
ouiouioui

Programming project report
Analysis of electrophysiological and imaging
data in the context of sensory information

processing in autism

Alexandre Cornier, Martin Drance, Ali Cuhadar, Abdelghani Neuhaus

Team leader : Andreas Frick
Project supervisor : Marie Beurton-Aimar

Master in Bioinformatics of Bordeaux
Year 2019- 2020

A B S T R A C T

The neocortex plays a central role in processes such as the processing of sensory information,
perception or even the control of motor activity. Cortical deficits therefore have dramatic neu-
rological and psychiatric repercussions. The functioning of a cortical circuit results from the
combination of the intrinsic properties of the neurons that compose it, the connectivity of these
neurons and the properties of these connections. Integrating these three levels of functional
complexity, one of the major challenges of contemporary neuroscience, is necessary for under-
standing the normal and pathological functioning of neural networks and the study of diseases
of the central nervous system.

Autism spectrum disorder (ASD) is estimated to affect one in fifty children. Atypical pro-
cessing of sensory information (for example, tactile, visual and hearing information) is now
considered a key phenotype of ASD and can be a key determinant of other basic autistic phe-
notypes. Information from the different senses are processed in the neocortical circuits and can
be measured by electrophysiological or imaging approaches. Measurements of sensory informa-
tion and perception processing could also provide objective biomarkers essential to complete the
evaluation of social, communicational and cognitive/behavioral alterations and to quantify the
therapeutic results. Today, re-education is possible depending on the level of severity but there
is no targeted therapeutic approach. The object of the project is to improve the functioning of
a tool intended to improve the treatment of autism therapeutically.

The objective of this project is to develop software for an in-depth analysis of complex elec-
trophysiological and imaging data. To achieve this, it will be couple existing software with the
code produced in the project to extract the various characteristics of this data.

Contents

Introduction 4

1 Analysis 5
1.1 Context . 5
1.2 State of art . 5
1.3 Status of software retrieved from client . 6
1.4 Functional and non-functional requirements . 11

2 Conception 13
2.1 Programming language . 13
2.2 Libraries, modules, and packages . 13
2.3 Inputs . 15
2.4 Outputs . 15
2.5 Software architecture and quantification of work 16

3 Implementation 19
3.1 Graphic User Interface . 19
3.2 Shortcuts, widgets and tabs . 22
3.3 Software tools . 24
3.4 Image enhancement . 27
3.5 Others changes and tools implemented . 30
3.6 Discussion and further developments . 31

Conclusion 33

Acknowledgements 34

Bibliography 35

Appendices 36

Introduction

For centuries, the research on the brain, an organ that humans have not yet fully under-
stood, has been the subject of numerous studies. The neocortex, a subunit of the brain, plays
a central role in processes such as the processing of sensory information, perception, and even
the control of motor activity.

The study of the neocortex is, consequently, a key element in understanding certain diseases
such as autism [1]. Dr. Frick and his team located at the Magendie Institute on the Carreire
campus (Bordeaux) are working on the mechanisms of cortical plasticity in normal and patho-
logical conditions, using a mouse model suffering from a form of autism.

To analyze the data produced during experiments, numerous computational tools have been
created [2] [3], and Dr. Frick’s team is one of the scientific teams that have developed software.
To process images obtained with microscopy, the team, in collaboration with Dr. Proville,
developed software to analyze mice brain sections, using an atlas from the Allen Institute to
identify the regions observed on the slices.

Ultimately, the goal would be to develop an in silico model to describe the functional con-
sequence of these characteristics on network performance and to test the mechanisms that
underlie these deficits.

The first part will introduce the project analysis, including its context, the corresponding
state of the art and the model’s functional and non-functional requirements.

The second part will present the software’s design, and just how the different requirements
will be met.

The third part will exhibit the software completion, with the details of its architecture and
explanations of the code. Potential further developments of the model and improvements will
also be discussed.

The bibliography and the appendix can be found at the end of the document.

The final code is available on this GitHub link: https://github.com/abdelneuhaus/
renduProjetAtlaser

4

https://github.com/abdelneuhaus/renduProjetAtlaser
https://github.com/abdelneuhaus/renduProjetAtlaser

Chapter 1

Analysis

1.1 Context
Nearly 220 researchers, teacher-researchers, technicians, post-docs, and students, spread

across 11 research teams, work on subjects related to neuroscience in the Neurocentre Ma-
gendie institute located in Bordeaux, on the Carreire campus [4].

Dr. Frick’s team seeks to understand the organization of cortical circuits and their modu-
lation during development, in response to electrical activity and pathological conditions. They
use a variety of experimental approaches, such as electrophysiology, imagery, anatomy, and be-
havior. Recently, they developed a method using viruses to identify monosynaptic connections
between neurons in vivo [5] [6].

Dr. Frick’s area of study is connectomics: it is the the study of neuronal connectivity of
circuits or entire brains. Neurons of the same type and the same brain area are differents
by their functions, their morphologies, their connectivities, and consequently the reception of
information. It is on this last point that Dr. Frick is working. They study Autism Spectrum
Disease (ASD) in mice for the analysis of bounds between neurons.

Currently, analysis tools of the data collected take time to use (electron microscopy takes six
months, for example) and the development of bioinformatics tools (image exploration software,
machine learning) is increasing. Dr. Frick would like to have a software solution allowing him
to quickly and intuitively visualize the images of the brain of mice containing the viral markers
mentioned above.

1.2 State of art
Dr. Frick and his team are studying connectomics and using mice with a mutation in a

gene involved in ASD. The study of regions of interest is carried out with viral markers and
fluorescence images are obtained. For this, the lab is equipped with a very efficient whole slide
image scanner to obtain high-resolution images in NDPI format, section by section of the brain.
Once images are collected, it is necessary to be able to analyze them and determine in which

5

areas of the brain the marking is present and has spread through neuron connections.

In the field of medical imaging analysis in mice, and more particularly brain analysis, the
Allen Institute has developed many tools such as in particular an analysis software allowing to
browse regions, to study protein expression, to navigate in 2D or 3D; but also free to use atlases
for scientists. Another software called Virtual Brain has been designated by Francesca Melozzi
team [3] to model whole-brain network dynamics, where the network’s connectivity is based on
diffusion magnetic resonance imaging (dMRI)-based individual connectomes or adaptations of
more precise primate connectomes.

Also, dedicated software environments are available to simulate detailed neuronal dynam-
ics such as Neuron, Genesis, and MOOSE [7], which model the complex dendrite geometry,
reaction-diffusion processes, and receptor distributions of individual neurons and smaller net-
works.

However, most of the software existing in this research area allows mainly to navigate and
perform 3D analyzes, while Dr. Frick wants analysis software to select and identify regions.
So, to facilitate analysis, Dr. Proville (postdoc at the time) created software that uses a mouse
atlas from the Allen Institute. This software is more simplistic in the sense that that one seeks
to superimpose an image on the atlas and to be able, by clicking, to select the zones containing
a marking.

1.3 Status of software retrieved from client

1.3.1 Files required to run the software
The code was divided into four files in py format:

• gui : this file contains the classes allowing the creation of the main window. At the end of
it, the main program is called. The main program calls an instance of the AtlasExplorer
class, inherited from the Viewer class contained in the same file.

• controls : this file contains six classes. EditViewBox class is used to create win-
dows where the image and the atlas open in the GUI. LabeledCircleWidget and La-
beledSlider classes are used to create widgets. Finally, the three classes TreeModel,
TreeItem, and Region allow in the gui file, to link the files mouse_ontology.json and
contourify.npy to the atlas in order to have an "interactive" atlas when the user click on
the screen and a tree structure between regions.

• atlas : it contains functions allowing to convert nrrd files, downloaded on the Allen
institute website into NumPy ndarray files.

6

• nanozoomer : it contains functions for processing NDPI images obtained with the mi-
croscope. These functions are used only in the gui file. They allow in particular to convert
this NDPI data into TIFF images when opening images in ndpi format.

Also, there are two NumPy ndarray files: the color_atlas file contains the images of each
slice of the atlas and contourify2 file contains contours of the atlas obtained after processing
the images of each section making up the atlas. This contourify2 file is obtained after using
the average X files and processing by functions of the atlas.py file. In order to obtain informa-
tion on each region, it was stored in a JSON file named mouse_ontology a tree structure (in
the form of lists and dictionaries) including all the regions and informations such as the name
of the region, the id of the structure, the id of the parent structure, the hexadecimal value of
the color of the structure contained in the color_atlas file, etc ...

1.3.2 Software opening
The software was opened from the Spyder development environment, included in Anaconda.

The main program is contained in the same file as the one that contains the elements of the
GUI. It is this script that was executed from the IDE terminal in order to open the software
(cf Figure 1).

Figure 1 : Screenshot showing the state of the software when opening an image

7

1.3.3 Graphic interface
The main window is divided into four screens. The window on the left are used for viewing

the atlas/image overlay. However, the 3D atlas displayed in the window at the bottom left is
not used. The right part is used to select the points. The top window (right side) contains a
copy of the opened image. This image is zoomed and is in its original quality. The two upper
windows are synchronized: when the user wants to select areas of interest and browses the left
image with the mouse, the right window allows him to preview the area. The cross visible in
the figure below allows the user to point cells of interest (cf Figure 2).

Then, on the right side of the software, there is a side tab. It is first containing a box with
the tree structure of the mouse brain. It’s in the form of region levels, and each time the user
clicks on a region, the daughter regions appear. Then, there are the different widgets allowing
to carry out adjustments before use (adjustment of contrast, brightness, the opacity of the
atlas) and during use (navigation in the slices of the atlas, activation of point selection mode).
The user can also choose the section of the brain (sagittal, coronal or horizontal) that the atlas
will take.

Figure 2 : Screenshot showing the state of the software when the user is searching for areas of
interest. The image was superimposed with the atlas manually.

1.3.4 Image handling
All the images are acquired through an Hamamatsu NanoZoomer Digital slice scanner, pro-

viding whole slide images with different channels of fluorescence. Hamamatsu provides their

8

customers with scanning and software solutions. The output format of images that comes from
their whole slide scanner is NDPIS and Hamamatsu provides different softwares to open them.
The NDPIS format allows to take several pictures of the same area, saved as NDPI images, for
each fluorescence channel. These images are then linked by an NDPIS file. This linker allows
the user to open images one by one or to superimpose them, as they are linked as images of
the same region. NDPI images are basically images with a TIFF-like structure but can’t be
opened with the same tools as TIFF images : this is because TIFF format does not support
files larger than 4 GB, but NDPI format can.

In our case, each NDPIS file link two NDPI images, one for the blue channel (DAPI) and
one for the red channel (TRITC). Each one of these images contains several brain slices. As we
need to align each slice with the atlas in the software, the user has to crop each brain slice from
the NDPI image. From one NDPI image showing around ten brain slices, the user create around
ten TIFF images showing one brain slice each. To do so, the user had to open each NDPI image
with the NDP.View software provided by Hamamatsu. Then, on each image, select brain slices
one by one with the "select region of interest tool" in NDP.View. Each region of interest was
then saved as a JPEG image. This JPEG image was then converted to a TIFF image using
a JavaScript script in ImageJ software. This conversion to TIFF image is mandatory as the
Atlaser software can only open TIFF images.

1.3.5 Main problems during use
During the development of the software, several functionalities were implemented and com-

mented out for certain reasons; the others are functional but pose a problem for the user. The
current software allows us to view slices of mice brains and navigate between them. Currently,
the user can select areas of interest by clicking on them, overlay it on a mouse brain atlas.
During selecting points, when the image is superimposed on the atlas, the region where it is
located is saved for each point. These data can be exported in the form of a spreadsheet.

1.3.5.1 Image handling problems

Regarding the NDPI images, the Atlaser software was providing tools to crop each brain
slice and convert them into TIFF images directly using the NDPIS linker, cropping each brain
slice from both NDPI images at the same time. The feature was not working well for two
reasons :

• the user had to choose, through a slider in the software, which slide he wanted to crop
and show on screen. When he was done with the first slice, switching to the second slice,
the cropping process had to be done again to show the second slice on screen, forcing the
software to open and process the whole slide image again;

• the user had to choose, through a slider in the software again, which quality he wanted
to have for the final TIFF image shown on screen, resulting on the software having to
process the whole slide image again.

9

The main reason this feature was not working well is the size of NDPI images. Each one of
them is about 2 GB. Every time the user had to move a slider, the software was processing
again two images weighting around 2 GB each. As a result, the tool could be used with low
quality TIFF in output, or, then, we have TIFF images with a good quality, but it makes the
software crashing.

1.3.5.2 Superimposition problems

The main feature of the software is to superimpose the brain image with an atlas. This
allows the user to select cells and stock information about the location of this cell. The main
issue was the number of steps the user had to go through to align the image and the atlas.

• the image was neither opening with the same size nor the same orientation as the atlas,
forcing the user to execute multiple changes of size and rotation on the image;

• it was difficult to move the image without moving the atlas, as most of the buttons and
commands were moving both of them. The user had to change the scale of the image to
give it the same size as the atlas, changing in the meantime the quality of the image.

1.3.5.3 Luminosity problem

When opening an image that was too dark on screen, the user can change the luminosity
level of the image. The problem was that when moving, rotating or resizing the image, the
luminosity was automatically reset at the minimum value, preventing the user from making
multiple actions at a time. He had to change the luminosity after every steps when superim-
posing the image and the atlas.

1.3.5.4 Points selection problem

Once the image and atlas are superimposed, the user can click on neurons of interest to
select them. Selected neurons can then be exported in an excel file with some information
about each one of them. There was two problems with this feature :

• the user could click multiple times on the same neuron, selecting it multiple times for the
software but showing only one mark on screen. This was confusing as a neuron has no
reason to be marked several times. The user could not see when it was the case, but if a
neuron was selected tree times by error, the information about it were saved tree times
in the excel file.

• an other problem was that the user could not delete any random point he did. There
was a "Delete point" command but only working for the last point. So if the user had to
remove the point N-3, he had to delete the N-2, N-1 and N points first.

10

1.3.5.5 Excel file output

Once the user had selected all the neurons of interest, he could save the information about
each neuron (position on the image, brain region) in an Excel file. There were two problems
about this way of saving data :

• Excel files are not the easiest to treat when generating or processing data, CSV format
for example should be more adapted;

• in this file, only one brain region was saved when the user need to have more information
about the location of each neuron, something more like a hierarchy of brain structures.

1.4 Functional and non-functional requirements

1.4.1 Ease while using the software
1.4.1.1 Graphic User Interface

First of all, it is necessary to have greater visibility on the left part (image and atlas).
Therefore, the 3D atlas present in the window at the bottom left has to be removed to give
more space to the treated elements, that is to say, the brain slices and their analyzes with the
atlas. The right part which corresponds to a zoom area (for a precise selection of points) will
be placed in a corner to leave more room for the image and the atlas. Two additional elements
discussed are the zoom and the selection: the zoom is not synchronized on the two windows,
the cross which allows the selection is too large and the pointing area not precise enough. So,
the two windows has to be synchronized while zooming.

Then, the selection cursor has to be modified for a better selection. Still concerning the
selection of points, one of the problems encountered when saving data is that if the user clicked
in the same place, each click is recorded (we can, consequently, have the same point many
times). Also, the user cannot delete a click made: he must cancel all clicks until the one he
want to delete. To overcome these two problems, the code has to be modified so that the same
pixel can be selected several times but saved only once; by implementing a tool, it would be
possible to delete any point, regardless of its position in the selection history.

1.4.1.2 Image opened and atlas

Currently, the atlas and images are fully synchronized in terms of movement, zoom and
"click to determine the brain area". The problem is that the user can currently only modify
the image via rotations and zooms, which causes problems when overlapping the two elements.
It is important to be able to handle the atlas and the image separately. Consequently, tools
(widgets or shortcuts) have to be implemented to give the user more ease during his work.

11

Finally, the buttons managing the contrast and brightness of open images have defects:
resetting the modification (of contrast or brightness) when doing certain actions, etc... These
problems have to be corrected.

1.4.1.3 Image processing

First of all, with regard to TIFF images, the sharpness of the image once opened has to be
improved. Indeed, the images lose resolution when opening. A compromise between quality
and ease of use will have to be found.

Now, regarding the NDPI images: the software was providing tools to open them and ex-
tract each brain slice as a TIFF image, but for this tool to work, the user had to sacrifice the
quality of the output TIFF image. This is why they were using other software, like NDP.View
and ImageJ, to extract each brain slice in a good enough quality and convert them to TIFF.

1.4.2 Other software enhancements
We think it would be interesting to be able to separate the two colors of the image (having

a TIFF image with the red marker and a TIFF image with the blue marker) in order to be able
to analyze the two.

Next, we would like to create a help tab where the user can easily access the various com-
mands or shortcuts if he needs to. The addition of a guide to allow the user to have access to
the different shortcuts can be created.

Also, we find it advisable to add more details when identifying the selected area of the brain.
Currently, only the smallest sub-area is displayed; we would like to modify this so that the user
can have at least three levels of hierarchies.

12

Chapter 2

Conception

2.1 Programming language
The Atlaser project was developed using the Python programming language. It has high-

level data structures and allows a simple but effective approach to object-oriented programming.
Because its syntax is elegant, its typing is dynamic and it is interpreted, Python is an ideal
language for scripting and rapid development of applications in many fields and on most plat-
forms. The Python interpreter and its large standard library are freely available, in the form
of sources or binaries, for all major platforms from the Python website [8] and can be freely
redistributed.

2.2 Libraries, modules, and packages
In this part, we will be interested in the different libraries, modules and packages which

allowed to develop Atlaser software. First we will see how the GUI is created then all the image
enhancement and opening part, in the same way for the creation of an atlas. Finally, we will
see any widgets present in the application when using it.

2.2.1 Graphic User Interface
2.2.1.1 Design and creation of a GUI

To design the graphical user interface part of the Atlaser application, we used the PyQt5
library. PyQt is a module that allows to link the Python language with the Qt library and to
create graphical interfaces in python. We use 3 modules in particular in this library:

• QtCore : it contains all the essential and multiplatform classes that form the backbone of
any PyQt application. They range from strings to process, input and output management,
as well as various data structures.

13

• QtGui : it contains all the GUI elements provided by Qt, from a simple label to the
complex graphic view. All GUI elements in PyQt are called "widgets".

• QtWidgets : this module provides the basic capability to render to the screen, and to
handle user input events.

2.2.2 Addition of analysis elements in the GUI
The pyqtgraph library is a pure-python graphics and GUI library built on PyQt4 / PySide

and NumPy. It is intended for use in mathematics / scientific / engineering applications. It is
used to integrate elements into the graphic interface, such as the image at opening or the atlas.
The two key points of this library are that it’s provide fast interactive graphics for data display
and tools to aid in rapid application development.

2.2.3 Image processing and atlas creation with Python
Images are handled through different libraries in the software :

• PIL : The Python Image Library adds image processing capabilities to the Python in-
terpreter. This library provides tools to process and manipulate various types of images.

• OpenSlide Python : OpenSlide was first a C library providing an interface to read
whole-slide images, which are high-resolution images used in digital pathology. In our
case, OpenSlide provides tools to open images that come from Hamamatsu products.

• NumPy : NumPy is the fundamental package for scientific computing with Python. In
our case, it provides tools to convert images to N-dimensionnal arrays object. Working
with such arrays allows us to apply mathematical transformation on pixels values with
ease.

• CV2 : CV2 (that comes from OpenCV) is a library to open, save and display images.

• Scikit-image : Scikit-image is a collection of algorithms for image processing. It pro-
vides us morphological operations such as erosion or dilation.

2.2.4 Python Standard Library
2.2.4.1 CSV

CSV (Comma Separated Values) format being the most common import and export format
for spreadsheets and databases, the CSV of the Python Standard Library is imported in order
to manage the results.

14

2.2.4.2 Collections

The Collections library is used to create dictionaries storing strings when saving data at the
end of use.

2.2.4.3 sys Module

This module provides access to some variables used or maintained by the interpreter and to
functions that interact strongly with the interpreter. We use it for launching, closing and error
handling software.

2.2.4.4 Logging

Logging is used to indicate that certain have occurred, displaying a message, some data or
a variable. Here, we used the logging module to display error messages when using the software
and when developing functions.

2.3 Inputs
As an input, the Atlaser software can treat with TIFF and NDPIS images. TIFF images

are very popular in image processing as they are very flexible file format for handling images
and data within a single line file. On the other hand, NDPI are quite a bit complicated to work
with. As we saw in section 1.3.4, NDPI images are linked in an NDPIS file. This file often
link several images together. In our case, these images are from fluorescence microscopy and
weight about 2 GB.

2.4 Outputs
When the selection of points is finished, they are saved and an Excel file containing two

sheets is obtained (cf Figure 3). The first contains the names of the regions and the number
of times each region has been selected. The second sheet has five columns: the first indicates
the coordinates of the point on the image, the second contains the name of the region, the
third and the fourth are the coordinates again (x then y) and the fifth contains the number of
times that we clicked on a pixel (value always equal to 1 even if we clicked several times). The
export is carried out with the Pandas module. The ExcelWriter() method makes it possible
to write the information in the Excel file, after having converted the attribute of the class which
contained this information into a DataFrame (thanks to the Pandas library).

15

Figure 3 : Extract of open data in word processing software

To allow the use of the text file obtained on different operating systems, we have modified
the export format to CSV to make it easier. Dr. Frick being only interested in the selected
region and its tree structure, this file now contains a single page with the coordinates and three
columns corresponding to the selected region and its "parent" regions (the last two).

2.5 Software architecture and quantification of work
The four files contain 3703 lines of code in total (cf Figure 4). These 3703 lines allow the

existence of 9 classes containing a total of 130 methods. There are also 29 independent func-
tions. The existing classes correspond to objects, which once assembled, make it possible to
constitute the software: buttons, windows, actions on the image (rotation, size management,
...), etc.... The architecture and composition of the classes is available in the appendices (cf
Figure 15).

16

Figure 4 : Diagram representing the different interlinked files of the program before
modifications.

So, before starting our work, a repeated and precise reading of the code was carried out
to understand how the elements were arranged, to understand the functioning of the classes
and their methods and the bibliographic research on the various libraries used in particular in
graphic development and image processing was performed.

At the end of reading the code, we estimated that we should touch around 500 lines of
code or 15% of the code (without counting the elements that must be added). Then, once the
code has been understood and analyzed, we have deleted unnecessary lines to the version that
we intended to offer to the customer to simplify the files in terms of content. Relationships
between classes and between files remain unchanged. In summary, the software architecture
has remained the same, the code has been reduced and the necessary elements have been added
(cf Figure 5).

17

Figure 5 : Class Diagram of the software presented in this document (after our modifications)
(as said before, the old class architecture is available in the appendix).

18

Chapter 3

Implementation

ouiouioui
Figure 6 : Diagrams representing the different interlinked files of the program and the
corresponding classes and functions (in green, new or modified elements regarding 1.4

diagram)

3.1 Graphic User Interface

3.1.1 Removing unnecessary windows
TheViewer class is used to create the main window. One of its attributes ismain_widget:

it is the main widget, i.e the black screen of the software. The geometry of this widget was
modified using the setGeometry() method. This method takes in parameters four elements:
X coordinate, Y coordinate, the width of the frame, the height of the frame. Finally, this
window is placed in the center of the screen using the setCentralWidget() method applied
to the Viewer instance.

Then, the 3D atlas present in the window at the bottom right was deleted(vb_atlas at-

19

tribute, methods, and functions that called it). In order to split the screen in two, we adjusted
the g_layout attribute: it is the attribute that stores the main widget. We have promote
the GraphicsLayoutWidget instance (g_layout) and add the items with code. This was done
during the initialization of the g_layout attribute: it was placed in argument of Graphic-
sLayoutWidget() the attribute main_widget. This being done, we modified the geometry
of this central window when adding the three elements (atlas, image, and image zoomed to the
right).

The two windows stored in g_layout are instances of the already existing EditViewBox
class. It’s a box that allows internal scaling/panning of children by mouse drag. It can be added
ImageItem type objects (which is the case for the three elements to add). The two windows are
added to g_layout by the addItem() method which takes as argument a ViewBox object and
the column and row number. In our case, vb_anat (left window) is located at line 0, column
0 and vb_inset (right window) at line 0, column 1. The atlas, image, and zoomed image are
added to their respective ViewBox by the addItem() method also.

Figure 7 : Screenshot showing the state of the software when the user launches it.

3.1.2 Improving the workspace
Next, we wanted to improve the size of the user’s work area (cf Figure 7). Indeed, by

increasing either the size of the image or that of the atlas, it becomes possible to work directly
on a single window, and thus it is possible to delete the right window used for selection.

20

3.1.2.1 Increasing the size of the atlas

First, the choice was to increase the size of the atlas and keep the native size (and thus the
resolution) of the image. Opened TIFF images are large images with a high resolution. To
keep these characteristics during the use, we have enlarged the atlas so that it has the same
size as the image. Consequently, the user does not have to lower the size of the image, which
would, therefore, allow having an image of very good quality.

First, the right windows was removed. For this, we deleted the vb_inset attribute and all
the functions that used it. Once this was done, we increased the size of the atlas so that it is
the same size as a TIFF image when opened. The attribute used to display the atlas stores
numpy arrays. So, we zoomed in on the image stored in these arrays of numbers using the
scale() method. This method takes as argument two values and increases in width and length
the image from the numpy array according to these values. However, this does not increase the
active click area, as visible below: the circles can only appear in the old area where the atlas
was before zooming (upper left) (cf Figure 8).

Figure 8 : Screenshot showing the state of the software with one window and only the atlas
zoomed.

We then modify the size of the coordinates retrieved in the cell_clicked() method. It
allows obtaining the coordinates of a click, retrieve the selected region, and draw a point on the
clicked location. The values used for drawing the point (x and y) have been multiplied by 10
as well as the values stored in the cells dictionary used to save the data. After this, the points
appear in the atlas. The problem with this modification is that now it is big area of 10 x 10
pixels that are recognized. If we click in this area, the same pixel is always recognized. This
causes a big difference between the position of the click and the spot where the circle is drawn.

21

3.1.2.2 Setting the image resolution value on opening

Therefore, we changed our strategy following this, the aim being always to allow the user to
have the least to do when opening the image so that he can quickly process an image. Thus, it
is now the size and resolution of the images that have been changed. We removed the scale()
method and removed the multiplication of coordinates. Knowing that all opened TIFF images
have the same size (this is due to the acquisition software), we applied a down factor of 50 on the
width and length of the image. This causes a loss of quality and detail on it, but when opened,
it is aligned with the atlas and the two are the same size. To overcome this quality problem,
we restored the right window. On this window is displayed the image in native quality, zoomed
(display of 1000 pixels by 1000 pixels) on the area where the mouse is on the left window. We
have modified the value of the _inset_size attribute accordingly and set it to 1000 (Viewer
class). The result is visible below (cf Figure 9):

Figure 9 : Screenshot showing the state of the software when doing region selection.

Other improvements have been made: the cross is now a more thin and precise. The color
of the cross and the selection circles are now more visible.

3.2 Shortcuts, widgets and tabs

3.2.1 Shortcuts
3.2.1.1 Rotating, moving and scaling the image

As described above, the already existing class EditViewBox allows to create an interac-
tive workspace, that is to say that the user can move, zoom, or even click on elements of the

22

window. It has four attributes that correspond to the actions that can be performed: rotation,
translation, scale, and cell_select. These four attributes are objects of the pyqtSignal class
from the QtCore module. They take as parameters one (rotation value for example) or several
floats (translation needs two new coordinates). We have modified one of the two methods of
the class, mouseDragEvent(), to add keyboard shortcuts.

From the documentation of the Qt class and the ProgrammCreek website [9], we have cre-
ated three shortcuts for rotation, translation, and scale. For each type of action, we recover
which modifier is clicked. A modifier is a particular key on the keyboard that changes the action
of another key or the mouse when pressed. Typically, these are keyboard keys such as CTRL,
Shift, Alt, etc. Let’s take the example of rotation. We decided that the rotation would be done
by clicking on CTRL and moving the mouse in the direction of rotation. If the event retrieved
is a modifier and is equal to the QtCore.Qt.ControlModifier event, then, when the rotation
event is over, we recover the new value and apply it to the image. For the other two actions,
we use the values of x_shift and y_shift to move or resize the image. These two values cor-
respond to the difference from the last position of the mouse (retrieved with the lastPos().x()
or .y() method which gives the last position of a QMouseEvent event corresponding to the
interactions performed with the mouse (click or movement)) to the current position (retrieved
with the pos().x() or pos().y() method).

3.2.1.2 Atlas manipulation

The existing slider for changing atlas sections only allows moving 3 by 3, which is not precise
enough. We have added two keyboard shortcuts to allow slice by slice movement. The shortcuts
created are accessible with the left and right arrows on the keyboard. The two shortcuts cre-
ated are objects of the QShortcut class of the QtWidgets module (and are named atlas_fwd
and atlas_bck). We set the corresponding key to the shortcut: for example for the right
arrow, it is QtCore.Qt.Key_Right. A second argument is fixed and it is the main window
(self.main_widget): this is where the shortcut is "activated". Finally, we link this tool to
the action of changing the slice. For this, we use the activated() then connect() methods.
The activated method "activates" the shortcut and the connect method links the action to the
shortcut. We connect it to the existing next_slice() method. This method increases by one
the value of the active slice and thus allows the movement (idem for the other shortcut, there
is a method previous_slice()).

3.2.2 Widgets
3.2.2.1 Image rotation tool

The code of this class is taken from that of the already existing LabeledSlider class and
has been modified to have a circular widget. The LabeledCircleWidget class is inherited
from the QWidgets class of the QtWidgets module. An object created from it has three
attributes: a title, a value, and a graphic element which is an object of QDial class. The

23

update_value() method is used to update the value (change of the rotation value). If the
value indicated is a number between the possible values that the widget can take, then the
image is rotated, otherwise, a ValueError exception is raised to avoid a malfunction of the
program. The value_changed() method is a setter used to update the value on the screen.
The title() method allows giving a name to the button created and displays it on the widget
tab (cf Figure 10).

Figure 10 : Screenshot of the new rotation widget.

3.2.2.2 Removing unused widgets

The buttons allowing to modify the slice on the depth, to change the channel, to modify the
slice when using NDPI image, to change contrast value and the one to change the resolution
of the image were removed because they are not necessary anymore. The first button does not
work and is not necessary for the use of the client. The second is no longer necessary since the
image resolution is now fixed at the opening. The associated attributes (z_sl, channel_sl,
brain_sl, contrast and zoom_sl) and methods have been deleted from the Viewer and
AtlasViewer classes.

3.2.3 Removing unnecessary tabs
In the tabs at the top of the software, it has been deleted various tabs that the user does

not use: the one allowing to delete the modifications carried out on the image (rotation, size),
the one allows saving a workspace and the one allowing to import one (that is to say import a
list of points saved from a spreadsheet and display them on the screen).

Also, the selection tool and the crop action not having been completed (see below), they
are not available in the tab menu.

3.3 Software tools

3.3.1 Exporting points selected in CSV format
We have implemented a new export_points method of the AtlasViewer class so that

it can export data as a CSV file. First, we collect all the information about the clicks made.
This data is stored using the cells attribute of the AtlasViewer class. This attribute contains
a list and the information of each click is stored as a dictionary. We imported the collections

24

module in order to create using the defaultdict() method, which allows us to convert the
elements contained in the dictionaries of the cells attribute and to convert them to string in
this new dictionary, in order to retrieve words not letters.

Then, we define a path for saving the file. The file will be saved by default in the same folder
as the one where the open image is. Finally, with the csv module, we use the DictWriter()
and writerows() methods to write to the file. The DictWriter() method takes as argument
the file, which we defined as open(path, ’a’, newline = ’ ’) and the dictionary keys (path corre-
sponds to the defined path, ’a’ allows write following an already existing file). Thewriterows()
method takes the data as an argument, i.e. self.cells dictionnary.

Figure 11 : Extract of the new format for saved data in a word processing software
(LibreOffice spreadsheet)

3.3.2 Increasing the number of data saved
When saving the data, the two parents of the zone having been selected are added to the

spreadsheet in addition to the coordinates of the click and the name of the region. To make
this possible, we created a get_parent() function. This function takes as parameters a tree
from a JSON file (here, attribute onto) and a target id. For each element of the tree, if the
current element has the same id as the target id, we return this element; otherwise, we look
at the child element of the current element, we apply the get_parent() method to it and we
add the element found in a list containing all the regions (from the first element to the child
element searched). The elements are browsed from the top of the tree to his bottom to find the
child with the target ID. The function is used in the cell_clicked() method. We obtain the
complete tree structure of the selected region and store it in the cells dictionary which will be
exported. When saving, only the two closest parents (the last two before the selected region)
are kept, as desired (cf Figure 11).

3.3.3 Removing mistakenly selected points
We have modified the already existing cell_clicked() function, method allowing to click

and draw, so that the user can now also delete points.
This action is carried out in the same way as for adding a point when selecting a region

of interest thanks to the cell_clicked() method. First, we get the coordinates of the current
position with the function convert_mouse_pos(). This function returns the actual coordi-
nates of the point: they correspond to the place where the user clicks on the screen; this is

25

where the point is drawn. These coordinates collected are used to find the region of the atlas
corresponding to the area clicked. When we know the area, we can get the name and id of the
area.

Then, the list of selected cells is added to the cells dictionary and this is what will be
exported. At the end of the function, we added two controls (for loops): the first consists of
removing duplicates from the window. Now, when the user clicks on a pixel, if the coordinates
are already present in the cells dictionary, the point is deleted from the window. The second
control is the removal of information from the dictionary. As before, if the information that
should have been stored already exists, we delete this data. So, now, when we click on an
existing circle, it is deleted and we delete the information of this point in the dictionary which
will be exported later (cf Figure 12).

Figure 12 : Screenshot of active areas for deleting a point (the two blue squares are the areas
to delete the point in the middle of the image)

3.3.4 Removing duplicates points
We have implemented a check_duplicate() function which removes duplicate selections.

This method is used to delete the stored coordinates (dictionary cells) and the circles displayed
on the screen (cell_scatter) in duplicate. The method takes as argument a list (list 1). An-
other list is initialized (list 2). We start by browsing each element of list 1 and each time we
browse the list 2. If the current element is not present in the list 2, then it is added to it. We
end up returning list 2.

The check_duplicate() function is used after adding the coordinates in the cells dictio-
nary: we check that there are no duplicates when saving the clicked data. For the drawn circles,
we use this function in the undo() method. This method initially made it possible to delete
the last points recorded thanks to CTRL + Z. Now, since we can delete any point with the
cell_clicked() method (see above), we modified the method so that it traverses the dictionary
containing the coordinates of the drawn circles (cell_scatter) and removes duplicates. Thus,
if the user clicks several times in the same place, the information is added and as long as he
does not click elsewhere, the duplicates are stored. As soon as he clicks elsewhere, it removes
duplicates. The shortcut CTRL + Z now removes duplicates (at the end of use for example, so
as not to end up on storage of duplicates).

26

3.3.5 Problems with luminosity and contrast
The correction of the reset of the brightness when performing another action (use of another

widget, change of slice of the atlas) has been corrected by adding to all the functions that control
these widgets the following line: self.apply_brightness(self.lum_sl.value()).

This makes it possible to apply the active value of brightness after each use of another
widget and thus not to reset it to 50.

3.4 Image enhancement
During this project, we tried to optimize the way image were processed. As we explain in

section 1.4.1.3, the user has to choose between using a TIFF image with a good quality, but
coming from a long process, or opening an NDPI image to speed up the conversion between
NDPI and TIFF, but obtaining images in low quality.

3.4.1 Automated NDPI conversion
To solve this issue, we implemented a feature to open an convert from NDPI to TIFF

each brain slice automatically. To do so, we add the open_whole_img() function in the
controls.py file. Previously, the software would not let the opening of NDPIS format, the aim
of this function is to allow the user opening an NDPIS format, generating and saving brain
slices from each NDPI image linked in the NDPIS file. There is tree major steps in this process
:

• First, we need to stock in the software the name of each image linked in the NDPIS file. In
the SliceImage class in controls.py, we have the _prms attribute. It is the dictionary
used to stock the number of images and their name from the NDPIS file.

• Then we need to create directory to save the brain slices as TIFF format. We obtain two
kind of slices : DAPI or TRITC. For each NDPIS file we open, if no directory has the
same name as the NDPIS file, we create one with two sub-directories in it.

• Finally, for both DAPI and TRITC images, we use the crop_from_dapi() function
from nanozoomer.py file to generate our brain slices.

3.4.1.1 Image processing function in nanozoomer.py

The crop_from_dapi() function is cropping each brain slices from both DAPI and TRITC
images using bounding boxes.

Bounding boxes are imaginary boxes used to demarcate objects in an image. To generate
our bounding boxes, we use the get_bboxes() function in nanozoomer.py. This function
load the DAPI image containing all the brain slices and create a bounding box for each brain

27

slice, using a combination of dilation, erosion and binary closing on the thresholded image.
This process return a number of bounding boxes equal the number of brain slice on the DAPI
image, each bounding box defined by the position of the top-left pixel, its width and height.

Once we have our bounding boxes, the crop() and crop_all() functions will use them to
crop each brain slice from the base NDPI image.

At the end, the crop_from_dapi() function is using all the above functions, but will
apply the same process for both DAPI and TRITC images, as they are exactly the same, just
the color channel is different.

3.4.1.2 Problems of the automated NDPI conversion

This method is by far the best for the user, as he has nothing to do but open an NDPIS
file and wait for the result. Unfortunately, the NDPI images are too heavy to be processed
this way by a standard computer. The crop_from_dapi() function is using the OpenSlide
library to open and crop images, as this library provide the read_region method to define a
region to read from a whole slide image. Given this method the image with all the brain slices
and a bounding box, it will crop at the position of the bounding box. The problem is that
using this read_region method on DAPI and TRITC image, the computer has to process
two images weighting around 2 GB each, and save around thirty TIFF images weighting 300
MB each. As soon as we start the process, the computer doesn’t respond anymore, eventually
crashing during the process.

At this point, we chose to abandon this feature, and tried to find a way to avoid this problem.

3.4.2 Using a region of interest tool to crop brain slices
As our main goal is to ease the conversion process between NDPI and TIFF, we had to

think how to create a tool to crop brain slices from the NDPI images and save them as TIFF
without crashing the software. Right now, as we explain in section 1.3.4, the user need to crop
each brain slice using the NDP.View software and then convert the output image to TIFF using
ImageJ. To solve the issue of having to switch between softwares, we implement a select Region
Of Interest (ROI) tool. The goal is to let the user select the region he wants to crop directly
from the NDPI image containing all the brain slices and save it as a TIFF. The process will
then be the same as using NDP.View and ImageJ but it will be done directly in the Atlaser.

The first step is to open and show on screen the image containing all the brain slices. To do
so, the resize_ndpi() function in nanozoomer.py is used to open an NDPI image and save
as TIFF a downscale version of it. We are forced to downscale the image of at least a factor 8
or it won’t be shown on screen as the source NDPI is too big. Loading it with the OpenSlide
library is possible but to display it we need to use the PIL library, which can’t open image
bigger than 178,956,970 pixels, even when Image.MAX_IMAGE_PIXELS = None is specified.
Once the TIFF image is saved, the user can open it in the software.

To select the brain slices the user wants to crop, we created a selection tool using the
PyQtgraph library (cf Figure 13). To use it, the user have to open an image and then click

28

on "selection tool" in the "edit" menu. This action will make a rectangle appear on the image.
This rectangle can be moved and modified in size, to fit the area the user wants to select. This
tool is define in the AtlasExplorer class in the gui.py file, linked with the update() function.
The goal of this tool is to superimpose the rectangle with the brain slice to crop. Each time the
user moves or changes the size of the rectangle, a list is updated that contains the bottom-left
pixel’s coordinate and the width and height of the region (cf Figure 16, appendices). This
information will then be used to crop this region from the base NDPI image and not on the
TIFF opened in the software, as the TIFF image is a downscale version of the NDPI one.

Figure 13 : Screenshot of the window when opening an image in NDPI format (blue channel).
The selection tool is visible in white.

3.4.2.1 Problems of the ROI tool

This solution is the most flexible for the user, as he can chose to crop only some of the slices
from the NDPI image, make the point selection and then go further. Unfortunately, we could
not finish this feature in time, as there are still some problems to resolve :

• First, the ROI selection is stocking information about the region to crop in a list using as
a starting point the bottom-left pixel, but to crop from the NDPI image we need to use
the read_region() method from OpenSlide library. The problem is that this method
is cropping using as a starting point the top-left pixel.

• Then, the image displayed on screen is a down-scaled TIFF version of the NDPI image.
When a region is selected on the TIFF image, the width and height of the region are
not appropriate to crop on the NDPI image. This can be resolved by multiplying these
values by the value of the downscale factor. The main issue comes from the coordinate of

29

the bottom-left pixel, that can’t be found using the same method of multiplying by the
downscale factor. When down-scaling an image using the read_region() method, the
only pixel that keeps its coordinate is the top-left one (0,0). This second point make the
first one even harder.

• Finally, for the user’s quality of life, we need to crop in the exact same way the DAPI
and TRITC images. When testing the automated cropping, we were using the NDPIS
file as a linker, to keep in memory what are the two images to process simultaneously. In
the case of the ROI selection, we are not opening the NDPIS file, only one of the NDPI
image as a TIFF. Yet, we still need to crop both NDPI images (DAPI and TRITC) using
the same ROI. We will need to find a way to apply this ROI on both NDPI images, given
that the two first points are not problems anymore.

3.5 Others changes and tools implemented

3.5.1 Help manual
A Help tab is now available in the vertical tab bar. This is is an object of the QMenu class

(of the QtWidgets module). The title of the tab is placed as a parameter and is followed by the
object to which it belongs (here, self). Then, the addAction() method allows to create a new
action with a text and a possible shortcut. In our case, when the user clicks on the Help tab,
and then on the Manual tab, it opens a PNG image. This image contains the various shortcuts
described above. The user can also open this notice by performing CTRL + H. This is made
possible by theQt class of the QtCore module. The manual is visible in appendix (cf Figure 17).

3.5.2 Software logo
When the main program is launched, an icon appears on the computer icon bar. This logo

was produced using the Canva website [10]. It’s a free site, and the logo is copyright free (cf
Figure 14). The setWindowIcon() method is applied to the main window which is an object
of the AtlasExplorer class. In parameter is placed an object of the class QIcon.

Figure 14 : Atlaser’s logo.

30

3.6 Discussion and further developments
As discussed multiple times along this report, the main focus was to improve the user’s

experience and to reduce the time processing each image.

First, we removed every features that were not used or non-functioning, improving the
visibility and code clarity. At the end of the project, our code contain 3283 lines (from 3703),
10 classes (from 9) with 136 methods (from 130) and 17 independents functions (from 29).

Then, we fixed every problems that were slowing down the user when processing brain
slices. The superimposition mechanism was too slow, as the user had to go through too many
steps to have the atlas and the image aligned. To solve this, we created more shortcuts, we
modified the user interface and changed the way the image is opened. Now, the image is almost
superimposed with the atlas as we open them, both of them can be moved separately and there
no more problem with the luminosity of the image.

When it comes to neurons selection, the brain slice image is now more visible on the left
panel, the selection tool on the right panel shows in high quality a zoomed version of the image,
allowing to make an easier selection. The zoom level on the right panel allows to see the region
the user is in but is zoomed enough to distinguish different neurons.

The selection system was improved too, as each selection point is now unique an can be
removed without loosing information on other points. Each of them, when exported, shows the
user more information about the brain region that contains the neuron of interest.

Regarding the use of NDPI images, we tried all along the project to improve how the user
can crop from them, first automatically and then with a new tool dedicated to it.

3.6.1 More to do...
More things could be one to fully optimize the Atlaser software. First, as we said previously,

we could not provide a feature to treat NDPI images. The automated attempt is not the way
to go, as a standard computer can’t handle it. It could be interesting to go further with the
development of the ROI tool as it is how the users are doing it right now but in an other
software. An other solution could be to treat the image the same way Google Map is treating
their images : the more zoomed the image is, the highest the quality. If so, using directly the
NDPI image with all the brain slices could be an option, without having to crop them.

An other improvement would be to create an atlas with more information on it to be saved.
For example, with the regions we could save the brain level (Coronal level 123) or the Bregma
distance. These information are available on the Allen Brain Atlas website, but not on the
JSON file we use in the software.

Finally, there are still some little bugs in the software that should be corrected, shown in
the bugs report (cf. appendix).

31

3.6.1.1 Atlaser dedicated to fluorescence

During a meeting with Andreas Frick and his team to discuss the start of our work after
validation of the specifications, he introduced us to a member of his laboratory and the fact
that she also has images acquired in the same way as before. Nevertheless, she has a different
need : she would like to have a tool allowing her to visualize the borders of the regions of
the brain on her images (currently, she draws them manually on the image). Then, when the
borders would be visible, she would like to be able to click on a region and be able to determine
the level of fluorescence present on the selected region and, via a known formula, convert this
luminosity into protein expression levels. The output file would also be a spreadsheet with the
name of the region, the name of the protein used for labeling, and the protein expression value.

Since the software already has an atlas and a system allowing the user to select a region,
we started to work on this version of the software when all the points mentioned in the speci-
fications were finished and that the customer has validated these modifications.

We came with a slightly new interface derived from the Atlaser and started to implement
the first features (cf Figure 18, appendices), unfortunately running out of time before having
enough information on how the mathematical formula should work given the pixel intensity.

32

Conclusion

As part of this project, a first version of the Atlaser software was developed by Dr. Frick
and his team to analyze brain slices of mice using an Allen Institute atlas to identify the regions
observed on the slices. This achievement allows us to deepen our knowledge of the neocortex,
which is an important element in understanding some diseases such as autism. Even if this
version of the software fulfilled the main objective, it remains nevertheless perfectible on some
aspects.

We chose to integrate this project, within the framework of our UE Design of a Research and
Development Project, because it is totally different in terms of approach and design compared
to all of our projects carried out during the year. Indeed, we were able to develop and improve
new skills throughout our collaboration with Dr. Frick and his team:

• first of all, listening to our client’s needs in order to improve the use of the initial software.
For this, a thorough understanding of the subject and the objectives to be achieved was
the key points of this project;

• then, the part that was totally new to us and that motivated us to take this topic is
the code review stage. By recovering the Atlaser software, it was necessary to dive into
the program in order to understand its construction, the classes, methods used and their
functioning to test the various problems and improve the operation of the software. It
is this step that took us the longest because so far we have designed applications from
scratch. So we had to learn the best practices methodically to perform a complete code
review;

• finally, constant teamwork throughout the project is essential. Many exchanges are nec-
essary with Dr. Frick and his team to better adjust the modifications made by us on the
software as well as the additions of new features.

To conclude, our integration in this project was aimed at recovering the basic architecture
of the Atlaser software and bringing new functionalities necessary to support Dr. Frick and his
team in their various studies on the mechanisms of the cortical plasticity under normal and
pathological conditions.

This requires a simpler and more adapted user experience, an improvement and the addition
of new features allowing more precise control over the analyzed data and finally clearer results
in order to recover the essential data. This update of the Atlaser program makes it possible
to lose less time on the software, its use and therefore to focus as much as possible on data
analysis which is essential on this type of subject.

33

Acknowledgements

First, we would like to express our deepest appreciation to our client Dr. Andreas Frick for
giving us the opportunity to work on this exciting project. Thanks to that, we have acquired
essential knowledge in code review, image exploration, graphical interface development and
maintenance, object oriented programming and also the importance of the bibliographic part
(library of modules, packages, etc.). We would also like to thanks his team who demonstrated
flawless patience and who were most understanding and helpful throughout the project.

A special gratitude we dedicate to Dr. Marie Beurton-Aimar for guiding us through the
process of developing a professional project, for taking her time in order to bring us a most
constructive and pragmatic outside look during each stage of this project, and this even despite
this period of confinement.

Finally, we would like to thank Dr. Remi Proville for the advice he was able to give us and
the tracks he suggested we study in order to obtain the best results during our project.

34

Bibliography

[1] James Harris. Kanner and autism: a 75-year perspective. International Review of Psychi-
atry, (1):3–17, April 2018.

[2] AMBMC. Imaging from the australian national imaging facility.
https://imaging.org.au/AMBMC/AMBMC, [Accessed: 04.22.2020].

[3] Viktor K. Jirsa Francesca Melozzi, Marmaduke M.Woodman and Christophe Bernard. The
virtual mouse brain: A computational neuroinformatics platform to study whole mouse
brain dynamics. eNeuro, 4(3), June 2017.

[4] Neurocentre Magendie. A propos du neurocentre. https://neurocentre-
magendie.fr/about/neurocentre.php, [Accessed: 04.22.2020].

[5] Neurocentre Magendie. Equipe frick. https://neurocentre-
magendie.fr/recherche/Frick/descriptionTeam.php, [Accessed: 04.22.2020].

[6] Melanie Ginger Matthias G. Haberl and Andreas Frick. Methods in molecular biology
(Clifton, N.J.). Humana Press, 2017.

[7] Genesis. The genesis simulator. http://genesis-sim.org/, [Accessed: 05.02.2020].

[8] Python. Python. https://www.python.org/, [Accessed: 05.01.2020].

[9] Programmers Creek. Programmers creek. https://www.programcreek.com/python/example,
[Accessed: 05.03.2020].

[10] Canva. Canva. www.canva.com, [Accessed: 04.11.2020].

35

Appendices

Figure 15 : Class Diagram of the software presented in this document (before our
modifications). The diagramm echoes the one in part 2.5/ Software architecture and

quantification of work

36

Figure 16 : Screenshot of the coordinates recorded when using the selection tool. These
coordinates are visible in the log file or on the console. The screenshot echoes the image in

part 3.4.2/ Using a region of interest tool to crop brain slices

ouiouioui
ouiouioui

Figure 17 : Help manual

37

1 import csv
2 import math
3

4 de f openData () :
5 " " " Opens a CSV f i l e and return a d i c t i onnary o f p r o t e i n s data .
6 F i r s t column = pro t e i n e name
7 Second column = Sa value
8 Third column = Kd value
9 Fourth column = L value

10 Each l i n e = a pro t e in with four in f o rmat i ons about i t " " "
11

12 reader = csv . reader (open (’ prote in_data . csv ’))
13 dataProte in = {}
14 next (reader)
15 f o r row in reader :
16 key = row [0]
17 i f key in dataProte in :
18 pass
19 dataProte in [key] = f l o a t (row [1]) , f l o a t (row [2]) , f l o a t (row [3])
20 re turn dataProte in
21

22

23

24 de f applyFormula (data , key) :
25 " " " Dans l e f i c h i e r gui , quand on a p p e l l e r a l a fonct ion ,
26 i l faudra bien v o i r qui e s t data . Puis , i l faudra l i e r l e cho ix
27 a c t i f sur l e menu d r o u l a n t key , pour qu ’ chaque changement ,
28 i l y e s t mise jour
29

30 Takes as argument a d i c t i onnary (data) and a key (name o f the p ro t e in
) and return the value C" " "

31

32 C = (1/ data [key] [0]) ∗ ((data [key] [1] + data [key] [2]) / data [key] [2])
33 re turn C
34

35

36 data = openData ()
37 C = applyFormula (data , ’ musc ’)
38 C1 = applyFormula (data , ’ rx82 ’)
39 C2 = applyFormula (data , ’ ly34 ’)
40 pr in t (" ")
41 pr in t (’FORMULA’ , ’ \n(1/ Sa) ∗ ((Kd + L) /L) ’ , ’ \n ’)
42 pr in t ("C : " , C)
43 pr in t ("C1 : " , C1)
44 pr in t ("C2 : " , C2)

Figure 18 : Script containing the coded functions for the fluorescence version

38

BUGS REPORT

1. Bug when opening an image

When opening the image, sometimes the user has to scroll forward / backward to avoid
possible problems when moving it (trampoline effect). This is because the window
displaying the atlas and the image has been created so that it is the largest image and
that we can then modify its size to make it correspond to the atlas. Here, to make
handling easier, the two objects are the same size and the image may be smaller, which
causes this effect.

2. Bug when selecting points

When starting the selection of points, the mouse and the cross are not synchronized at
the pointing level. The user has to zoom a little on the left window so that the two
elements are perfectly synchronized.

We can no longer delete cells when the number of cells selected is 1. This is because the
program will browse the list of all clicks using the length as a guide. We create a
variable which will successively takes the values between 1 and the length. This means,
that in a list containing for example 2 points, the first point is accessible because the
variable is equal to 1. Then, the second point is accessible because the value is worth 2
(we make +1 because we go to the next point) , which corresponds to the length. When
we have a single point, we cannot delete this point because we could no longer browse
the list of points (length equal to 0). This point corresponds to the first point stored. If
you add two and delete it, the second point becomes the first in the list and it cannot be
deleted if it is alone.

When clicking on a pixel, the red circle will always appear in the left corner of the
square. We can click precisely on this corner. This is due to the tool that allows the click
with the mouse: it starts counting in the corner of the image (to locate itself with the
coordinates, x being the length and y the width of the image).
Thus, the first pixel has the coordinate (0,0) and corresponds
to the top left corner of the square at the top left of the image.

Deleting a point is done by clicking slightly below it and not
above it. If we click in the area represented by the blue
squares, we delete the point in the left corner.

3. Bug regarding the atlas

It has been identified during various tests carried out to test our modifications that
certain areas of the atlas are inactive when clicked: no point is marked, no area is
selected, or "activated". This is due to the already existing file displaying the contours of
the atlas.

Sometimes, by changing the slice of the atlas, the outlines can be displayed in color.
This is because the file used to display the contours of the atlas originally contains color
images (see Allen Brain site). The transition from the image to a numpy ndarray
(number table) retains some of these colors and they are visible during certain clicks or
when changing the atlas slice (rarer nonetheless)

41

	Introduction
	Analysis
	Context
	State of art
	Status of software retrieved from client
	Functional and non-functional requirements

	Conception
	Programming language
	Libraries, modules, and packages
	Inputs
	Outputs
	Software architecture and quantification of work

	Implementation
	Graphic User Interface
	Shortcuts, widgets and tabs
	Software tools
	Image enhancement
	Others changes and tools implemented
	Discussion and further developments

	Conclusion
	Acknowledgements
	Bibliography
	Appendices

