2001, pp. 156–165.

[20] J. Tao, W. Karl, M. Schulz, Using simulation to understand
the data layout of programs, in: Proceedings of the
IASTED International Conference on Applied Simulation and
Modelling (ASM 2001), Marbella, Spain, September 2001,
pp. 349–354.

http://www.cs.rutgers.edu/~wsdsm00/


776 J. Tao et al. / Future Generation Computer Systems 19 (2003) 761–776

[21] J. Tao, W. Karl, M. Schulz, Visualizing the memory
access behavior of shared memory applications on NUMA
architectures, in: Proceedings of the 2001 International
Conference on Computational Science (ICCS), Lecture Notes
in Computer Science, vol. 2074, San Francisco, CA, USA,
May 2001, pp. 861–870.

[22] B. Verghese, S. Devine, A. Gupta, M. Rosenblum, OS
support for improving data locality on CC-NUMA compute
servers, Technical Report CSL-TR-96-688, Computer System
Laboratory, Stanford University, February 1996.

[23] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The
SPLASH-2 programs: characterization and methodological
considerations, in: Proceedings of the 22nd Annual
International Symposium on Computer Architecture, June
1995, pp. 24–36.

Jie Tao received her Master’s degree in
computer science from Jilin University
of China in 1989. Then she worked at
the same university first as an assistant
and afterwards as an associate profes-
sor. In 1998 she came to Germany with
the support of a German foundation.
Currently she is pursuing her PhD at
the Lehrstuhl für Rechnertechnik und
Rechnerorganisation of the Technische

Universität München and working on the project SMiLE and
EP-CACHE. Her research interests include shared memory pro-
gramming, scalable coherent interface (SCI), performance tools,
monitoring, cluster computing, and data locality optimization.

Martin Schulz received his Master’s
degree at the University of Illinois at
Urbana-Champaign in 1997 under the su-
pervision of Dr. A. Chien and his doc-
torate degree at the Technische Univer-
sität München in 2001 under Prof. Dr. A.
Bode. Since then he is working at Prof.
Bode’s Lehrstuhl für Rechnertechnik und
Rechnerorganisation (LRR) as a postdoc-
toral assistant. For the last 5 years, he

has been actively involved in the SMiLE project which broadly
investigates cluster computing based on the scalable coherent in-
terface (SCI) and includes both extensive hardware and software
developments. Within this project, he was responsible for the de-
velopment of HAMSTER, a flexible framework for shared mem-
ory programming on top of SCI-based clusters. Further interests
include all aspects of coherency and consistency, optimizations of
the memory subsystem, and parallel I/O, as well as real-world
application studies.

Wolfgang Karl received his doctorate
degree at the Technische Universität
München in 1992. Currently he is a
senior researcher at the Lehrstuhl für
Rechnertechnik und Rechnerorganisa-
tion at the same university. His research
interests include computer architecture,
microprocessors, computer and systems
design, parallel and distributed systems,
distributed shared memory (DSM), scal-

able coherent interface (SCI), fault tolerance, cache architectures,
and reconfigurable computing.


	ARS: an adaptive runtime system for locality optimization
	Introduction
	Related work
	Target system
	The ARS approach
	Framework
	The Out-U algorithm
	The Out-W algorithm
	The In-W algorithm

	Graphical user interface

	Experimental results
	Benchmark applications
	Evaluation platform
	Selection of the threshold
	Evaluation of the migration algorithms

	Conclusions
	References


