
Writing Message-Passing Parallel Programs with MPI 1 Edinburgh Parallel Computing Centre

e
cc
p

Writing Message-
Passing Parallel

Programs with MPI

e
cc
p

Getting Started

Writing Message-Passing Parallel Programs with MPI 3 Edinburgh Parallel Computing Centre

e
cc
p

 Sequential Programming
Paradigm

Processor

Memory

P

M

e
cc
p

 Message-Passing
Programming Paradigm

Processor

Memory

$Id: mp−paradigm.ips,v 1.1 1994/06/27 21:21:10 tharding Exp $
Communications Network

P

M

P

M

P

M

Writing Message-Passing Parallel Programs with MPI 5 Edinburgh Parallel Computing Centre

e
cc
p

 Message-Passing
Programming Paradigm (cont’d)

❑ Each processor in a message passing program runs a
sub-program.
■ written in a conventional sequential language.

■ all variables are private.

■ communicate via special subroutine calls.

e
cc
p

 What is SPMD?

❑ Single Program, Multiple Data

❑ Same program runs everywhere.

❑ Restriction on the general message-passing model.

❑ Some vendors only support SPMD parallel programs.

❑ General message-passing model can be emulated.

Writing Message-Passing Parallel Programs with MPI 7 Edinburgh Parallel Computing Centre

e
cc
p

 Emulating General Message
Passing with SPMD: C

main (int argc, char **argv)
 {

if (process is to become a controller process)
{

Controller(/* Arguments /*);
}
else
{

Worker(/* Arguments /*);
}

}

e
cc
p

 Emulating General Message-
Passing with SPMD: Fortran

PROGRAM
IF (process is to become a controller process) THEN

CALL CONTROLLER (/* Arguments /*)
ELSE

CALL WORKER (/* Arguments /*)
ENDIF
END

Writing Message-Passing Parallel Programs with MPI 9 Edinburgh Parallel Computing Centre

e
cc
p

 Messages

❑ Messages are packets of data moving between sub-
programs.

❑ The message passing system has to be told the follow-
ing information:
■ Sending processor

■ Source location

■ Data type

■ Data length

■ Receiving processor(s)

■ Destination location

■ Destination size

e
cc
p

 Access

❑ A sub-program needs to be connected to a message
passing system.

❑ A message passing system is similar to:

■ Mail box

■ Phone line

■ fax machine

■ etc.

Writing Message-Passing Parallel Programs with MPI 11 Edinburgh Parallel Computing Centre

e
cc
p

 Addressing

❑ Messages need to have addresses to be sent to.

❑ Addresses are similar to:

■ Mail address

■ Phone number

■ fax number

■ etc.

e
cc
p

 Reception

❑ It is important that the receiving process is capable of
dealing with messages it is sent.

Writing Message-Passing Parallel Programs with MPI 13 Edinburgh Parallel Computing Centre

e
cc
p

 Point-to-Point Communication

❑ Simplest form of message passing.

❑ One process sends a message to another

❑ Different types of point-to-point communication

e
cc
p

 Synchronous Sends

❑ Provide information about the completion of the mes-
sage.

"Beep"

Writing Message-Passing Parallel Programs with MPI 15 Edinburgh Parallel Computing Centre

e
cc
p

 Asynchronous Sends

❑ Only know when the message has left.

?

e
cc
p

 Blocking Operations

❑ Relate to when the operation has completed.

❑ Only return from the subroutine call when the operation
has completed.

Writing Message-Passing Parallel Programs with MPI 17 Edinburgh Parallel Computing Centre

e
cc
p

 Non-Blocking Operations

❑ Return straight away and allow the sub-program to con-
tinue to perform other work. At some later time the sub-
program can test or wait for the completion of the non-
blocking operation.

e
cc
p

 Non-Blocking Operations
(cont’d)

❑ All non-blocking operations should have matching wait
operations. Some systems cannot free resources until
wait has been called.

❑ A non-blocking operation immediately followed by a
matching wait is equivalent to a blocking operation.

❑ Non-blocking operations are not the same as sequential
subroutine calls as the operation continues after the call
has returned.

Writing Message-Passing Parallel Programs with MPI 19 Edinburgh Parallel Computing Centre

e
cc
p

 Collective communications

❑ Collective communication routines are higher level rou-
tines involving several processes at a time.

❑ Can be built out of point-to-point communications.

e
cc
p

 Barriers

❑ Synchronise processes.

Barrier

Barrier

Barrier

Writing Message-Passing Parallel Programs with MPI 21 Edinburgh Parallel Computing Centre

e
cc
p

 Broadcast

❑ A one-to-many communication.

e
cc
p

 Reduction Operations

❑ Combine data from several processes to produce a sin-
gle result.

STRIKE

Writing Message-Passing Parallel Programs with MPI 23 Edinburgh Parallel Computing Centre

e
cc
p

 MPI Forum

❑ First message-passing interface standard.

❑ Sixty people from forty different organisations.

❑ Users and vendors represented, from the US and
Europe.

❑ Two-year process of proposals, meetings and review.

❑ Message Passing Interface document produced.

e
cc
p

 Goals and Scope of MPI

❑ MPI’s prime goals are:

■ To provide source-code portability.

■ To allow efficient implementation.

❑ It also offers:

■ A great deal of functionality.

■ Support for heterogeneous parallel architectures.

Writing Message-Passing Parallel Programs with MPI 25 Edinburgh Parallel Computing Centre

e
cc
p

MPI Programs

e
cc
p

 Header files

❑ C
#include <mpi.h>

❑ Fortran
include ‘mpif.h’

Writing Message-Passing Parallel Programs with MPI 27 Edinburgh Parallel Computing Centre

e
cc
p

 MPI Function Format

❑ C:

error = MPI_xxxxx(parameter, ...);

MPI_xxxxx(parameter, ...);

❑ Fortran:

CALL MPI_XXXXX(parameter, ..., IERROR)

e
cc
p

 Handles

❑ MPI controls its own internal data structures

❑ MPI releases `handles’ to allow programmers to refer to
these

❑ C handles are of defined typedefs

❑ Fortran handles are INTEGERs.

Writing Message-Passing Parallel Programs with MPI 29 Edinburgh Parallel Computing Centre

e
cc
p

 Initialising MPI

❑ C

int MPI_Init(int *argc, char ***argv)

❑ Fortran

MPI_INIT(IERROR)
INTEGER IERROR

❑ Must be first routine called.

e
cc
p

 MPI_COMM_WORLD
communicator

10

32 4

5
6

MPI_COMM_WORLD

Writing Message-Passing Parallel Programs with MPI 31 Edinburgh Parallel Computing Centre

e
cc
p

 Rank

❑ How do you identify different processes?

MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

e
cc
p

 Size

❑ How many processes are contained within a communi-
cator?

MPI_Comm_size(MPI_Comm comm, int *size)

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

Writing Message-Passing Parallel Programs with MPI 33 Edinburgh Parallel Computing Centre

e
cc
p

 Exiting MPI

❑ C

int MPI_Finalize()

❑ Fortran

MPI_FINALIZE(IERROR)
INTEGER IERROR

❑ Must be called last by all processes.

e
cc
p

 Exercise: Hello World - the
minimal MPI program

❑ Write a minimal MPI program which prints ``hello
world’’.

❑ Compile it.

❑ Run it on a single processor.

❑ Run it on several processors in parallel.

❑ Modify your program so that only the process ranked 0
in MPI_COMM_WORLD prints out.

❑ Modify your program so that the number of processes is
printed out.

Writing Message-Passing Parallel Programs with MPI 35 Edinburgh Parallel Computing Centre

e
cc
p

Messages

e
cc
p

 Messages

❑ A message contains a number of elements of some par-
ticular datatype.

❑ MPI datatypes:

■ Basic types.

■ Derived types.

❑ Derived types can be built up from basic types.

❑ C types are different from Fortran types.

Writing Message-Passing Parallel Programs with MPI 37 Edinburgh Parallel Computing Centre

e
cc
p

 MPI Basic Datatypes - C
MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

e
cc
p

 MPI Basic Datatypes - Fortran

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

Writing Message-Passing Parallel Programs with MPI 39 Edinburgh Parallel Computing Centre

e
cc
p

Point-to-Point
Communication

e
cc
p

 Point-to-Point Communication

❑ Communication between two processes.

❑ Source process sends message to destination process.

❑ Communication takes place within a communicator.

❑ Destination process is identified by its rank in the com-
municator.

0

4

2

3

5
1

communicator

source

dest

Writing Message-Passing Parallel Programs with MPI 41 Edinburgh Parallel Computing Centre

e
cc
p

 Communication modes

Sender mode Notes

Synchronous send Only completes when the receive has
completed.

Buffered send Always completes (unless an error
occurs), irrespective of receiver.

Standard send Either synchronous or buffered.

Ready send Always completes (unless an error
occurs), irrespective of whether the
receive has completed.

Receive Completes when a message has
arrived.

e
cc
p

 MPI Sender Modes

OPERATION MPI CALL

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

Writing Message-Passing Parallel Programs with MPI 43 Edinburgh Parallel Computing Centre

e
cc
p

 Sending a message

❑ C:

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

❑ Fortran:

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG,
 COMM, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG
INTEGER COMM, IERROR

e
cc
p

 Receiving a message

❑ C:

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

❑ Fortran:

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG,

COMM, STATUS(MPI_STATUS_SIZE),
IERROR

Writing Message-Passing Parallel Programs with MPI 45 Edinburgh Parallel Computing Centre

e
cc
p

 Synchronous Blocking
Message-Passing

❑ Processes synchronise.

❑ Sender process specifies the synchronous mode.

❑ Blocking - both processes wait until the transaction has
completed.

e
cc
p

 For a communication to
succeed:

❑ Sender must specify a valid destination rank.

❑ Receiver must specify a valid source rank.

❑ The communicator must be the same.

❑ Tags must match.

❑ Message types must match.

❑ Receiver’s buffer must be large enough.

Writing Message-Passing Parallel Programs with MPI 47 Edinburgh Parallel Computing Centre

e
cc
p

 Wildcarding

❑ Receiver can wildcard.

❑ To receive from any source - MPI_ANY_SOURCE

❑ To receive with any tag - MPI_ANY_TAG

❑ Actual source and tag are returned in the receiver’s
status parameter.

e
cc
p

 Communication Envelope

Destination Address

For the attention of :

Data
Item 1
Item 2
Item 3

Sender’s Address

Writing Message-Passing Parallel Programs with MPI 49 Edinburgh Parallel Computing Centre

e
cc
p

 Communication Envelope
Information

❑ Envelope information is returned from MPI_RECV as
status

❑ Information includes:

■ Source: status.MPI_SOURCE or sta-
tus(MPI_SOURCE)

■ Tag: status.MPI_TAG or status(MPI_TAG)

■ Count: MPI_Get_count or MPI_GET_COUNT

e
cc
p

 Received Message Count

❑ C:

int MPI_Get_count (MPI_Status status,
MPI_Datatype datatype, int *count)

❑ Fortran:

MPI_GET_COUNT (STATUS, DATATYPE, COUNT,
IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE,
COUNT, IERROR

Writing Message-Passing Parallel Programs with MPI 51 Edinburgh Parallel Computing Centre

e
cc
p

 Message Order Preservation

❑ Messages do not overtake each other.

❑ This is true even for non-synchronous sends.

0

4

2

3

5
1

communicator

e
cc
p

 Exercise - Ping pong

❑ Write a program in which two processes repeatedly
pass a message back and forth.

❑ Insert timing calls to measure the time taken for one
message.

❑ Investigate how the time taken varies with the size of
the message.

Writing Message-Passing Parallel Programs with MPI 53 Edinburgh Parallel Computing Centre

e
cc
p

 Timers

❑ C:
double MPI_Wtime(void);

❑ Fortran:

DOUBLE PRECISION MPI_WTIME()

❑ Time is measured in seconds.

❑ Time to perform a task is measured by consulting the
timer before and after.

❑ Modify your program to measure its execution time and
print it out.

e
cc
p

Non-Blocking
Communications

Writing Message-Passing Parallel Programs with MPI 55 Edinburgh Parallel Computing Centre

e
cc
p

 Deadlock

0

4

2

3

5
1

communicator

e
cc
p

 Non-Blocking Communications

❑ Separate communication into three phases:

❑ Initiate non-blocking communication.

❑ Do some work (perhaps involving other communica-
tions?)

❑ Wait for non-blocking communication to complete.

Writing Message-Passing Parallel Programs with MPI 57 Edinburgh Parallel Computing Centre

e
cc
p

 Non-Blocking Send

0

4

2

3

5
1

out

in

communicator

e
cc
p

 Non-Blocking Receive

0

4

2

3

5
1

out

in

communicator

Writing Message-Passing Parallel Programs with MPI 59 Edinburgh Parallel Computing Centre

e
cc
p

 Handles used for Non-blocking
Communication

❑ datatype - same as for blocking (MPI_Datatype or
INTEGER)

❑ communicator - same as for blocking (MPI_Comm or
INTEGER)

❑ request - MPI_Request or INTEGER

❑ A request handle is allocated when a communication is
initiated.

e
cc
p

 Non-blocking Synchronous
Send

❑ C:

MPI_Issend(buf, count, datatype, dest, tag, comm, handle)

MPI_Wait(handle, status)

❑ Fortran:

MPI_ISSEND(buf, count, datatype, dest, tag,comm, handle,
ierror)

MPI_WAIT(handle, status, ierror)

Writing Message-Passing Parallel Programs with MPI 61 Edinburgh Parallel Computing Centre

e
cc
p

 Non-blocking Receive

❑ C:
MPI_Irecv(buf, count, datatype, src, tag,comm, handle)

MPI_Wait(handle, status)

❑ Fortran:

MPI_IRECV(buf, count, datatype, src, tag,comm, handle,
ierror)

MPI_WAIT(handle, status, ierror)

e
cc
p

 Blocking and Non-Blocking

❑ Send and receive can be blocking or non-blocking.

❑ A blocking send can be used with a non-blocking
receive, and vice-versa.

❑ Non-blocking sends can use any mode - synchronous,
buffered, standard, or ready.

❑ Synchronous mode affects completion, not initiation.

Writing Message-Passing Parallel Programs with MPI 63 Edinburgh Parallel Computing Centre

e
cc
p

 Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV

e
cc
p

 Completion

❑ Waiting versus Testing.

❑ C:
MPI_Wait(handle, status)

MPI_Test(handle, flag, status)

❑ Fortran:

MPI_WAIT(handle, status, ierror)

MPI_TEST(handle, flag, status, ierror)

Writing Message-Passing Parallel Programs with MPI 65 Edinburgh Parallel Computing Centre

e
cc
p

 Multiple Communications

❑ Test or wait for completion of one message.

❑ Test or wait for completion of all messages.

❑ Test or wait for completion of as many messages as
possible.

e
cc
p

 Testing Multiple Non-Blocking
Communications

in

in

in

process

Writing Message-Passing Parallel Programs with MPI 67 Edinburgh Parallel Computing Centre

e
cc
p

 Exercise: Rotating information
around a ring

❑ A set of processes are arranged in a ring.

❑ Each process stores its rank in MPI_COMM_WORLD in an
integer.

❑ Each process passes this on to its neighbour on the
right.

❑ Keep passing it until it’s back where it started.

❑ Each processor calculates the sum of the values.

e
cc
p

Derived Datatypes

Writing Message-Passing Parallel Programs with MPI 69 Edinburgh Parallel Computing Centre

e
cc
p

 MPI Datatypes

❑ Basic types

❑ Derived types

■ vectors

■ structs

■ others

e
cc
p

 Derived Datatypes - Type Maps

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1

Writing Message-Passing Parallel Programs with MPI 71 Edinburgh Parallel Computing Centre

e
cc
p

 Contiguous Data

❑ The simplest derived datatype consists of a number of
contiguous items of the same datatype

❑ C:
int MPI_Type_contiguous (int count, MPI_Datatype oldtype,

MPI_Datatype *newtype)

❑ Fortran:
MPI_TYPE_CONTIGUOUS (COUNT, OLDTYPE,

NEWTYPE)

INTEGER COUNT, OLDTYPE, NEWTYPE

e
cc
p

 Vector Datatype Example

❑ count = 2

❑ stride = 5

❑ blocklength = 3

oldtype

newtype

5 element stride
between blocks

3 elements
per block

2 blocks

Writing Message-Passing Parallel Programs with MPI 73 Edinburgh Parallel Computing Centre

e
cc
p

 Constructing a Vector Datatype

❑ C:

int MPI_Type_vector (int count, int blocklength, int stride,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

❑ Fortran:

MPI_TYPE_VECTOR (COUNT, BLOCKLENGTH, STRIDE,
OLDTYPE, NEWTYPE, IERROR)

e
cc
p

 Extent of a Datatype

❑ C:
MPI_Type_extent (MPI_Datatype datatype,

 int* extent)

❑ Fortran:
MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

INTEGER DATATYPE, EXTENT, IERROR

Writing Message-Passing Parallel Programs with MPI 75 Edinburgh Parallel Computing Centre

e
cc
p

 Struct Datatype Example

❑ count = 2

❑ array_of_blocklengths[0] = 1

❑ array_of_types[0] = MPI_INT

❑ array_of_blocklengths[1] = 3

❑ array_of_types[1] = MPI_DOUBLE

newtype

MPI_DOUBLE

MPI_INT

block 0 block 1

array_of_displacements[0] array_of_displacements[1]

e
cc
p

 Constructing a Struct Datatype

❑ C:

int MPI_Type_struct (int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype)

❑ Fortran:

MPI_TYPE_STRUCT (COUNT,
ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS,
ARRAY_OF_TYPES, NEWTYPE,
IERROR)

Writing Message-Passing Parallel Programs with MPI 77 Edinburgh Parallel Computing Centre

e
cc
p

 Committing a datatype

❑ Once a datatype has been constructed, it needs to be
committed before it is used.

❑ This is done using MPI_TYPE_COMMIT

❑ C:
int MPI_Type_commit (MPI_Datatype *datatype)

❑ Fortran:
MPI_TYPE_COMMIT (DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

e
cc
p

 Exercise: Derived Datatypes

❑ Modify the passing-around-a-ring exercise.

❑ Calculate two separate sums:

■ rank integer sum, as before

■ rank floating point sum

❑ Use a struct datatype for this.

Writing Message-Passing Parallel Programs with MPI 79 Edinburgh Parallel Computing Centre

e
cc
p

Virtual Topologies

e
cc
p

 Virtual Topologies

❑ Convenient process naming

❑ Naming scheme to fit the communication pattern

❑ Simplifies writing of code

❑ Can allow MPI to optimise communications

Writing Message-Passing Parallel Programs with MPI 81 Edinburgh Parallel Computing Centre

e
cc
p

 How to use a Virtual Topology

❑ Creating a topology produces a new communicator

❑ MPI provides ``mapping functions’’

❑ Mapping functions compute processor ranks, based on
the topology naming scheme.

e
cc
p

 Example - A 2-dimensional
Torus

1

2

3

4

5

6

7

8

10

9

11

(0,0)
0

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,2)

Writing Message-Passing Parallel Programs with MPI 83 Edinburgh Parallel Computing Centre

e
cc
p

 Topology types

❑ Cartesian topologies

■ each process is ‘‘connected’’ to its neighbours in a virtual grid.

■ boundaries can be cyclic, or not.

■ processes are identified by cartesian coordinates.

❑ Graph topologies

■ general graphs

■ not covered here

e
cc
p

 Creating a Cartesian Virtual
Topology

❑ C:
int MPI_Cart_create (MPI_Comm comm_old, int ndims,

int *dims, int *periods, int reorder,
MPI_Comm *comm_cart)

❑ Fortran:

MPI_CART_CREATE (COMM_OLD, NDIMS, DIMS,
PERIODS, REORDER,
COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*),
COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

Writing Message-Passing Parallel Programs with MPI 85 Edinburgh Parallel Computing Centre

e
cc
p

 Cartesian Mapping Functions

 Mapping process grid coordinates to ranks

❑ C:

int MPI_Cart_rank (MPI_Comm comm, int *coords,
int *rank)

❑ Fortran:

MPI_CART_RANK (COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

e
cc
p

 Cartesian Mapping Functions

 Mapping ranks to process grid coordinates

❑ C:

int MPI_Cart_coords (MPI_Comm comm, int rank,
int maxdims, int *coords)

❑ Fortran:

MPI_CART_COORDS (COMM, RANK, MAXDIMS,
COORDS, IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*),
IERROR

Writing Message-Passing Parallel Programs with MPI 87 Edinburgh Parallel Computing Centre

e
cc
p

 Cartesian Mapping Functions

 Computing ranks of neighbouring processes

❑ C:
int MPI_Cart_shift (MPI_Comm comm, int direction,

int disp, int *rank_source,
int *rank_dest)

❑ Fortran:

MPI_CART_SHIFT (COMM, DIRECTION, DISP,
RANK_SOURCE, RANK_DEST,
IERROR)

INTEGER COMM, DIRECTION, DISP,
RANK_SOURCE, RANK_DEST, IERROR

e
cc
p

 Cartesian Partitioning

❑ Cut a grid up into `slices’.

❑ A new communicator is produced for each slice.

❑ Each slice can then perform its own collective communi-
cations.

❑ MPI_Cart_sub and MPI_CART_SUB generate new
communicators for the slices.

Writing Message-Passing Parallel Programs with MPI 89 Edinburgh Parallel Computing Centre

e
cc
p

 Cartesian Partitioning with
MPI_CART_SUB

❑ C:

int MPI_Cart_sub (MPI_Comm comm, int *remain_dims,
 MPI_Comm *newcomm)

❑ Fortran:

MPI_CART_SUB (COMM, REMAIN_DIMS, NEWCOMM,
IERROR)

INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

e
cc
p

 Exercise

❑ Rewrite the exercise passing numbers round the ring
using a one-dimensional ring topology.

❑ Rewrite the exercise in two dimensions, as a torus.
Each row of the torus should compute its own separate
result.

Writing Message-Passing Parallel Programs with MPI 91 Edinburgh Parallel Computing Centre

e
cc
p

Collective Communications

e
cc
p

 Collective Communication

❑ Communications involving a group of processes.

❑ Called by all processes in a communicator.

❑ Examples:

■ Barrier synchronisation

■ Broadcast, scatter, gather.

■ Global sum, global maximum, etc.

Writing Message-Passing Parallel Programs with MPI 93 Edinburgh Parallel Computing Centre

e
cc
p

 Characteristics of Collective
Communication

❑ Collective action over a communicator

❑ All processes must communicate

❑ Synchronisation may or may not occur

❑ All collective operations are blocking.

❑ No tags.

❑ Receive buffers must be exactly the right size

e
cc
p

 Barrier Synchronisation

❑ C:

int MPI_Barrier (MPI_Comm comm)

❑ Fortran:

MPI_BARRIER (COMM, IERROR)
INTEGER COMM, IERROR

Writing Message-Passing Parallel Programs with MPI 95 Edinburgh Parallel Computing Centre

e
cc
p

 Broadcast

❑ C:

int MPI_Bcast (void *buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm)

❑ Fortran:

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT,
COMM, IERROR)

<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

e
cc
p

 Scatter

A B C D E

A B C D E

A B C D E

Writing Message-Passing Parallel Programs with MPI 97 Edinburgh Parallel Computing Centre

e
cc
p

 Gather

A B C D E

A B C D E

A B C D E

e
cc
p

 Global Reduction Operations

❑ Used to compute a result involving data distributed over
a group of processes.

❑ Examples:

■ global sum or product

■ global maximum or minimum

■ global user-defined operation

Writing Message-Passing Parallel Programs with MPI 99 Edinburgh Parallel Computing Centre

e
cc
p

 Example of Global Reduction

 Integer global sum

❑ C:

MPI_Reduce(&x, &result, 1, MPI_INT, MPI_SUM,
0, MPI_COMM_WORLD)

❑ Fortran:

CALL MPI_REDUCE(x, result, 1, MPI_INTEGER,
MPI_SUM, 0, MPI_COMM_WORLD, IERROR)

❑ Sum of all the x values is placed in result

❑ The result is only placed there on processor 0

e
cc
p

 Predefined Reduction
Operations

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI_MINLOC Minimum andlocation

Writing Message-Passing Parallel Programs with MPI 101 Edinburgh Parallel Computing Centre

e
cc
p

 MPI_REDUCE

1

2

3

4

RANK

ROOT

A B C D

MPI_REDUCE

0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

AoEoIoMoQ

e
cc
p

 User-Defined Reduction
Operators

❑ Reducing using an arbitrary operator, ■

❑ C - function of type MPI_User_function:

void my_operator (void *invec, void *inoutvec,int *len,
MPI_Datatype *datatype)

❑ Fortran - function of type

FUNCTION MY_OPERATOR (INVEC(*),INOUTVEC(*), LEN,
DATATYPE)

<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, DATATYPE

Writing Message-Passing Parallel Programs with MPI 103 Edinburgh Parallel Computing Centre

e
cc
p

 Reduction Operator Functions

❑ Operator function for ■ must act as:

for (i = 1 to len)
inoutvec(i) = inoutvec(i) ■ invec(i)

❑ Operator ■ need not commute

e
cc
p

 Registering a User-Defined
Reduction Operator

❑ Operator handles have type MPI_Op or INTEGER

❑ C:

int MPI_Op_create (MPI_User_function *function,
int commute, MPI_Op *op)

❑ Fortran:

MPI_OP_CREATE (FUNC, COMMUTE, OP, IERROR)
EXTERNAL FUNC
LOGICAL COMMUTE
INTEGER OP, IERROR

Writing Message-Passing Parallel Programs with MPI 105 Edinburgh Parallel Computing Centre

e
cc
p

 Variants of MPI_REDUCE

❑ MPI_ALLREDUCE - no root process

❑ MPI_REDUCE_SCATTER - result is scattered

❑ MPI_SCAN - ‘‘parallel prefix’’

e
cc
p

 MPI_ALLREDUCE

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_ALLREDUCE

AoEoIoMoQ

Writing Message-Passing Parallel Programs with MPI 107 Edinburgh Parallel Computing Centre

e
cc
p

 MPI_SCAN

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_SCAN

AoEoIoMoQ

A

AoE

AoEoI

AoEoIoM

e
cc
p

 Exercise

❑ Rewrite the pass-around-the-ring program to use MPI
global reduction to perform its global sums.

❑ Then rewrite it so that each process computes a partial
sum.

❑ Then rewrite this so that each process prints out its par-
tial result, in the correct order (process 0, then process
1, etc.).

Writing Message-Passing Parallel Programs with MPI 109 Edinburgh Parallel Computing Centre

e
cc
p

Case Study: Foxes and
Rabbits

e
cc
p

 Foxes and rabbits

❑ Review some of the major MPI constructs.

❑ Look at some issues relevant for rewriting a sequential
code in MPI.

❑ Gain confidence about writing realistic MPI programs.

Writing Message-Passing Parallel Programs with MPI 111 Edinburgh Parallel Computing Centre

e
cc
p

 Data Representation

❑ Fox(i,j) or Fox[i][j] is the number of foxes on the
i,j-stretch of land.

❑ Rabbit(i,j) or Rabbit[i][j] is the number of rab-
bits on the i,j-stretch of land.

❑ Boundary conditions are periodic in the North-South
direction with period WE_Size and periodic in the East-
West direction with period NS_Size.

e
cc
p

 Halo Data

a
b

c
d

e
f

g
h

i
J

k
l

m
n

o
p

c g
J
i a

b

l p

b f

?
?

?
?

Writing Message-Passing Parallel Programs with MPI 113 Edinburgh Parallel Computing Centre

e
cc
p

 MPI Concepts Reviewed

❑ Cartesian Topologies (1-D and 2-D)

❑ Geometric Data Decomposition (1-D and 2-D)

❑ Point-to-Point Communications (Data Shifts)

❑ Collective Communications (Global Sums)

e
cc
p

 ECO Program

❑ SetMesh:

■ Virtual topology

❑ SetLand:

■ Set problem parameters

■ Set initial animal populations

■ Record the mapping between local and global indices for local data

❑ SetComm:

■ Define MPI data types to shift strided vectors across nearest neigh-
bour processes

■ Precompute the ranks of nearest neighbour processes.

Writing Message-Passing Parallel Programs with MPI 115 Edinburgh Parallel Computing Centre

e
cc
p

 ECO Program (cont’d)

❑ Evolve:

■ Compute populations of foxes and rabbits from the populations of
the previous year.

❑ FillBorder:

■ Shift halo data between nearest neighbour processes in all four car-
dinal directions.

❑ GetPopulation:

■ Sum the all the local population counts for a single specie.

e
cc
p

EPCC’s MPI implementation

Writing Message-Passing Parallel Programs with MPI 117 Edinburgh Parallel Computing Centre

e
cc
p

 EPCC’s MPI Implementation for
CHIMP V2.1

❑ Can be used on all systems where CHIMP V2.1 runs:

■ Silicon Graphics running IRIX 4 or 5

■ Sun SPARC workstations running SunOS 4.1.x or Solaris 2.x

■ DEC Alpha running OSF/1

■ Meiko Computing Surface 1 - transputer, i860 and SPARC nodes

■ Meiko Computing Surface 2

e
cc
p

 How to obtain a copy of EPCC’s
MPI

❑ Available by anonymous ftp.

■ host: ftp.epcc.ed.ac.uk

■ directory: pub/chimp/release

■ file: chimp.tar.Z

Writing Message-Passing Parallel Programs with MPI 119 Edinburgh Parallel Computing Centre

e
cc
p

 The SSP Machine

❑ rlogin ssp

SPARC

TRANSPUTERS

e
cc
p

 Finding Resources

 csusers -a

user@ssp$ csusers -a
Resource User Attached
d2a AVAILABLE
d2b AVAILABLE
d2c AVAILABLE
...

Class Members
d68 d68a d68b
d51 d51a d51b d51c d51d d51e d51f
...

Writing Message-Passing Parallel Programs with MPI 121 Edinburgh Parallel Computing Centre

e
cc
p

 Requesting Resources

 csattach

user@ssp$ csattach d17
Request for d17 granted.
d17a: attaching to 17 x T800
Total remaining allocation: 3294:12:21 processor hours
Timeout on this connection limited to: 193:46:36 hours
user@ssp$

e
cc
p

 Releasing Resources

 csdetach

user@ssp$ csdetach
d17: detached
Connect time = 0:01:15; processor time = 0:21:15
Total remaining allocation: 3293:51:06 processor hours
user@ssp$

Writing Message-Passing Parallel Programs with MPI 123 Edinburgh Parallel Computing Centre

e
cc
p

 Initialising your environment

❑ /home/chimp/chimpv2.1/bin/mpiinst

❑ logout

❑ Login again.

❑ echo $MPIHOME - this should contain a valid
pathname

e
cc
p

 Compiling MPI programs

❑ C

mpicc -mpiarch t800 -o simple simple.c

❑ Fortran

mpif77 -mpiarch t800 -o simple simple.F

Writing Message-Passing Parallel Programs with MPI 125 Edinburgh Parallel Computing Centre

e
cc
p

 Running MPI programs

❑ mpirun <configuration file>

❑ -d option for more information.

❑ Configuration file specifies which processes are to be
run on which processors.

e
cc
p

 Configuration file 1

Run one instance of ‘simple’ on a t800 processor
(simple): type=t800

Writing Message-Passing Parallel Programs with MPI 127 Edinburgh Parallel Computing Centre

e
cc
p

 Configuration file 2

Four instances of ‘simple’ each on a t800 processor
4 (simple): type=t800

e
cc
p

 Configuration file 3

N instances of ‘simple’ each on a t800 processor
$1 (simple): type=t800

