
Introduction to Parallel

Programming with MPI

Peter Pacheco

University of San Francisco

April 20, 1999

1

Outline

� Overview and Introduction

� Point-to-point Communication: Dot Product I

� Collective Communication: Dot Product II

� User-de�ned Types: Matrix Multiplication I

� Communicators and Topologies: Matrix Multiplica-

tion II

� Performance

� The Rest of MPI

2

Introduction

� MPI: a Library of Functions for C, C++, Fortran.

{ MPI-1.0 1994, MPI-1.1 1995, MPI-2 1997

{ MPI-1: 125 functions; MPI-2 150 functions.

� Basic Programming Model: Message Passing.

{ Each process has its own memory

{ Processes communicate by explicitly calling Send

or Receive functions.

{ MPI-1: static process model

� Pros: very portable, very fast

� Cons: extremely di�cult to program

� Examples in C

3

Dot Product I

� Vectors distributed by blocks:

{ n component vectors, p processes

{ Assume n divisible by p, �n = n=p

{ qth process gets components

q�n; q�n+1; : : : ; (q+1)�n� 1

� Each process computes dot product of components

it owns

� \Local" dot products added together by one pro-

cess

4

Dot Product I: Main Program

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int main(int argc, char* argv[]) {

float *local_x, *local_y, dot;

int n, n_bar, p, my_rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

n = Get_order(my_rank, p);

n_bar = n/p;

Allocate_and_read_vectors(&local_x, &local_y, n_bar, my_rank, p);

dot = Parallel_dot(local_x, local_y, n_bar, my_rank, p);

if (my_rank == 0) printf("The dot product is %f\n", dot);

Free_vectors(&local_x, &local_y);

MPI_Finalize();

return 0;

} /* main */

5

� Include mpi.h to get function declarations, const defns, etc.

� All MPI functions pre�xed with the string \MPI "

� Call MPI Init �rst. Sets up storage, variables, etc.

� Communicator a collection of processes that can exchange

messages. MPI Init initializes MPI COMM WORLD: all pro-

cesses started when program execution begins.

� MPI Comm size returns number of processes in a comm.

� If there are p processes in a comm, each assigned a unique

nonnegative integer rank in range 0; : : : ; p�1:MPI Comm rank

returns the process rank.

� MPI Finalize shuts down MPI. Frees memory, terminates pend-

ing ops.

5-1

Dot Product I: Parallel Dot Function

float Parallel_dot(float local_x[], float local_y[], int n_bar,

int my_rank, int p) {

float local_dot = 0.0, dot = 0.0;

int source, i; MPI_Status status;

for (i = 0; i < n_bar; i++)

local_dot += local_x[i]*local_y[i];

if (my_rank == 0) {

dot = local_dot;

for (source = 1; source < p; source++) {

MPI_Recv(&local_dot, 1, MPI_FLOAT, source, 0,

MPI_COMM_WORLD, &status);

dot += local_dot;

}

} else {

MPI_Send(&local_dot, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);

}

return dot;

} /* Parallel_dot */

6

� First compute local dot product.

� Next:

{ Processes 6= 0 send local dot to 0

{ Process 0 receives local dots and keeps running sum

� Result signi�cant only on process 0

� Structure typical of SPMD programs

6-1

Syntax of MPI Send and MPI Receive

int MPI_Send(

void* message /* in */,

int size /* in */,

MPI_Datatype type /* in */,

int destination /* in */,

int tag /* in */,

MPI_Comm communicator /* in */);

int MPI_Recv(

void* message /* out */,

int size /* in */,

MPI_Datatype type /* in */,

int source /* in */,

int tag /* in */,

MPI_Comm communicator /* in */,

MPI_Status* status /* out */);

7

� Return values are error codes in C. Error code returned in an

argument.

� First argument pointer to block of memory containing data

to be sent or block into which data should be received.

� Second argument gives no. of elements in block

� Third argument gives MPI type of elements in message.

� Examples: Use size = 1 and type = MPI FLOAT in Paral-

lel Dot. To send an array of 10 ints, use size = 10 and type

= MPI INT.

� Basic MPI types correspond to standard scalar types in C,

e.g., MPI CHAR, MPI DOUBLE, MPI LONG.

� Also possible to build complex, structured MPI types.

� Destination rank of process to which message is sent. Source

is rank of process from which message is sent.

7-1

Tags and Communicators

� Tag a nonnegative integer. Standard guarantees at least 0,

1, . . . , 32767.

� Example: Process 1 sending several oats to process 0. Some

to be added into running sum. Some to be printed. Use tags

to di�erentiate.

� Example: Program uses library A to solve di�erential equa-

tions and library B to solve linear systems. Both libraries need

to send messages. MPI Solution: communicator.

� Communicator consists of process group and context| system-

de�ned tag.

� Messages sent using one communicator cannot be received by

process using another communicator.

8

Status

� Message consists of data and envelope.

� Envelope contains: rank of destination, rank of source, tag,

communicator.

� For recipient, source and tag can be wildcards: MPI ANY SOURCE

and MPI ANY TAG

� Source/tag wildcard: get received source/tag with status:

status.MPI SOURCE, status.MPI TAG.

� For Receive, size argument is size of memory block referenced

by message argument: received message can be smaller.

� Can get size of received message with call to MPI Get count

function.

9

� Syntax of MPI Get count:

int MPI_Get_count(

MPI_Status* status /* in */,

MPI_Datatype datatype /* in */,

int* count /* out */);

9-1

Semantics

� MPI Send, MPI Recv blocking send, receive: function completes,

arguments can be modi�ed.

� MPI also has nonblocking send/receive: MPI Isend, MPI Irecv.

Calls start communication operation. Arguments cannnot be

reused until communication operation completed with call to

MPI Wait. Allows overlapping of communication and compu-

tation:

MPI_Irecv(. . .);

/* Do local calculations */

.

.

.

MPI_Wait(. . .);

� MPI Send, MPI Recv standard mode send, receive: bu�ering of

messages up to system.

� MPI also has MPI Ssend and MPI Bsend: synchronous mode

send and bu�ered mode send.

� Synchronous send completes after matching receive has started.

� Bu�ered send bu�ers message in user-de�ned bu�er (Slow!).

10

I/O

� Worst feature of MPI-1: no I/O speci�cation.

� Most implementations allow process 0 access to stdout

� Many implementations allow all processes access to stdout

and stderr.

� Many implementations allow process 0 access to stdin

� MPI-2 does specify I/O. Not widely available.

� Our assumption: process 0 has access to stdin, stdout. (All

processes have access to stderr.)

11

Dot Product I: Get order Function

int Get_order(int my_rank, int p) {

int n, dest;

MPI_Status status;

if (my_rank == 0) {

printf("Enter the order of the vectors\n");

scanf("%d", &n);

for (dest = 1; dest < p; dest++)

MPI_Send(&n, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);

} else {

MPI_Recv(&n, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

}

return n;

} /* Get_order */

12

Dot Product I: Read vector Function

void Read_vector(char* prompt, float local_v[], int n_bar,

int my_rank, int p) {

int i, q; float* temp; MPI_Status status;

if (my_rank == 0) {

Allocate_vector(&temp, n_bar, my_rank, "temp");

printf("Enter %s\n", prompt);

for (i = 0; i < n_bar; i++)

scanf("%f", &local_v[i]);

for (q = 1; q < p; q++) {

for (i = 0; i < n_bar; i++)

scanf("%f", &temp[i]);

MPI_Send(temp, n_bar, MPI_FLOAT, q, 0, MPI_COMM_WORLD);

}

free(temp);

} else {

MPI_Recv(local_v, n_bar, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,

&status);

}

} /* Read_vector */

13

Collective Communication

� Three functions in Dot Product I use MPI commu-

nications. All processes involved in each instance:

{ Parallel Dot, \global sum"

{ Get order, \broadcast"

{ Read vector, \scatter"

� Structured communications provide great opportu-

nities for optimization: e.g., tree structured broad-

cast

� Let system designer optimize: many MPI functions

for collective communication | communication in

which all processes in communicator participate.

14

Dot Product II: Parallel Dot and Get order Functions

float Parallel_dot(float local_x[], float local_y[], int n_bar) {

int i;

float local_dot = 0.0, dot = 0.0;

for (i = 0; i < n_bar; i++)

local_dot += local_x[i]*local_y[i];

MPI_Reduce(&local_dot, &dot, 1, MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD);

return dot;

} /* Parallel_dot */

int Get_order(int my_rank) {

int n;

if (my_rank == 0) {

printf("Enter the order of the vectors\n");

scanf("%d", &n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

return n;

} /* Get_order */

15

� In Reduce, note that MPI prohibits aliasing of arguments.

� Many prede�ned ops | e.g. max, min, product, logical ops,

bitwise ops. User can also de�ne his own ops.

� Also note that no tags. This was done mainly to simplify

implementation of MPI coll comms. E�ect is that if there

are a sequence of, e.g., bcasts, then they are matched in the

order in which they are started.

� Semantics same as standard send/receive: complete as soon

as it is safe to reuse args. Other processes may not have even

started.

� Exception MPI Barrier: returns only after all members in com-

municator have started call.

15-1

Dot Product II: Parallel read vector

void Read_vector(char* prompt, float local_v[], n_bar,

int my_rank, int n) {

int i;

float* temp;

if (my_rank == 0) {

Allocate_vector(&temp, n, my_rank, "temp");

printf("Enter %s\n", prompt);

for (i = 0; i < n; i++)

scanf("%f", &temp[i]);

}

MPI_Scatter(temp, n_bar, MPI_FLOAT, local_v, n_bar, MPI_FLOAT,

0, MPI_COMM_WORLD);

if (my_rank == 0) free(temp);

} /* Read_vector */

16

� Once again can't alias arguments.

� Note that sendbu�er count is not the size of the sendbu�er:

it's the amount of data going to any one process.

� Note that we need a fullsize (n) temp vector to do this. For

the other implementation temp only needed local size temp

vector (n/p).

16-1

Some Additional Collective Communication Func-

tions

� MPI Barrier: blocks until all processes have entered

� MPI Gather: gathers the components of a distributed struc-

ture onto a single process

� MPI Allgather: gathers the components of a distributed struc-

ture onto all processes

� MPI Alltoall: each process scatters the contents of a structure

to the other processes.

� MPI Allreduce: result of operation is returned on all pro-

cesses.

17

Derived Datatypes

� Derived datatype: variable of type MPI Datatype that

can represent structured data

� Created to exploit hardware scatter/gather (older

systems pack and unpack structured data)

� Essentially four types of derived datatype construc-

tors in MPI:

{ MPI Type contiguous: build a datatype from a

block of contiguous array entries

{ MPI Type vector: build a datatype from a se-

quence of uniformly spaced array entries (e.g, a

column in a C array or a row in a Fortran array).

{ MPI Type indexed: build a datatype from a se-

quence of irregularly spaced array entries.

{ MPI Type struct: build a datatype from an arbi-

trary collection of memory locations of arbitrary

types.

� To specify: need type and relative location in mem-

ory of each element to be used in the communica-

tion function.

18

Matrix-Matrix Multiplication I

� Matrices distributed by block rows.

{ Matrix order n; p processes

{ Assume n evenly divisible by p, �n = n=p

{ Process q assigned rows

q�n; q�n+1; : : : ; (q+1)�n� 1

� Gather block of �n columns onto each process.

� Each process forms dot product of its rows with the

gathered columns.

� Repeat preceding two steps for each successive block

of �n columns.

� Local submatrices stored as linear arrays in row-

major order.

19

Matrix-Matrix Multiplication I: Parallel matrix mult

void Parallel_matrix_mult(float local_A[], float local_B[],

float local_C[], int n, int n_bar, int p) {

float* B_cols;

MPI_Datatype gather_mpi_t;

int block;

Allocate_matrix(&B_cols, n, n_bar, "B_cols");

MPI_Type_vector(n_bar, n_bar, n, MPI_FLOAT, &gather_mpi_t);

MPI_Type_commit(&gather_mpi_t);

for (block = 0; block < p; block++) {

MPI_Allgather(local_B + block*n_bar, 1, gather_mpi_t,

B_cols, n_bar*n_bar, MPI_FLOAT, MPI_COMM_WORLD);

Matrix_mult(local_A, B_cols, local_C, n_bar,

n, block);

}

free(B_cols);

MPI_Type_free(&gather_mpi_t);

} /* Parallel_matrix_mult */

Block Row

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

Table illustrates a block if n = 8 and p = 4: During �rst stage,

elements marked 0 are gathered. During second elements marked

1 are gathered, etc.

20

� We don't want to overwrite B. So we allocate a block of order

n� �n to store the column block.

� Observe that on any process, the array entries that it con-

tributes to the column block are not contiguous. The entries

are grouped into subblocks of size �n and there are �n of them.

Between the starts of successive rows in any column block,

there are n elements.

� Thus, we use the following arguments to MPI type vector.

{ First argument is the number of rows or sublocks con-

tributed by the process: �n

{ Second argument is the number of contiguous elements

to take from a row or sublock: �n

{ Third argument is the number of elements between the

starts of successive blocks: n:

{ Fourth argument is the type of the elements.

{ Fifth argument is storage for the new type.

� After creating the type, with the call to MPI Type vector,

before the type can be used in communication, it has to be

committed. This allows the system to make optimizations

that wouldn't be necessary if the type were only being used

to make a more complex type.

� The Allgather uses the address of the start of the block as

its �rst argument. The count is only 1, since gather mpi t

speci�es the entire block.

� Note that in the column block, the entries contributed by

a process are contiguous. Hence we just use a count of �n

2

and a type of MPI Float. This says the received elements

will be copied into a contiguous sequence of locations in the

destination array.

20-1

Matrix-Matrix Multiplication II: Fox's Algorithm

� Matrices distributed by square blocks

{ Matrices square, order n:

{ Number of processes, p; a perfect square,

p

p =

q:

{ Processes form a virtual mesh of order q � q:

{ n evenly divisible by q; n=q = �n:

{ Each process assigned a �n� �n submatrix

� Algorithm;

{ Broadcast diagonal block of A across process

row.

{ Multiply broadcast block of A by block of B.

{ Carry out \round-the-corner" shift of blocks of

B up each process column.

{ Repeat preceding steps each time broadcasting

the block of A \to the right" of the preceding

block.

21

Communicators

� Recall: Communicator a group of processes to-

gether with a unique, system-de�ned tag { a con-

text.

� Any collection of MPI processes can be combined

into a single group and made a communicator.

� Many functions for creating groups and communi-

cators.

� Most useful: MPI Comm split

int MPI_Comm_split(

MPI_Comm old_comm /* in */,

int split_key /* in */,

int rank_key /* in */,

MPI_Comm* new_comm /* in */);

� In Fox's algorithm, we can form a new communica-

tor corresponding to each process row by executing

the following code;

int my_row = my_rank/q;

MPI_Comm_split(MPI_COMM_WORLD, my_row, my_rank,

&my_row_comm);

22

� A new communicator is formed for each value of split key:

processes with the same split key are assigned to the same

communicator.

� Ranks in the new communicator are determined by rank key.

22-1

Topologies

� MPI provides facilities for associating or caching

additional information with a communicator.

� Most important example: process topologies.

� In MPI topology provides mechanism for associating

di�erent addressing schemes with processes.

� Important example: processes organized into an N-

dimensional virtual mesh. Process topology allows

processes to be addressed by coordinates.

� Two types of topologies: cartesian grids and graphs

23

Topologies: Creating Grids for Fox's Algorithm

void Setup_grid(MPI_Comm* grid_comm, MPI_Comm* row_comm,

MPI_comm* col_comm, int* my_row, int* my_col

int* my_grid_rank) {

int old_rank, dimensions[2], wrap_around[2];

int coordinates[2], free_coords[2], p, q, old_rank;

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &old_rank);

q = (int) sqrt((double) p);

dimensions[0] = dimensions[1] = q;

wrap_around[0] = wrap_around[1] = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dimensions,

wrap_around, 1, &grid_comm);

MPI_Comm_rank(grid_comm, &my_grid_rank);

MPI_Cart_coords(grid_comm, my_grid_rank, 2,

coordinates);

my_row = coordinates[0];

my_col = coordinates[1];

free_coords[0] = 0; free_coords[1] = 1;

MPI_Cart_sub(grid_comm, free_coords, &row_comm);

free_coords[0] = 1; free_coords[1] = 0;

MPI_Cart_sub(grid_comm, free_coords, &col_comm);

} /* Setup_grid */

24

� MPI Cart create: 1 in call | allow reordering

� MPI Cart sub: Analog of MPI Comm split

� free coords[i] = 1, let this coordinate vary when creating new

communicators

� free coords[i] = 0, this coordinate is �xed when creating new

communicators

24-1

Fox's Algorithm: MPI Code

void Fox(int n, matrix_t local_A, matrix_t local_B,

matrix_t local_C) {

matrix_t temp_A;

int stage, bcast_root, n_bar, source, dest;

MPI_Status status;

n_bar = n/q;

Set_to_zero(local_C);

source = (my_row + 1) % q;

dest = (my_row + q - 1) % q;

temp_A = Local_matrix_allocate(n_bar);

for (stage = 0; stage < q; stage++) {

bcast_root = (my_row + stage) % q;

if (bcast_root == my_col) {

MPI_Bcast(local_A, n_bar*n_bar, MPI_FLOAT,

bcast_root, row_comm);

Matrix_mult(local_A, local_B, local_C);

} else {

MPI_Bcast(temp_A, n_bar*n_bar, MPI_FLOAT,

bcast_root, row_comm);

Matrix_mult(temp_A, local_B, local_C);

}

MPI_Sendrecv_replace(local_B, n_bar*n_bar, MPI_FLOAT,

dest, 0, source, 0, col_comm, &status);

} /* for */

} /* Fox */

25

� Recall q = sqrt(p);

� Bcast shouldn't overwrite local block of A.

� Sendrecv: send message to dest, recv message from source.

� replace: overwrite sent message with received message

� 0's are tags.

25-1

Performance

� Current systems: communication much more expensive than

local operations, especially on clusters.

� Floating point operation on 200 MHz Pentium Pro: 65� 10

6

oating point operations per second. t

a

� 1:5� 10

�8

seconds

per op.

� Communication commonly measured in terms of

{ Startup or latency: t

s

seconds

{ Bandwidth: 1=t

c

words/second.

Cost of sending m words � t

s

+mt

c

� On Myrinet, a fast low-cost network for clustering:

{ Latency: 60�sec

{ Bandwidth: 50 Mbytes/sec

� To carry out 1000 arithmetic ops approximately 15�sec: To

send 1000 oats approximately 150�sec

26

� These �gures are fairly suspect: oating point performance

is highly dependent on the system and the application. For

Myrinet, the latency + bytes/bandwidth is reasonable only for

fairly narrow ranges of message sizes.

26-1

Performance of Matrix-Matrix Multiplication I

� On hypercube, Allgather uses \buttery" communication struc-

ture:

{ log

2

(p) stages: log

2

(p)t

s

:

{ During kth stage, k = 0;1; : : : ; log

2

(p) � 1; process pairs

exchange 2

k

�n

2

oats.

{ Total cost of sending oats:

log(p)�1

X

k=0

2

k

�n

2

= (p� 1)�n

2

{ Total cost of Allgather:

log(p)t

s

+ (p� 1)

n

2

p

2

t

c

� log(p)t

s

+

n

2

p

t

c

� Cost of multiplying �n� n matrix by n� �n matrix:

�n� �n� (2n� 1)t

a

=

2n

3

� n

2

p

2

t

a

� p repetitions of Allgather-multiply loop. So total time

T

�

� p log(p)t

s

+ n

2

t

c

+

2n

3

� n

2

p

t

a

� Serial runtime of \standard" matrix multiply

T

�

� (2n

3

� n

2

)t

a

� Speedup:

S =

T

�

T

�

� E�ciency

E =

T

�

pT

�

27

Fox's Algorithm: Performance

� In hypercube, cost of broadcast:

1

2

log

2

(p)

�

t

s

+

n

2

p

t

c

�

� Cost of local matrix multiply:

�n

2

(2�n� 1)t

a

=

�

2n

3

p

3=2

�

n

2

p

�

t

a

� Cost of send-receive:

2

�

t

s

+

n

2

p

t

c

�

�

p

p stages. So total parallel time

T

�

=

1

2

p

p log(4p)t

s

+

1

2

log(4p)

n

2

p

p

t

c

+

�

2n

3

p

�

n

2

p

p

�

t

a

28

The Rest of MPI

� MPI-1

{ Other languages

{ Environmental management: error handling, tim-

ing, etc.

{ Pro�ling interface

� MPI-2

{ Dynamic process creation: intercommunicators

(LAM)

{ One-sided communication

{ Additional collective operations

{ External interfaces: info for system developers

{ I/O! (mpich)

29

Further Info

� Parallel Programming with MPI, Pacheco, Morgan

Kaufmann

� Using MPI, Gropp, Lusk, and Skjellum, MIT Press

� MPI: The Complete Reference, Snir, Otto, Huss-

Lederman, Walker, and Dongarra, MIT Press

� Slides, code: http://www.cs.usfca.edu/mpi

� MPI Specs: http://www.mpi-forum.org

� Mpich Implementation: http://www.mcs.anl.gov/mpi

� LAM Implementation: http://www.mpi.nd.edu/lam

30

