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Abstract

This paper presents the results of a study in which
we examined about 50 parallel programming languages
in order to detect typical approaches towards support-
ing massive parallelism. Based on a classification into
nine classes, semantic properties affecting the devel-
opment of parallel programs are compared. From a
consideration of the general function of programming
languages in software engineering, we derive basic re-
quirements on parallel languages.

1 Introduction

Phrases like “parallel software crisis” [52] or “soft-
ware dilemma” [7] are commonly used when scien-
tists discuss today’s situation of parallel programming.
To some degree, this is up to programming languages
which provide only poor support for parallel software
development as some of their properties “hinder ad-
vanced analysis and optimization” [68].
Our goal was to find out what kind of languages

have emerged and what their properties and possible
strengths and weaknesses are. We examined about
50 parallel programming languages to detect typical
design approaches [29, 30]. In order to derive basic re-
quirements for a “good” parallel language, we discuss
properties of each language class and relate them to
steps performed in program development and to major
tasks performed by parallelizing compilers.
We were interested in languages that utilize mas-

sive parallelism to achieve high performance and there-
fore excluded approaches that only provide pseudo-
parallel concepts primarily for simulation purposes
(e.g., coroutines in Modula-2) as well as languages
which provide operating-system-like large grain pro-

cesses (e.g., tasks in Ada [2, 6, 12]. Furthermore, we
concentrated on approaches that concern languages
design and we will mention approaches that basically
provide a set of communication routines (e.g. Linda,
PVM) only for completeness. Finally, we considered
only languages that had already been implemented for
at least one parallel architecture.

1.1 Terminology

The term parallel language subsumes all languages
used to program parallel computers. Problem-oriented
programming is commonly used to express that the
programmer can concentrate on a specification of
the problem to be solved without worrying over
(too many) technical details. The opposite, system-
oriented programming, requires the program to be or-
ganized around the parallelization method of a com-
piler, properties of a certain machine or characteristics
of an architecture class.

1.2 Programming Languages Overview

Programming languages are traditionally classi-
fied as logical (Prolog-stream), functional (Lisp-
stream), imperative (Fortran-stream, Algol-stream,
CPL-stream, Simula67-stream) or applicative (VAL-
stream). In contrast to this distinction, we present a
classification according to the kind of support for par-
allel processing. For a discussion of general properties
of programming languages, the reader is referred to
textbooks like [31, 61].
Programming languages serve as interface between

programmers and computers. In order to derive basic
requirements on parallel languages, we take a short
look at software engineering and at parallel compiler
construction.



1.3 Software Engineering and
Compilation Aspects

Program development usually consists of four gen-
eral steps, which belong to the classic life-cycle models
and are also found in other models developed in soft-
ware engineering [57]:

1. The software requirements describe structure and
details of a given problem.

2. During software design, this description is used
to construct or to choose an abstract algorithm as
well as details like interface structures and data
representation. The algorithm is abstract in the
sense that it does not include any details of a pos-
sible implementation.

3. Next, the programmer codes the algorithm in a
programming language yielding a program text .
Depending on the degree of abstraction provided
by the language, this representation may already
include details of the final implementation.

4. Finally, the program text is compiled into ma-
chine code which is then executed under control
of a runtime system.

Aspects of parallelism must already be considered in
the second step as different algorithms may vary in
their inherent suitability for parallelization. In order
to get maximum speedup when executing the machine
code, the information on independence of certain op-
erations in the abstract algorithm must be preserved
during coding and compilation. This leads to addi-
tional requirements on programming languages and on
compilation techniques.
A refinement of steps 3 and 4 with respect to paral-

lel programming yields the following tasks which must
be performed on any platform. Intentionally, we kept
this description very general to cover most systems.
Different systems may, however, differ in whether these
tasks are performed by the programmer, a compiler or
at runtime – and this is one of the distinctive proper-
ties we used for our evaluation.
Analysis. Analyze an implicitly parallel represen-

tation of the algorithm in order to detect operations
that are executable in parallel. The result is an explic-
itly parallel representation. Depending on the system,
these representations may be program text or a less
formal description. Further information needed in the
following steps may be collected, too.
Time/Space Mapping. Map parallel struc-

tures found in the explicitly parallel representation

onto parallel structures available in hardware, yield-
ing a mapped representation.
This consists of two steps: the determination of an

execution order (time mapping, scheduling) and the
determination of an execution location (processor) for
parallel operations (space mapping). This may include
partitioning, distribution and alignment of data.
Code generation. This may be conventional

machine code or, in the case of data-flow architectures,
a dependence graph. As we do not consider assembly
languages, code generation is done by the compiler.
A compiler performing the analysis step will usu-

ally do traditional data-flow analysis and dependence
analysis for arrays. This is preceded by control flow
analysis if the source language is based on a control
flow model [3, 67, 69, 68]. In the case of arrays with
affine dependence structures, powerful strategies for
automatized time/space mapping exist [23, 24, 42].
Our classification and evaluation of parallel lan-

guages is based on their support for requirements from
software engineering and compiler construction. A
study comparing 8 languages by programming a set
of typical parallel applications, the so-called Salishan
Problems was published by J. Feo [25].

1.4 Run-Time Behaviour

As languages are usually claimed to be “fast”, it
would be interesting to compare the run-time be-
haviour of one problem programmed in different lan-
guages but running on the same machine – speedup
is the only reason for doing massively parallel com-
putation. However, such experiments are found very
rarely. We only know of one such study [14] which is
cited in the context of data-flow languages.

2 Classes of Parallel Languages

Table 1 shows the structure of our classification and
gives some typical examples for each class. The dis-
tinction between different classes is made according to
the support of parallelism. We concentrate on seman-
tic properties while ignoring purely syntactic details
as well as distinctions arising from other requirements
on programming languages. The following subsections
describe major features of each class, while any con-
clusions are deferred to the next section.
Class 1: Automatically Parallelized Sequential
Languages. When the first parallel architectures
emerged, the most obvious approach was to implement
well known sequential languages like Fortran by using



System-oriented languages

1. sequential languages : CFT [56], PTRAN [60]

2. hardware specific : CFD [63, 54, 55], MPL [47]
languages : DAP-Fortran [55]

3. architecture class oriented languages

MIMD–based : Occam [35, 13]

SIMD–based : C* [59, 58], Parallaxis [9, 10]

Problem-oriented languages

explicitly parallel

4. task parallel : PVM [27], Linda [28],
languages : Ada [2, 6, 12]

5. data parallel : Modula-2* [34], Vector C [46]
languages : Actus [53, 55], Fortran D [26]

: HPF [43]

implicitly parallel

6. functional : Haskell [37, 38],
languages : extended ML [5]

7. data-flow : VAL [49], Id [21, 51],
languages : Sisal [48, 15]

8. equational : ASL [33, 22], EPL [64],
languages : Crystal [39]

9. logical : Concurrent Prolog [62]
languages : Parlog [32, 18, 16], GHC [66]

Table 1: Classification of parallel languages

parallelizing compilers, in order to use existing sequen-
tial code on parallel machines.

Unfortunately, there are several problems with this
approach. To a varying degree, sequential languages
are based on the von-Neumann model of computation
that assumes a single flow of control and a contiguous
main memory. Obviously, this is appropriate only for
programming SIMD machines, but is likely to cause
problems on other parallel architectures.

Many parallel architectures are distributed memory
machines and require the distributed storage of large
data structures in order to utilize parallelism. In gen-
eral, the kind of distribution will depend on the prob-
lem size and on the expected communication costs.
Two arrays could be distributed differently when they
are used in different contexts. Therefore, the compo-
nents of a matrix need neither be stored contiguously
nor can we assume a common distribution scheme. Ac-
cess methods based on uniformly calculated addresses
(e.g., as in C) are inapplicable here.

An additional problem is the possibility of variable
names to be aliases. Apart from well-known problems
regarding program reliability and optimizations [31],
aliasing makes data dependence analysis considerably
more difficult and may create artificial dependences.
In the presence of pointers, data dependence analysis
becomes NP-hard and can only be approximated [45].
But, if the compiler can not prove the independence of
some statements, it must enforce sequential execution.

To achieve substantial efficiency, the programmer
must design (or restructure existing) code according to
the compiler’s parallelization capabilities. Character-
istic examples are given in [55] and [4]. However, there
has been significant progress in the field of automatic
parallelization [67, 69, 68], so that today’s systems can
handle many situations that were not parallelized by
early compilers. But it is still suggested that paral-
lelization systems should be interactive in that they
emit messages reporting which parts of code could not
be parallelized and the programmer is then asked to
restructure the code [67, 69].

Although this programming style is not hardware-
oriented , it is at least compiler-oriented instead of
being problem-oriented . An additional problem with
taking sequential programs to parallel architectures is
that an algorithm executing efficiently on a sequential
machine may be not well suited for parallel execution.

Class 2: Hardware Specific Languages. A se-
quential language can be extended with some con-
structs which directly reflect the architecture of a cer-
tain parallel computer. Such languages typically pro-
vide a special syntax for arrays that are to be processed
in parallel but limit the degree of parallelism to the ca-
pabilities of the hardware (e.g., CFD, DAP Fortran).
Some languages (e.g., MPL) also provide statements
to control communication between processors.

These languages are easy to implement as the com-
piler only performs code generation, while analysis
and mapping are left to the programmer. This is a
major disadvantage: The programmer must find out
which parts of the program can be executed in parallel
and then map them onto the hardware. Thus, if the
problem parallelism does not match the parallelism of
the machine, the programmer must change the data
structures. This can significantly increase the com-
plexity of the problem solution [54] and “turns these
languages into higher level assembly languages” [55].
Such programs are not portable. Scalability can be
achieved to some degree only if the number of proces-
sors is made available in the language and is used to
make the program adaptive.

Class 3: Architecture Class Oriented Lan-



guages. A more abstract approach is to define the
operational semantics of a language in terms of an ar-
chitecture class. This leads to languages which sup-
port explicit parallelism but are not biased towards a
certain machine. We distinguish between MIMD- and
SIMD-based approaches.

For example, Parallaxis (version 21) is an extension
of Modula-2 and provides means to specify an abstract
array processor. The programmer may declare any
number of processing elements (PE) and choose an
arbitrary interconnection network of named channels.
Any declaration of variables is augmented with the in-
formation whether it is to be located in the control
unit (CU) or in every PE’s local memory. The same
distinction is made at statement level: the program-
mer must specify whether a statement sequence is to
be executed by the CU or in parallel on (the set of ac-
tive) PEs. Occam provides a similar abstraction from
MIMD architectures.

Programs in such languages are reasonably portable
within the architecture class they are based upon. The
programmer must still do analysis, but the compiler
does all mapping as it assigns virtual processors to real
processors and thereby maps the virtual topology onto
the real topology. The quality of this mapping is cru-
cial for efficiency. Although these languages provide
a high level of abstraction, programming is still not
purely problem-oriented.

Class 4: Task Parallel Languages. This approach
consists of a sequential language (often Fortran or C)
which is combined with a library of communication
primitives. In the case of Linda, data exchange is done
via a single mailbox (here called tuple space), while
PVM is based on message passing in a heterogeneous
computer network.

Class 5: Data Parallel Languages. Problem-
oriented programming is achieved when the language
supports the expression of parallel structures in the
algorithm to be programmed instead of relying on the
nature of parallelism in the hardware.

A data parallel language provides constructs for ex-
pressing that a statement sequence is to be executed
in parallel on different data. The syntax is either a
parallel loop (e.g., Modula-2*, many parallel Fortran
dialects) or a kind of vector notation with similar se-
mantics (e.g., Actus, Vector C). Some languages sup-
port both synchronous and asynchronous parallelism.
This approach is always limited to data parallelism.

The programmermust analyze the algorithm to find

1Parallaxis-III [11] has considerably moved towards being a
data parallel language. In particular, statements to be executed
in parallel are no longer explicitly marked.

those parts which can be executed in parallel. The
compiler then maps the data parallel parts onto the
parallel hardware structures. Since most of the data
parallel algorithms concern arrays, many languages
provide means to specify an alignment between arrays
for minimizing communication overhead.

Languages with Implicit Parallelism. In gen-
eral, neither users nor application programmers are
interested in parallelism itself, but in performance [52].
Therefore it is very reasonable to build a language
which allows using parallel resources but does not re-
quire to explicitly specify which parts of a program
can be executed in parallel.

Instead, the language should not enforce any unnec-
essary specification of an execution order for indepen-
dent steps. This can be achieved by replacing the idea
of control-driven execution with data-driven execu-
tion: every instruction becomes executable as soon as
all of its arguments have been evaluated. The compiler
maps executable entities onto real processors, proba-
bly after collecting individual statements into larger
sequences. Demand-driven execution models have also
been suggested.

Class 6: Functional Languages. The term purely
functional languages subsumes all languages that are
based on Church’s λ-calculus. This model is free from
side effects and has no explicitly specified execution or-
der. Due to these properties, it is claimed that purely
functional languages should be “highly suited for par-
allel programming” [37]. In particular, function argu-
ments can be evaluated in parallel.

However, modern functional languages (e.g.,
Haskell [37, 38]) provide features like high order func-
tions (allowing the combination existing functions into
new ones and then apply these to arguments) and non-
strict semantics (i.e., lazy evaluation allowing the spec-
ification of infinite data structures, which is also used
to model input/output). It seems very difficult to im-
plement such concepts on parallel machines in a way
that yields the same speedup and efficiency as imper-
ative languages do.

A currently popular approach for the design of more
efficient parallel functional languages are algorithmic
skeletons [41, 17, 19]. The basic idea is to provide a
set of high order functions which capture characteristic
“algorithmic structures” found in parallel algorithms,
such as divide-and-conquer. These templates for par-
allel algorithms are then instantiated by the program-
mer. Recent implementations, e.g., of ML extended
by skeletons, yielded good performance [5]. However,
the set of skeletons required to implement all possible



algorithms is large (if not infinite). Probably, no lan-
guage providing a fixed set of skeletons can expected
to be general.

It has also been suggested to extend functional
languages by explicitly parallel constructs to support
data-parallel or message-passing computation.

Class 7: Data-flow Languages. Data-flow lan-
guages (DFL) [20, 1] were originally developed to
program data-flow architectures which provide paral-
lelism at operator level and require appropriate lan-
guages.

The central idea in DFL is a value-oriented or ap-
plicative view of computation: any operations are con-
sidered to operate on values rather than on (abstrac-
tions of) memory cells. This leads to the single assign-
ment rule: an assignment establishes an immutable
binding between a name and a value. Problems like
aliasing as well as far-reaching data dependences are
thereby eliminated and the translation of programs
into data-flow graphs is simplified. A further conse-
quence is that DFLs are function- or expression-based :
since there are no mutable variables and thus no global
state, every construct must return a value. Data de-
pendences are the only sequencing constraints in data-
flow programs.

The difference to purely functional languages is that
DFL are not based on the λ-calculus and do not allow
using of high order function to create new functions at
runtime because these functions could not be trans-
lated into a flow-graph at compile time. Some DFL
do not support static function parameters and others
(VAL) even forbid recursive function calls.

However, the lack of mutable variables introduces
new optimizations problems: a Sisal compiler with
straight-forward implementation of applicative seman-
tics generated code for a vector algorithm which took
about an hour to execute while the Fortran equiva-
lent executed in less than half a second on the same
machine [15]. The problem with strict adherence to
applicative semantics is that the array value is con-
structed step by step by appending one element in ev-
ery iteration. Although the problem can be solved by
copy elimination in most cases [14], the fact remains
that, while the single assignment rule removes some of
the problems related to imperative languages, it makes
optimizations necessary.

Another problem is that the single assignment rule
would disallow iteration. However, many algorithms
(e.g., array operations or converging approximations)
can be expressed more naturally and more efficiently
using loops and mutable variables. Therefore, data-
flow languages like Sisal or Id provide “iterative con-

structs for efficiency” [21], and allow multiple assign-
ments yet inside loops.

The properties of DFL turned out advantageous for
implementation on any kind of parallel machine: e.g.,
Sisal is available on a large number of parallel com-
puters and offers a high degree of portability. Signif-
icant Fortran programs have been rewritten in Sisal
and yielded comparable performance [14].

Class 8: Equational Languages. A very problem-
oriented design approach for a language intended for
scientific and engineering applications is to adopt the
notation commonly used in this area. Typically, algo-
rithms used in scientific and engineering computations
are based on (some variations of) multi-dimensional
arrays [64]. Equational languages such as ASL [30, 22]
and EPL [64] organize programs around equations over
arrays. These languages are primarily designed for
scientific application and do not claim to be general.
However, it has also been suggested to extend the
equation-based approach by more general data struc-
tures like lists and sets [36].

The model behind ASL are recurrence equations
[40, 44]. ASL was developed for static problems that
have the same algorithmic power as primitive recursive
functions [33]. Further properties of ASL are single
assignment variables and the renunciation of pointers
which results in the absence of side effects. Although
these restrictions cause a loss of generality, most al-
gorithms of the intended application area can still
be expressed. On the other hand, these restrictions
strongly support dependence analysis as well as au-
tomatic time/space mapping and high-level algorithm
optimization performed by algebraic transformations
with respect to specific problem and hardware charac-
teristics [22].

Class 9: Parallel Logic Languages. The mathe-
matical model behind logic programming are predicate
logic and the principle of resolution that allows infer-
ring new propositions from given propositions. This
requires repeated unification of the goals to be proven
with facts and rules already known. In pure logic pro-
gramming, the order of attempted matches is nonde-
terministic.

This offers three sources for parallel execution. The
reduction of several (sub)goals at the same time is
called AND-parallelism. OR-parallelism means trying
to prove one goal in several ways at once by concurrent
search for clauses that are unifyable with this goal. If
either one or another way succeeds, the goal is proven.
Algorithms for parallel unification have been consid-
ered, too.

However, efficient implementation of parallel logic



languages seems to be be difficult [16] and requires
some mapping and load-balancing at run-time. There
are major semantic difference between sequential Pro-
log and its parallel versions as sequential prolog allows
control of resolution order for efficiency [62]. In partic-
ular, the “cut” allows explicit control of backtracking.

3 Conclusions

Based on the discussion of software engineering and
compiler aspects in section 1.3, we will now closer ex-
amine typical properties of these classes and derive
some general requirements.

Program-
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Figure 1: Languages with different levels of abstraction

3.1 How much is done by the Compiler?

We argued that users would prefer implicitly par-
allel languages as explicitly parallel programming can
be rather difficult and error-prone. The implicit ap-
proach also supports general requirements like porta-
bility, maintainability, scalability, and machine inde-
pendence. Therefore,

As much work as possible should be done by

the compiler.

A second argument for this request is the fact that
work invested into a compiler once can be used by
many application programs while work left to the pro-
grammer must be re-done for every program. Addi-
tionally, compilers used by a large user community can
be expected to work correctly.
Figure 1 shows the program development process

for three language classes providing different degrees

of abstraction. This distinction is based on the obser-
vation that the program text is the result of the pro-
grammer’s work and the input to the compiler. We
now compare the language classes shown in table 1
with respect to their level of abstraction.
Hardware specific languages belong to group I as

they leave analysis and mapping to the programmer.
Automatically parallelized sequential languages belong
to this group, too. Although this approach allows im-
plicit usage of parallelism, the programmer is usually
required to explicitly map the algorithm into program
structures the compiler can parallelize.
Group II consists of architecture class oriented lan-

guages which ask the programmer to find data par-
allel parts in the algorithm (analysis) but often per-
form mapping automatically. Data parallel languages
belong to this group too. E.g., languages like HPF
ask the programmer to give detailed information about
distribution and alignment of arrays as well as a speci-
fication of independent parts of the program, but some
mapping and analysis is done automatically.
Group III shows the case of implicitly parallel lan-

guages where analysis and mapping are done by the
compiler. However, compilers may still require or ac-
cept some user support for mapping in order to op-
timize runtime efficiency, e.g., by explicitly specifying
inter-array alignment.
At the hardware level, only those steps that are in-

dependent in the abstract algorithm can be executed
in parallel. The language must preserve this indepen-
dence. In order to utilize this parallelism automat-
ically, the language must enable the compiler to de-
rive some specific information from any given program
text. This is further discussed in the next sections.

3.2 Representation of Data

The compiler must be able to analyze existing data
dependences efficiently, and the program text should
not introduce artificial dependences. In particular,
this concerns potential aliasing.

A language should not provide constructs that

may introduce artificial data dependences or

hinder the analysis of data dependence.

Functional , data-flow and equational languages fulfill
this condition while most approaches based on imper-
ative languages have problems due to aliasing. But,
since architecture class oriented, task parallel and data
parallel languages explicitly express parallelism, alias-
ing is unlikely to cause problems here.

Any assumption about a given storage struc-

ture is disadvantageous.



Constructs requiring a contiguous main memory or
supporting an address-oriented view of variables (e.g.,
using pointers to access vector components as in C;
Fortran programs depending on column-major stor-
age of arrays) is likely to cause problems due to pos-
sible aliasing and because this view is unsuitable for
distributed memory architectures. Hardware specific
languages explicitly reflect the parallel storage struc-
ture of a certain machine. This hinders portability.

3.3 Execution Models

In general, program consists of a large number of
actions2. Every language has rules specifying an ex-
ecution order among the set of actions and therefore
determining the moment at runtime when a certain
action is to be executed. This mechanism is called the
execution model .

Languages developed with the von-Neumann model
in mind assume a single flow of control for this pur-
pose, thereby creating a totally ordered instruction se-
quence. Statements like GOTO change this control flow
but do not operate on data. Of course, these can not
be directly translated onto parallel architectures but
require control flow analysis in order to detect poten-
tially parallelizable higher control structures. This re-
quires that the overall control structure of a program
is statically determined. Computed GOTOs – a feature
still available even in Fortran 90 [50] – violate this
requirement.

GOTO statements with statically determined targets
can be handled but complicate the compiler as both,
data dependences and the control flow representation
must be updated when program transformations are
applied. If only well-structured control structures can
occur, control flow graphs can be avoided [8].

Task parallel and data parallel languages employ
multi-control flow models that offer constructs like
cobegin, explicitly parallel FORALL loops or processes.
These allow splitting single control flow into multiple
flows of control.

However, any control flow seems unnecessary as
data dependences already contain complete informa-
tion about possible execution orders, thereby creating
a partial order on the set of actions. Control flow fur-
ther restricts this order (except for cases where control
flow does not respect data dependences – but these are
errors such as reading an uninitialized variable). Data-
driven execution seems advantageous as it allows for

2A term intended to subsume terms like statement, operation
or function which would be used in the context of a certain
language.

implicitly parallel execution and further supports com-
piler analysis. As a general requirement,

A language should not require to specify any

execution order for operations that are not

data dependent.

This also concerns loop statements. For example,
an execution order must be specified for independent
steps of a vector addition if the language fails to pro-
vide an “unordered” (i.e., non-sequential) loop state-
ment. It is not always possible to automatically par-
allelize unnecessarily sequential loops.

This raises the question how loop parallelism could
be supported by a language. In general, it seems to
be natural not to specify any order, unless necessary.
Therefore, a language should provide a loop construct
with unspecified execution order which implicitly sup-
ports parallelism. Sequential execution is then consid-
ered to be a special case and could be enforced by an
additional keyword.

4 Summary and Future Work

We examined 50 parallel languages and found some
typical design approaches. These were evaluated fur-
ther based on criteria from software engineering and
parallelizing compiler construction. Our final classifi-
cation distinguishes the level of compiler support by
the language.

The semantical properties of the programming lan-
guage are an important factor to make efficient us-
age of parallel resources. Beyond general goals such
as maintainability, correctness, completeness and a
human-readable notation, additional goals should be
fulfilled in parallel program development. Efficient us-
age of parallel resources, scalability and portability –
both between different parallel architectures and be-
tween machines that differ only in the number of pro-
cessors – are the most important requirements in this
context.

A promising approaches are equational and data-
flow languages which provide a high level of abstrac-
tion and thereby support the programmer as well as
compilation techniques. However, these languages
have been criticized for their single-assignment rule
which fails to reflect that some objects have a state
mutable over time. Also, it is considered “unnatural”
by many of today’s programmers. Currently, we are
working on an execution model that is data-driven but
allows multiple assignment to variables.
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