
Communication and Optimization Aspects of

Parallel Programming Models on Hybrid

Architectures

Rolf Rabenseifner1 and Gerhard Wellein2

1 High-Performance Computing-Center (HLRS), University of Stuttgart
Allmandring 30, D-70550 Stuttgart, Germany

rabenseifner@hlrs.de,

www.hlrs.de/people/rabenseifner/
2 Regionales Rechenzentrum Erlangen,

Martensstraße 1, D-91058 Erlangen, Germany
gerhard.wellein@rrze.uni-erlangen.de

Abstract. Most HPC systems are clusters of shared memory nodes.
Parallel programming must combine the distributed memory paralleliza-
tion on the node inter-connect with the shared memory parallelization
inside of each node. The hybrid MPI+OpenMP programming model
is compared with pure MPI, compiler based parallelization, and other
parallel programming models on hybrid architectures. The paper fo-
cuses on bandwidth and latency aspects, but also whether programming
paradigms can separate the optimization of communication and compu-
tation. Benchmark results are presented for hybrid and pure MPI com-
munication.

Keywords. OpenMP, MPI, Hybrid Parallel Programming, Threads and
MPI, HPC.

1 Motivation

The hybrid MPI+OpenMP programming model on clusters of SMP nodes is
already used in many applications, but often there is only a small benefit as,
e.g., reported with the climate model calculations of one of the Gordon Bell
Prize finalists at SC 2001 [12], or sometimes losses are reported compared to the
pure MPI model, e.g., as shown with an discrete element modeling algorithm in
[10]. In the hybrid model, each SMP node is executing one multi-threaded MPI
process. With pure MPI programming, each processor executes a single-threaded
MPI process, i.e., the cluster of SMP nodes is treated as a large MPP (massively
parallel processing) system.

One of the major drawbacks of the hybrid MPI-OpenMP programming model
is based on a very simple usage of this hybrid approach: If the MPI routines are
invoked only outside of parallel regions, all threads except the master thread are
sleeping while the MPI routines are executed.

2 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

This paper will discuss this phenomenon and other hybrid MPI-OpenMP
programming strategies. In Sect. 2, an overview on hybrid programming models
is given. Sect. 3 shows different methods to combine MPI and OpenMP. Further
rules on hybrid programming are discussed in Sect. 4, and pure MPI on hybrid
architectures in Sect. 5. Sect. 6 presents benchmark results of the communica-
tion in both models. Sect. 7 compares the MPI based programming models with
compiler based parallelization.

2 Programming Models on Hybrid Architectures

The available programming models depend on the type of cluster hardware. If
the node interconnect allows cache-coherent or non-cache-coherent non-uniform
memory access (ccNUMA and nccNUMA), i.e., if the memory access inside
of each SMP node and across the cluster interconnect is implemented by the
same instructions, then one can use programming models which need a shared
memory access across the whole cluster. This includes OpenMP on the whole
cluster, usage of nested parallelism inside of OpenMP, but also OpenMP with
cluster extensions that are primarily based on a first touch mechanism [9] or
on data distribution extensions [13]. These cluster extensions may also benefit
from the availability of software based shared virtual memory (SVM) [3, 22, 23].
At NASA/Ames, a hybrid approach was developed. The parallelization is or-
ganized in two levels: The upper level is process based, and in the lower level
each process is multi-threaded with OpenMP. The processes are using a For-
tran wrapper around the System V shared memory module shm that allows to
fork the processes, to initialize a shared memory segment, to associate portions
of this segment with Cray pointer based array in each process, and to make a
barrier synchronization over all processes. This system is named as Multi Level
Parallelism (MLP) and it allows very flexible, dynamic and simple way of load
balancing: At each start of a parallel region inside of each MLP process, the num-
ber of threads, i.e., the number of used CPUs, may be adapted [6]. Although
MLP is a proprietary method of NASA/Ames, the programming style based on
shm is non-proprietary.

If the node interconnect requires different methods for accessing local and
cluster-wide memory, but if there are remote direct memory access (RDMA)
methods available, i.e., if one node can access the memory of another node with-
out interaction of a CPU on that node, then further programming methods
are available: Such systems can be programmed with Co-Array Fortran [18] or
Unified Parallel C (UPC) [5, 7]. In Co-Array Fortran, the access to an array of
another process or thread is done by using an additional trailing array subscript
in square brackets addressing that process or thread. Both language extensions
can also be used to program clusters of SMP nodes, because they neither add
a message passing overhead nor the overhead of additional copies. A key issue
for a more widespread usage of UPC and Co-Array Fortran is the availability
of (portable) compiling systems for a wide range of platforms with a clear de-
velopment path to achieve an optimal performance, as it was presented for MPI

Communication and Optimization Aspects ... on Hybrid Architectures 3

by the early MPICH implementation [8]. Another approach to use the RDMA
hardware is based on one-sided communication, e.g., in Cray’s shmem library or
in MPI-2 [15]. These library-based methods allow to store (fetch) data to (from)
the memory of another process in a SPMD environment. The shmem library was
ported by many vendors to their systems. All programming models available for
RDMA-class node-interconnect are also usable on NUMA-class interconnects.

The third class of hardware supports neither NUMA access nor RDMA. Only
pure message passing is available on the node-interconnect. Programming mod-
els designed for this class of hardware have the major advantage that they are
applicable to all other already mentioned classes. This paper focuses on this type
of hardware. The commonly accepted standard for message passing between the
nodes is the Message Passing Interface (MPI) [14, 15]. The major programming
styles are pure MPI, i.e., the MPP model that uses each CPU for one MPI
process, and hybrid models, e.g., MPI on the node-interconnect and OpenMP
or automatic or semi-automatic compiler based thread-parallelization inside of
each SMP node. Inside of each node mainly two different SMP parallelization
strategies are used: (a) A coarse-grain SPMD-style parallelization similar to the
work distribution between the processes in a message passing program is ap-
plied; this method allows a similar computational efficiency as with the pure
MPI parallelization; the efficiency of the communication is a major factor in the
comparison of this hybrid approach with the pure MPI solution. The present
paper is focused on the communication aspects. (b) A fine-grained SMP par-
allelization is done in an incremental effort of parallelizing loops inside of the
MPI processes. The efficiency of such hybrid solution depends on both, the ef-
ficiency of the computation (Amdahl’s law must be considered on both levels
of parallelization) and of the communication, as shown in [4] for the NAS par-
allel benchmarks. Different SMP parallelization strategies in the hybrid model
are also studied in [24]. High Performance Fortran (HPF) is also available on
clusters of SMPs. In [2], HPF based on hybrid MPI+OpenMP is compared with
pure MPI.

3 MPI and Thread-Based Parallelization

The combination of MPI and thread-based parallelization was already addressed
by the MPI-2 Forum in Sect. 8.7 MPI and Threads in [15]. For hybrid pro-
gramming, the MPI-1 routine MPI Init() should be substituted by a call to
MPI Init threads() which has the input argument named required to define which
thread-support the application requests from the MPI library, and the output ar-
gument provided which is used by the MPI library to tell the application which
thread-support is available. MPI libraries may support the following thread-
categories (higher categories are supersets of all lower ones):

MPI THREAD SINGLE – No thread-support.
MPI THREAD FUNNELED – Only the master thread is allowed to call

MPI routines. The other threads may run other application code while the master
thread calls an MPI routine.

4 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

MPI THREAD SERIALIZED – Multiple threads may make MPI-calls,
but only one thread may execute an MPI routine at a time.

MPI THREAD MULTIPLE – Multiple threads may call MPI without
any restrictions.

The constants MPI THREADS ... are monotonically increasing.
Between MPI THREAD SINGLE and FUNNELED, there are intermediate

levels of thread support, not yet addressed by the standard:
T1a – The MPI process may be multi-threaded but only the master thread

may call MPI routines AND only while the other threads do not exist, i.e.,
parallel threads created by a parallel region must be destroyed before an MPI
routine is called. An MPI library supporting this class (and not more) must also
return provided=MPI THREAD SINGLE (i.e., no thread-support) because of
the lack of this definition in the MPI-2 standard3.

T1b – The definition T1a is relaxed in the sense that more than one thread
may exist during the call of MPI routines, but all threads except the master
thread must sleep, i.e., must be blocked in some OpenMP synchronization. As
in T1a, an MPI library supporting T1b but not more must also return pro-
vided=MPI THREAD SINGLE.

Usually, the application cannot distinguish whether an OpenMP based paral-
lelization or an automatic parallelization needs T1a or T1b to allow calls to MPI
routines outside of OpenMP parallel regions, because it is not defined, whether
at the end of a parallel region the team of threads is sleeping or is destroyed.
And usually, this category is chosen, when the MPI routines are called outside
of parallel regions. Therefore, one should summarize the cases T1a and T1b to
only one case:

T1 – The MPI process may be multi-threaded but only the master thread
may call MPI routinesAND only outside of parallel regions (in case of OpenMP)
or outside of parallelized code (if automatic parallelization is used). We define
here an additional constantTHREAD MASTERONLY with a value between
MPI THREAD SINGLE and MPI THREAD FUNNELED.

4 Rules with hybrid programming

THREAD MASTERONLY defines the most simple hybrid programming model
with MPI and OpenMP, because MPI routines may be called only outside of
parallel regions. The new cache coherence rules in OpenMP 2.0 guarantee that
the outcome of an MPI routine is visible to all threads in a subsequent parallel
region, and that the outcome of all threads of a parallel region is visible to a
subsequent MPI routine.

The programmingmodel behind MPI THREAD FUNNELED can be achieved
by surrounding the call to the MPI routine with the OMP MASTER and OMP
END MASTER directives inside of a parallel region. One must be very careful,
because OMP MASTER does not imply an automatic barrier synchronization

3 This may be solved in the revision 2.1 of the MPI standard.

Communication and Optimization Aspects ... on Hybrid Architectures 5

or an automatic cache flush neither at the entry to nor at the exit from the
master section. If the application wants to send data computed in the previous
parallel region or wants to receive data into a buffer that was also used in the
previous parallel region (e.g., to use the data received in the previous iteration),
then a barrier with implied cache flush is necessary prior to calling the MPI
routine, i.e., prior to the master section. If the data or buffer is also used in the
parallel region after the exit of the MPI routine and its master section, then also
a barrier is necessary after the exit of the master section. If both barriers must
be done, then while the master thread is executing the MPI routine, all other
threads are sleeping, i.e., we are going back to the case T1b.

The rules of MPI THREAD SERIALIZED can be achieved by using the
OMP SINGLE directive, which has an implied barrier only at the exit (unless
NOWAIT is specified). Here again, the same problems as with FUNNELED must
be taken into account.

These problems with FUNNELED and SERIALIZED arise, because the
communication must be funneled from all threads to one thread (an arbitrary
thread with OMP SINGLE, and the master thread with OMP MASTER). Only
MPI THREAD MULTIPLE allows a direct message passing from each thread
in one node to each thread in another node.

Based on these reasons and because THREAD MASTERONLY is available
on nearly all clusters, often, hybrid and portable parallelization is using only this
parallelization scheme. This paper will evaluate this hybrid model by comparing
it with the non-hybrid pure MPI model described in the next section.

5 Pure MPI on hybrid architectures

Using a pure MPI model, the cluster must be viewed as a hybrid communication
network with typically fast communication paths inside of each SMP node and
slower paths between the nodes. It is important to implement a good mapping
of the communication paths used by application to the hybrid communication
network of the cluster. The MPI standard defines virtual topologies for this
purpose, but the optimization algorithm isn’t yet implemented in most MPI
implementations. Therefore, in most cases, it is important to choose a good
ranking in MPI COMM WORLD. E.g., on a Hitachi SR8000, the MPI library
allows two different ranking schemes, round robin (ranks 0, N, 2*N, ... on node 0;
ranks 1, N+1, 2*N+1, ... on node 1, ...; with N=number of nodes) and sequential
(rank 0–7 on node 0, ranks 8–15 on node 1, ...), and the user has to decide which
scheme may fit better to the communication needs of his application.

The pure MPI programming model implies additional message transfers due
to the higher number of MPI processes and higher number of boundaries. Let
us consider, for example, a 3-dimensional cartesian domain decomposition. Each
domain may have to transfer boundary information to its neighbors in all six
cartesian directions (↑↓ −→← ↙↗). Bringing this model on a cluster with 8-way
SMP nodes, on each node, we should execute the domains belonging to a 2×2×2
cube. Domain-to-domain communication occurs as node-to-node (inter-node)

6 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

communication and as intra-node communication between the domains inside of
each cube. Hereby, each domain has 3 neighbors inside the cube and 3 neighbors
outside, i.e., in the inter-node and the intra-node communication the amount
of transferred bytes should be equivalent. If we compare this pure MPI model
with a hybrid model, assuming that the domains (in the pure MPI model) in
each 2×2×2 cube are combined to a super-domain in the hybrid model, then
the amount of data transferred on the node-interconnect should be the same
in both models. This implies that in the pure MPI model, the total amount
of transferred bytes (inter-node plus intra-node) will be twice the number of
bytes in the hybrid model. The same ratio is shown in the topology in Fig. 1. In
the symmetric case, the intra-node and inter-node communication has the same
transfer volume.

6 Benchmark Results

The following benchmark results will compare the communication behavior of
the hybrid MPI+OpenMP model with the pure MPI model that can be named
also as MPP-MPI model. Based on the domain decomposition scenario discussed
in the last section, we compare the bandwidth of both models and the ratio of
the total communication time presuming that in the pure MPI model, the to-
tal amount of transferred data is twice the amount in the hybrid model. The
benchmark was done on a Hitachi SR8000 with 16 nodes from which 12 nodes
are available for MPI parallel applications. Each node has 8 CPUs. The effective
communication benchmark b eff is used [11, 20]. It accumulates the communi-
cation bandwidth values of the communication done by each MPI process. To
determine the bandwidth of each process, the maximum time needed by all
processes is used, i.e., this benchmark models an application behavior, where
the node with the slowest communication controls the real execution time. To
compare both models, we use the following benchmark patterns:

– b eff – the accumulated bandwidth average for several ring and random
patterns (this is the major benchmark pattern of the b eff benchmark);

– 3D-cyclic – a 3-dimensional cyclic communication pattern with 6 neighbors
for each MPI process (this is an additional pattern measured by the b eff
benchmark);

With the following sub-options, we get 4 metrics (columns) in Table 1:

– average – the average bandwidth of 21 different message sizes (8 byte –
8MB);

– at Lmax – the bandwidth is measured with 8 MB messages.

For each metrics, the following rows are presented in Tab. 1:

– bhybrid, the accumulated bandwidth b for the hybrid model measured with a
1-threaded MPI process on each node (12 MPI processes),

– and in parentheses the same bandwidth per node,

Communication and Optimization Aspects ... on Hybrid Architectures 7

b eff b eff 3D-cyclic 3D-cyclic
(avg.) at Lmax (average) at Lmax

bhybrid [MB/s] 1535 5565 1604 5638
(per node) [MB/s] (128) (464) (134) (470)
bMPP [MB/s] 5299 16624 5000 18458
(per process) [MB/s] (55) (173) (52) (192)
bMPP /bhybrid (measured) 3.45 2.99 3.12 3.27

sMPP /shybrid (assumed) 2 2 2 2
Thybrid/TMPP (concluding) 1.73 1.49 1.56 1.64

Table 1. Comparing the hybrid and the MPP communication needs.

Fig. 1. Parallel communication in a cartesian topology.

– bMPP , the accumulated bandwidth for the pure MPI model (96 MPI pro-
cesses with sequential ranking in MPI COMM WORLD),

– and in parentheses the same bandwidth per process,
– bMPP /bhybrid, the ratio of accumulated MPP bandwidth and accumulated

hybrid bandwidth,
– Thybrid/TMPP , the ratio of execution times T , assuming that total size s of

the transferred data in the pure MPI model is twice of the size in the hybrid
model, i.e., sMPP /shybrid = 2, as shown in Sect.5. For this calculation, it is
assumed that the measured bandwidth values are approximately valid also
for doubled message sizes.

Note that this comparison was done with no special optimized topology map-
ping in the pure MPI model. The result shows that the pure MPI communication
model is faster than the communication in the hybrid model. There are at least
two reasons: (1) In the hybrid model, all communication was done by the mas-
ter thread while the other threads were inactive; (2) One thread is not able to
saturate the total inter-node bandwidth that is available for each node.

Figure 1 shows a similar experiment. In the hybrid MPI+OpenMP commu-
nication scheme, only the left thread sends inter-node messages. Therefore, the

8 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

Fig. 2. Benchmark results comparing hybrid MIP+OpenMP with pure MPI.

message size is 8 times the size used in the pure MPI scheme. Here, each CPU
communicates in the vertical (inter-node) and horizontal (intra-node) direction.
The total communication time with the hybrid model (19.2ms) is 66% greater
than with the pure MPI communication (11.6ms), although with pure MPI, the
total amount of transferred data is doubled due to the additional intra-node
communication. Figure 2 shows the measured transfer time for several message
sizes (left diagram) and the ratio of the transfer time in the hybrid model to
the transfer time of inter-node plus intra-node communication (right diagram).
Note that for the hybrid measurements, the message size must reflect that the
inter-node data exchange of all threads is communicated by the master thread,
and therefore, the message size is chosen 8 times larger, i.e., it ranges from 1
kB to 16 GB. The diagrams show that for message sizes greater than 32 kB,
the pure MPI model is faster than the hybrid model in this experiment. With
smaller message sizes, the ratio Thybrid/TpureMPI depends mainly on the laten-
cies of the underlying protocols that may differ due to the larger message sizes
in the hybrid model.

A similar communication behavior can be expected on other platforms if the
inter-mode network cannot be saturated by a single processor in each SMP node.
This can be true, because the access to the network is bound to several CPUs
in a SMP node, or because internal local MPI copying (e.g., from user space to
a system buffer) cannot be overlapped with the real inter-node communication.
E.g., on the Earth Simulator, the inter-node network can be saturated by one
thread only, if the application buffers are located in the global memory by the
application: 11.76 GB/s inter-node ping-pong MPI bandwidth are reported in
[26]; the maximum rate of the link from each SMP node to the crossbar switch
is 12.3 GB/s. If the application buffers are not allocated in the global memory,
then additional copying between local and global memory must be executed and
the single-thread inter-node bandwidth is reduced to about 60% of the global
memory inter-node ping-pong bandwidth. In this case, only the parallel usage
of multiple threads (with hybrid MPI+OpenMP) or processes (pure MPI) can
saturated the inter-node network.

Communication and Optimization Aspects ... on Hybrid Architectures 9

The shown ratio of hybrid to pure MPI transfer time may be a major reason
when an application is running faster in the pure MPI model than in the hybrid
model.

7 Comparison

The comparison in this paper focuses on bandwidth and latency aspects, i.e., how
to achieve a major percentage of the physical inter-node network bandwidth with
various parallel programming models.

7.1 Hybrid MPI+OpenMP versus pure MPI

Although the benchmark results in the last section show advantages of the pure
MPI model, there are also advantages of the hybrid model. In the hybrid model
there is no communication overhead inside of a node. The message size of the
boundary information of one process may be larger (although the total amount
of communication data is reduced). This reduces latency based overheads in
the inter-node communication. The number of MPI processes is reduced. This
may cause a better speedup based on Amdahl’s law and may cause a faster
convergence if, e.g., the parallel implementation of a multigrid numeric is only
computed on a partial grid. To reduce the MPI overhead by communicating
only through one thread, the MPI communication routines should be relieved
by unnecessary local work, e.g., concatenation of data should be better done
by copying the data to a scratch buffer with a thread-parallelized loop, instead
of using derived MPI datatypes. MPI reduction operations can be split into
the inter-node communication part and the local reduction part by using user-
defined operations, but a local thread-based parallelization of these operations
may cause problems because these threads are running while an MPI routine
may communicate.

Hybrid programming is often done in two different ways: (a) the domain
decomposition is used for the inter-node parallelization with MPI and also for
the intra-node parallelization with OpenMP, i.e., in both cases, a coarse grained
parallelization is used. (b) The intra-node parallelization is implemented as a
fine grained parallelization, e.g., mainly as loop parallelization. The second case
also allows automatic intra-node parallelization by the compiler, but Amdahl’s
law must be considered independently for both parallelizations.

7.2 Comparing hybrid MPI+OpenMP programming schemes

Now we want to compare three different hybrid programming schemes: In the
masteronly scheme, only the master thread communicates and only outside
of parallel regions. The computation is parallelized on all CPUs of an SMP
node and inside of parallel regions. In the funneled scheme, the communication
on the master thread is done in parallel with the computation on the other
threads. For this, the application has to be restructured to allow the overlap

10 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

of communication and computation. In the multiple scheme, all threads may
communicate and compute in parallel. If the other application threads do not
sleep while the master thread is communicating with MPI then communication
time Thybrid in Tab. 1 counts only the eighth (a node has 8 CPUs on the SR8000)
because only one instead of 1 (active) plus 7 (idling) CPUs is communicating.
In this hybrid programming style, the factor Thybrid/TMPP must be reduced
to the eighth, i.e. from about 1.6 to about 0.2. This can be implemented by
dedicating one thread for communication and the other threads of a node for
computing, but also with full load balancing with different mixes of computation
and communication on all threads.

Wellein et al. compared in [25] the two hybrid programming schemes mas-

teronly (named vector-mode in [25]) and funneled (task-mode). They show that

the performance ratio ε = (
Tfunneled or multiple

Tmasteronly
)−1 of funneled (or multiple) to

masteronly execution has the bounds 1 − 1
n
≤ ε ≤ 2 − 1

n
if n is the number of

threads of each SMP node, and one thread is reserved for communication. In
general, m threads are reserved for communication. Tmasteronly is the wall-clock
execution time with the masteronly programming scheme. It can be divided into
three fractions: fcommTmasteronly is the communication time consumed by the
master threadr; fcompTmasteronly is the wall-clock computation time, consumed
by all threads in parallel. Only parts of this fraction can be overlapped with
communication in the funneled or multiple scheme. For this, the computation
fraction must be devided into fcomp,non and fcomp,overlap, and the sum is.

fcomm + fcomp,non + fcomp,overlap = 1 (1)

In the funneled scheme, m = 1 thread is reserved for communication and n−m
threads are used for computation. In the multiple scheme, m may be any value,
but based on the results in the last section, m should not be chosen larger
than the number of CPUs needed to saturate the communication network. The
natural lower bound form is given bymmin = fcomm

fcomp,overlap+fcomm
. If we expect no

further overhead by using themultiple scheme and if we expect that the fcomp,non

fraction is parallelized on all n threads, while fcomp,overlap is parallelized only
on the remaining n−m threads, the the execution time is

Tmultiple = [fcomp,non +max(fcomm

1

m
, fcomp,overlap

n

n−m
)]Tmasteronly (2)

Therefore, the performance ratio is

ε = [fcomp,non +max(fcomm

1

m
, fcomp,overlap

n

n−m
)]−1 (3)

The best performance ratio can be achieved if all CPUs are busy with com-
munication or computation. In this case both terms in max(,) in (3) must be
equal, i.e.,

fcomm

1

m
= fcomp,overlap

n

n−m
(4)

Communication and Optimization Aspects ... on Hybrid Architectures 11

Then, ε = [fcomp,non + fcomm
1
m
]−1 and with (4) and (1) the performance ratio

of the best case is

εmax :=
1 +m(1− 1

n
)

1 + fcomp,nonm(1− 1
n
)

(5)

This best ratio can be achieved if fcomm satisfies (4) or with (1), if

fcomm = fcomm,best :=
1

1 + 1
m
− 1

n

(1− fcomp,non) (6)

εmax is an upper bound for ε, i.e., for any fractions fcomm, fcomp,non, and
fcomp,overlap,

ε ≤
1 +m(1− 1

n
)

1 + fcomp,nonm(1− 1
n
)
≤ 1 +m(1−

1

n
) (7)

If fcomm > fcomm,best and m ≥ mmin then always the multiple scheme is better
than the masteronly scheme, i.e., ε > 1.

The upper bound expresses the chance of a performance win, if the load
balancing is done in a way that the first thread(s) is (are) communicating and
computing and the other threads are only computing, and there is no idle time
due to a bad balancing.

On the other hand, what are the risks with the funneled and multiple scheme?
A performance loss can emerge, if more threads are reserved for communication
than needed, i.e., if these threads idle therefore. Then, the term n

n−m
in (3)

reduces the performance:

ε = [fcomp,non + fcomp,overlap
n

n−m
]−1 (8)

= [fcomp,non + (1− fcomp,non − fcomm) n
n−m

]−1

≥ [fcomp,non + (1− fcomp,non)
n

n−m
]−1

=
(

1− m
n

)

/
(

1− fcomp,non
m
n

)

=: εmin (9)

≥ 1− m
n

Both schemes have the same performance, i.e. ε = 1, if fcomm = fcomm,equiv :=
m
n
(1− fcomp,non). The proof is directly based on (8) and (1).
In reality, the performance win may be worse, because normally the separa-

tion of the computational parts that can be overlapped with the communication
from those computational parts that need some information from neighbor pro-
cesses causes some overhead. In the case of vector processing, additional effort
may be necessary to achieve a long vector size in the funneled and multiple

programming scheme.
For example, if m = 1, n = 8, and fcomp,non = 20%, then εmax = 1.60 (5)

is achived for fcomm,best = 43% (6). For fcomm,equiv = 10%, the performance of
both models are equal, i.e., ε = 1. And for smaller fcomm, the ratio can decrease
to εmin = 0.90 for fcomm = 0% (9). Fig. 3 shows the performance ratio for
different parammeters.

12 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

0

0.5

1

1.5

2

0 20 40 60 80 100

pe
rf

or
m

an
ce

 ra
tio

 (e
ps

ilo
n)

f_comm [percent]

f_comp,non = 0%
n= 8, m=1
n= 4, m=1
n= 2, m=1

n= 8, m=max(0.5,m_min)
epsilon=1 mark

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

pe
rf

or
m

an
ce

 ra
tio

 (e
ps

ilo
n)

f_comm [percent]

f_comp,non = 20%
n= 8, m=1
n= 4, m=1
n= 2, m=1

n= 8, m=max(0.5,m_min)
epsilon=1 mark

0

0.5

1

1.5

2

0 10 20 30 40 50 60

pe
rf

or
m

an
ce

 ra
tio

 (e
ps

ilo
n)

f_comm [percent]

f_comp,non = 40%
n= 8, m=1
n= 4, m=1
n= 2, m=1

n= 8, m=max(0.5,m_min)
epsilon=1 mark

Fig. 3. The performance ratio ε plotted according Equation (3).

The basic principles as discussed in Fig. 3 also hold for real world applications,
e.g. sparse matrix-vector-multiplication (MVM) on SMP clusters. We selected
the hybrid parallel implementation of sparse MVM as described in Ref. [25]. Of
course, scalability of MVM strongly depends on the sparsity pattern, thus we
consider the matrix representation of the seven point discretisation of the differ-
ential operator on a three dimensional Cartesian grid (with periodic boundary
conditions). If the conversion of cartesian coordinates ({i, j, k}) to a linear index
l is defined as follows

{i, j, k} −→ l = i+ (j − 1) · ni + (k − 1) · ni · nj (10)

(i = 1, . . . , ni ; j = 1, . . . , nj ; k = 1, . . . , nk)

and block-wise parallelisation using nproc MPI processes is done along the k-
direction (nloc

k = nk/nproc), the communication scheme is independent of prob-
lem sizes and involves nearest neighbour communication only. Most notably, we
can easily control the communication and computation costs as a function of
problem size and MPI processes for the masteronly scheme:

fcommTmasteronly = xcomm × ni × nj (11)

fcomp,nonTmasteronly = xMV M,non × ni × nj × nloc
k (12)

fcomp,overlapTmasteronly = xMV M,overlap × ni × nj × nloc
k (13)

In this approach only the dominant contributions to the total computing time
are considered, with xcomm representing the MPI communication costs and
xMV M,overlap (xMV M,non) measuring the (non–) overlapping part of the total
MVM computation time. Following equations (1)–(3), the performance ration ε
can easily be calculated as a function of the problem size:

ε =
xcomm + xMV M,non × nloc

k + xMV M,overlap × nloc
k

xMV M,non × nloc
k +max(1

m
× xcomm, n

n−m
× xMV M,overlap × nloc

k)
(14)

Furthermore, for the sparsity pattern described above and the parallel MVM
implementation as introduced in [25] xMV M,non/xMV M,overlap = 1/6 holds and
there is only one adjustable parameter (xcomm/xMV M,overlap) left in Eq. (14).

Communication and Optimization Aspects ... on Hybrid Architectures 13

As a testcase we fixed ni = nj = 512 and varied nloc
k at different number of

MPI processes, i.e. the total communication cost remained constant while the
local workload per process was changed. Performance measurements of mas-

teronly scheme and multiple scheme were done with up to 64 SMP nodes on
the Hitachi SR8000-F1 (n = 8;m = 1) at LRZ Munich. The corresponding per-
formance ratios are plotted in Fig. 4 as a function of local workload per node.
Consistent with Eq. (14) we find at fixed nloc

k only a weak dependence with

0 16 32 48 64
nk

loc

0.8

1

1.2

1.4

1.6

1.8

ε

nproc=4
nproc=8
nproc=16
nproc=64
xcomm/xMVM,overlap=4.67

Fig. 4. Performance ratio ε for sparse
MVM algorithm: Measurements were per-
formed with a maximum of nproc = 64
Hitachi SR8000-F1 nodes (n = 8;m =
1) using ni = nj = 512. The dotted
line is plotted according to Eq. (14) with
xcomm/xMV M,overlap = 4.67. The matrix
dimension of the sparse matrix used in the
MVM step is given as follows: Dmat =
512 × 512 × nloc

k ×Nnode.

the number of nodes used. Moreover, the complex interplay of communication
and computation costs as described above is recovered: The multiple scheme
is favored (ε > 1) at low and intermediate local workloads, while a crossover-
point ε ≈ 1 occurs around nloc

k ≈ 32; for higher local workload the (fixed)
communication cost is too small to be paid off by a separate thread spent for
communication. To compare the measurements in Fig. 4 with the performance
ratio as predicted by Eq. (14) xcomm/xMV M,overlap = 4.67 has been chosen.
This choice fixes the crossoverpoint ε = 1 at nloc

k = 32 in Eq. (14) and repre-
sents a realistic number, e.g., xcomm/xMV M,overlap ≈ 4.17 was estimated from
a profiling run with nproc = 4 and nloc

k = 4. Although the total problem sizes
cover more than two orders of magnitude (Dmat ≈ 1 × 106, . . . , 2.5 × 108) as
well as a large range of number of nodes (nproc = 4, . . . , 64) is considered, we
find a very good qualitative agreement between the theoretical approach and
the measurements for the whole range of workloads. Regarding the maximum
performance gain achieved by the multiple mode, the theoretical approach gives
a good approximation for the position but overestimates the absolute value. At
this point, a description of communication and computation – going beyond
the simple approach in Eqs. (11)–(13) – is required to improve the quantitative
agreement.

7.3 MPI versus Compiler-based Parallelization

Now, we compare the MPI based models with the NUMA or RDMA based
models. To access data on another node with MPI, the data must be copied to

14 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

Access method copies remarks bandwidth b(message size)

2-sided MPI 2 internal MPI buffer b∞/(1 + b∞Tlat

size
), e.g.,

+ application receive buffer 300MB/s / (1 + 300MB/s×10 µs
10 kB

)
= 232MB/s

1-sided MPI 1 application receive buffer same formula,
but probably better b∞ and Tlat

Co-Array 1 page based transfer extremely poor, if only
Fortran, parts of the page are needed
UPC, HPC, 0 word based access 8 byte / Tlat,
OpenMP with e.g., 8 byte / 0.33 µs = 24MB/s
cluster 0 latency hiding with pre-fetch b∞
extensions 1 latency hiding with buffering see 1-sided communication

Table 2. Memory copies from remote memory to local CPU register.

a local memory location (so called halo or shadow) by message passing, before
it can be loaded into the CPU. Usually all necessary data should be transferred
in one large message instead of using several short messages. Then, the transfer
speed is dominated by the asymptotic bandwidth of the network, e.g., as reported
for 3D-cyclic-Lmax in Tab. 1 per node (470 MB/s) or per process (192 MB/s).
With NUMA or RDMA, the data can be loaded directly from the remote memory
location into the CPU. This may imply short accesses, i.e., the access is latency
bound. Although the NUMA or RDMA latency is usually 10 times shorter than
the message passing latency, the total transfer speed may be worse. E.g., [6]
reports on a ccNUMA system a latency of 0.33–1µs, which implies a bandwidth
of only 8–24 MB/s for a 8 byte data. This effect can be eliminated if the compiler
has implemented a remote pre-fetching strategy as described in [16], but this
method is still not used in all compilers.

The remote memory access can also be optimized by buffering or pipelining
the data that must be transferred. This approach may be hard to automate, and
current OpenMP compiler research already studies the bandwidth optimization
on SMP clusters [21], but it can be easily implemented as an directive-based
optimization technique: The application thread can define the (remote) data it
will use in the next simulation step and the compiled OpenMP code can pre-
fetch the whole remote part of the data with a bandwidth-optimized transfer
method. Table 2 summarizes this comparison.

7.4 Parallelization and Compilation

Major advantages of OpenMP based programming are that the application can
be incrementally parallelized and that one still has a single source for serial
and parallel compilation. On a cluster of SMPs, the major disadvantages are
that OpenMP has a flat memory model and that it does not know buffered
transfers to reach the asymptotic network bandwidth. But, as already mentioned,
these problems can be solved by tiny additional directives, like the proposed

Communication and Optimization Aspects ... on Hybrid Architectures 15

migration and memory-pinning directives in [9], and additional directives that
allow a contiguous transfer of the whole boundary information between each
simulation step. Those directives are optimization features that do not modify
the basic OpenMP model, as this would be done with directives to define a
full HPF-like user-directed data distribution (as in [9, 13]). Another lack in the
current OpenMP standard is the absence of a strategy of combining automatic
parallelization with OpenMP parallelization, although this is implemented in a
non-standardized way in nearly all OpenMP compilers. This problem can be
solved, e.g., by adding directives to define scopes where the compiler is allowed
to automatically parallelize the code, e.g., similar to the parallel region, one can
define an auto-parallel region. Usual rules for nested parallelism can apply, i.e.,
a compiler can define that it cannot handle nested parallelism.

An OpenMP-based parallel programming model for SMP-clusters should be
usable for both, fine grained loop parallelization, and coarse grained domain
decomposition. There should be a clear path from MPI to such an OpenMP
cluster programming model with a performance that should not be worse than
with pure MPI or hybrid MPI+OpenMP.

It is also important to have a good compilation strategy that allows the devel-
opment of well optimizing compilers on any combination of processor, memory
access, and network hardware. The MPI based approaches, especially the hybrid
MPI+OpenMP approach, clearly separate remote from local memory access op-
timization. The remote access is optimized by the MPI library, and the local
memory access must be improved by the compiler. Such separation is realized,
e.g., in the NANOS project OpenMP compiler [1, 17]. The separation of local and
remote access optimization may be more essential than the chance of achieving
a zero-latency by remote pre-fetching (Tab. 2) with direct compiler generated
instructions for remote data access. Pre-fetching can also be done via macros or
library calls in the input for the local (OpenMP) compiler.

8 Conclusion

For many parallel applications on hybrid systems, it is important to achieve
a high communication bandwidth between the processes on the node-to-node
inter-connect. On such architectures, the standard programming models of SMP
or MPP systems do not longer fit well. The rules for hybrid MPI+OpenMP
programming and the benchmark results in this paper show that a hybrid ap-
proach is not automatically the best solution if the communication is funneled by
the master thread and long message sizes can be used. The MPI based parallel
programming models are still the major paradigm on HPC platforms. OpenMP
with further optimization features for clusters of SMPs and bandwidth based
data transfer on the node interconnect have a chance to achieve a similar per-
formance together with an incremental parallelization approach, but only if the
current SMP model is enhanced by features that allow an optimization of the
total inter-node traffic. Same important is a strategy that allows independently

16 R. Rabenseifner, G. Wellein (EWOMP 2002, Sep. 18–20, Roma, Italy)

the optimization of the computation (e.g., choosing the best available compiler
for the processor and programming language) and the communication.

Acknowledgments

The author would like to acknowledge his colleagues and all the people that supported
these projects with suggestions and helpful discussions. He would especially like to
thank Alice Koniges, David Eder and Matthias Brehm for productive discussions of
the limits of hybrid programming, Bob Ciotti and Gabrielle Jost for the discussions on
MLP, Gerrit Schulz for his work on the benchmarks, and Thomas Bönisch, Matthias
Müller, Uwe Küster, and John M. Levesque for discussions on OpenMP cluster exten-
sions and vectorization.

References

1. Eduard Ayguade, Marc Gonzalez, Jesus Labarta, Xavier Martorell, Nacho Navarro,
and Jose Oliver, NanosCompiler: A Research Platform for OpenMP Extensions,
in proceedings of the 1st European Workshop on OpenMP (EWOMP’99), Lund,
Sweden, Sep. 1999.

2. Siegfried Benkner, Thomas Brandes, High-Level Data Mapping for Clusters of
SMPs, in proceedings of the 6th International Workshop on High-Level Parallel
Programming Models and Supportive Environments, HIPS 2001, San Francisco,
USA, April 2001, Springer LNCS 2026, pp 1–15.

3. R. Berrendorf, M. Gerndt, W. E. Nagel and J. Prumerr, SVM
Fortran, Technical Report IB-9322, KFA Jlich, Germany, 1993,
www.fz-juelich.de/zam/docs/printable/ib/ib-93/ib-9322.ps.

4. Frank Cappello and Daniel Etiemble, MPI versus MPI+OpenMP on the IBM
SP for the NAS benchmarks, in Proc. Supercomputing’00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html

5. William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene
Brooks, and Karen Warren, Introduction to UPC and Language Specification,
CCS-TR-99-157, May 13, 1999, http://www.super.org/upc/, www.gwu.edu and
http://projects.seas.gwu.edu/∼hpcl/upcdev/upctr.pdf.

6. Robert B. Ciotti, James R. Taft, and Jens Petersohn, Early Experiences with the
512 Processor Single System Image Origin2000, proceedings of the 42nd Interna-
tional Cray User Group Conference, SUMMIT 2000, Noordwijk, The Netherlands,
May 22–26, 2000, www.cug.org.

7. Tarek El-Ghazawi, and Sébastien Chauvin, UPC Benchmarking Issues, proceed-
ings of the International Conference on Parallel Processing, 2001, pp 365–372,
http://projects.seas.gwu.edu/∼hpcl/upcdev/UPC bench.pdf.

8. W. Gropp and E. Lusk and N. Doss and A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, in Parallel Com-
puting 22–6, Sep. 1996, pp 789–828.

9. Jonathan Harris, Extending OpenMP for NUMA Architectures, in proceedings of
the Second European Workshop on OpenMP, EWOMP 2000.

10. D. S. Henty, Performance of hybrid message-passing and shared-memory paral-
lelism for discrete element modeling, in Proc. Supercomputing’00, Dallas, TX,
2000. http://citeseer.nj.nec.com/henty00performance.html

Communication and Optimization Aspects ... on Hybrid Architectures 17

11. Alice E. Koniges, Rolf Rabenseifner, Karl Solchenbach, Benchmark Design for
Characterization of Balanced High-Performance Architectures, in proceedings, 15th
International Parallel and Distributed Processing Symposium (IPDPS’01), Work-
shop on Massively Parallel Processing, April 23-27, 2001, San Francisco, USA.

12. Richard D. Loft, Stephen J. Thomas, and John M. Dennis, Terascale spectral el-
ement dynamical core for atmospheric general circulation models, in proceedings,
SC 2001, Nov. 2001, Denver, USA.

13. John Merlin, Distributed OpenMP: Extensions to OpenMP for SMP Clusters, in
proceedings of the Second European Workshop on OpenMP, EWOMP 2000.

14. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Rel. 1.1, June 1995, www.mpi-forum.org.

15. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997, www.mpi-forum.org.

16. Matthias M. Müller, Compiler-Generated Vector-based Prefetching on Architec-
tures with Distributed Memory, in High Performance Computing in Science and
Engineering ’01, W. Jger and E. Krause (eds), Springer, 2001.

17. The NANOS Project, Jesus Labarta, et al., //research.ac.upc.es/hpc/nanos/.
18. R. W. Numrich, and J. K. Reid, Co-Array Fortran for Parallel Programming,

ACM Fortran Forum, volume 17, no 2, 1998, pp 1–31, www.co-array.org and
ftp://matisa.cc.rl.ac.uk/pub/reports/nrRAL98060.ps.gz.

19. OpenMP Group, www.openmp.org.
20. Rolf Rabenseifner and Alice E. Koniges, Effective Communication and File-I/O

Bandwidth Benchmarks, in Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, proceedings of the 8th European PVM/MPI Users’ Group
Meeting, Santorini, Greece, LNCS 2131, Y. Cotronis, J. Dongarra (Eds.), Springer,
2001, pp 24-35, www.hlrs.de/mpi/b eff/, www.hlrs.de/mpi/b eff io/.

21. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano and Yoshio Tanaka, Design
of OpenMP Compiler for an SMP Cluster, in proceedings of the 1st Euro-
pean Workshop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999, pp 32–39.
http://citeseer.nj.nec.com/sato99design.html

22. Alex Scherer, Honghui Lu, Thomas Gross, Willy Zwaenepoel, Transparent Adaptive
Parallelism on NOWs using OpenMP, in proceedings of the Seventh Conference
on Principles and Practice of Parallel Programming (PPoPP ’99), May 1999, pp
96–106.

23. Weisong Shi, Weiwu Hu, and Zhimin Tang, Shared Virtual Memory: A Sur-
vey, Technical report No. 980005, Center for High Performance Comput-
ing, Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

24. Lorna Smith and Mark Bull, Development of Mixed Mode MPI / OpenMP Applica-
tions, in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT
2000), San Diego, July 2000.

25. G. Wellein, G. Hager, A. Basermann, and H. Fehske, Fast sparse matrix-vector
multiplication for TeraFlop/s computers, in proceedings of Vector and Parallel
Processing - VECPAR’2002, Porto, Portugal, June 26–28, 2002, Springer LNCS.

26. Hitoshi Uehara, Masanori Tamura, and Mitsuo Yokokawa, An MPI Benchmark
Program Library and Its Application to the Earth Simulator, in proceedings of
the 4th International Symposium on High Performance Computing, ISHPC 2002,
H. Zima et al. (Eds.), Kansai Science City, Japan, May 15-17, LNCS 2327, Springer,
2002, pp 219–230.

