Beurton-Aimar

September 29, 2025

«O> «Fr «Er = o




Results Evaluation

What to do?

@ Checking the results at each epoch allows to:

o verify if the network learns something,
e stop overfitting,
e extract measures at different levels.

@ Testing the generalization level of the final configuration with the test
data set.

@ Display and interpret the outpout values.

@ Reconstruct data from output - example of images.

Beurton-Aimar Evaluating Neural Network today 2/40



Running a Model

import time
def train(model, optimizer, loss_fn, train_dl,
val_dl , epochs=100, device='cpu'):

print('train()called:model=%s, opt=%s ( | r=%f),
uuuuuuu epochs=%d, device=%s\n' %
(type(model ). __name__ , type(optimizer).__name__,
optimizer.param_groups [O0][ "Ir '],
epochs, device))
history = {} # Collects per—epoch loss and acc.
history['loss'] = []
history['val_loss'] = []
history [ 'acc'] = []
history['val_acc'] = []
start_time_sec = time.time()

Beurton-Aimar Evaluating Neural Network today 3/40



for epoch in range(1l, epochs+1): # TRAIN AND EVALUATE
model. train ()

train_loss =
num_train_correct =
num_train_examples
for batch in train_dl:
optimizer.zero_grad ()
x = batch [0].to(device)
y = batch[1].to(device)
yhat = model(x)
loss = loss_fn(yhat, y)
loss . backward ()
optimizer.step ()
train_loss += loss.data.item() * x.size(0)
num_train_correct +=
(torch .max(yhat, 1)[1] = y).sum().item ()
num_train_examples += x.shape[0]
train_acc num _train_correct / num_train_examples

train loss = train loss / len(train dlI'.dataset)
Beurton-Aimar Evaluating Neural Network today 4/40

.0

o O o



# —— EVALUATE ON VALIDATION SET
model . eval ()
val_loss = 0.0
num_val_correct =0
num_val_examples = 0
for batch in val_dl:
X = batch [0].to(device)
y = batch[1].to(device)
yhat = model(x)
loss = loss_fn(yhat, y)
val_loss += loss.data.item() * x.size (C
num_val_correct += (torch.max(yhat, 1)[1] =y
num_val_examples += y.shape[0]
val_acc = num_val_correct / num_val_examples
val_loss = val_loss / len(val_dl.dataset)

Beurton-Aimar

Evaluating Neural Network today 5/40



if epoch = 1 or epoch % 10 =— O0:
print ( 'Epoch_%3d/%3d, _train_loss:._.%5.2f,
________ train.acc:.%5.2f ,.val_loss:_.%b.2f,
uuuuuuuu val_acc:.%5.2f "%(epoch, epochs, train_loss,
train_acc, val_loss, val_acc))
history['loss'].append(train_loss)
history['val_loss'].append(val_loss)
history['acc'].append(train_acc)
history['val_acc'].append(val_acc)

# END OF TRAINING LOOP

end_time_sec = time.time ()

total_time_sec = end_time_sec — start_time_sec
time_per_epoch_sec = total_time_sec / epochs
print ()

print( 'Time_total:%5.2f_sec’ %(total_time_sec))
print (' Time_per_epoch:%5.2f_sec '%(time_per_epoch_sec

return history
Beurton-Aimar Evaluating Neural Network today 6/40



Model Calling

@ model is a torch.nn.Module

@ optimazer is a torch.optim.Optimizer

history = train(

model = model,

optimizer = optimizer ,
loss_fn = loss_fn ,
train_dl = train_loader ,
val_dl = val_loader ,
device='cuda ')

Beurton-Aimar Evaluating Neural Network today 7/40



Loss/Accuracy Visualization

import matplotlib.pyplot as plt

acc = history [ acc’]

val_acc = history['val_acc']

loss = history [ 'loss ]

val_loss = history['val_loss ']

epochs = range(l, len(acc) + 1)

plt.plot(epochs, acc, 'b', label="Training_acc')
plt.plot(epochs, val_acc, 'r', label="Validation._.acc')
plt.title( ' Training_and_validation_accuracy")
plt.legend ()

plt.figure ()

plt.plot(epochs,loss, 'b’',label="Training_loss ")
plt.plot(epochs,val_loss, 'r', label="Validation.loss")
plt.title( 'Training_and_validation_loss")

plt.legend()

plt.show()

Beurton-Aimar Evaluating Neural Network today 8/40



05

o4

03

02

Training and validation loss Trai

ng and validation accuracy

= Taining loss
= Validation loss

0 20

Beurton-Aimar

= Taining acc
= Validation acc
090
085
0.80
075
50 100 0 )

Que peut-on conclure ?

Evaluating Neural Network

today

9/40



Evaluation Metrics

Precision

@ Measures the proportion of True Positive among all positive
predictions.
Precision = (True Positive)/(True Positive + False Positive)

Example: if the model has predicted 100 trees in an image which
contains 90 - the precision is equal to 90%.

Recall

@ Measures the proportion of True Positive among all items.
Recall = (True Positive)/(True Positive + False Negative)

Example: if the model has predicted 75 trees in an image containing
100 trees, Recall is equal to 75%

y

Beurton-Aimar Evaluating Neural Network today 10/ 40



éléments pertinents
1

vrais négatifs

éléments sélectionnés

Combien Combien
de candidats sélectionnds d éléments pertinents
sont pertinents 7 sont sélectionnés 7

Précision = Rappel =——




Evaluation Metrics

F1 Score

@ Harmonic mean of precision and recall, providing a balanced measure

of a performance model.
F1 Score = (Precision x Recall)/((Precision + Recall)/2)

Values are contained between 0 and 1 - this score has to be
maximized.

loU

@ The ratio of Intersection under Union.
Used as a threshold to set if a result is a true positive or a false
positive.

‘B

lou =

Beurton-Aimar Evaluating Neural Network today

12 /40



Evaluation Metrics

Average Precision

@ Computed on recall values - between 0 and 1.

Mean Average Precision

@ Average precision with several threshold.

Example: mAP[0.5:0.05:0.95] corresponds to an average precision of

loU values between 0.5 and 0.95 with an increment of 0.05 averaged
on all classes.

Beurton-Aimar Evaluating Neural Network today 13 /40



Visualing Results

Contingency Table
@ Presents classifier results.

@ Can be used both for binary and multi-class classifier.

Classe réelle

- +
True N F N
Classe
rédite F P True P
P + . orals
Matrice de confusion
y
Beurton-Aimar Evaluating Neural Network today 14 /40



y_true = []
y-pred = []

for images, labels in test_loader:
images = images.to(device)
outputs = model(images)

_, predicted = torch .max(outputs, 1)
y_pred.extend(predicted.cpu().numpy())
y_true.extend(labels.cpu().numpy())

# Convert lists to tensors for calculation

y_true_tensor = torch.tensor(y_true)
y_pred_tensor = torch.tensor(y_pred)

Beurton-Aimar Evaluating Neural Network today 15 /40



# Calculating precision, recall, and F1 score using P)
TP = ((y-pred_tensor 1) &
(y_-true_tensor 1)).sum().item ()
FP = ((y-pred_tensor 1)
(y_-true_tensor = 0)).sum().item ()
(y_-pred_tensor = 0)
(y_-true_tensor = 1)

FN = (

precision = TP / (TP + FP) if TP + FP > 0 else 0

recall = TP / (TP + FN) if TP + FN > 0 else 0

fl = 2 % (precision % recall) / (precision + recall)
if (precision + recall) > 0 else 0

print (f'Precision:{ precision}")
print(f'Recall:{recall}")
print (f'F1_.Score:{fl1}")

Beurton-Aimar Evaluating Neural Network today 16 / 40



Drawing a Contengency Matrix

from sklearn.metrics import confusion_matrix

import seaborn as sn

import pandas as pd

# constant for classes

classes = ('T—shirt/top’, Trouser’', ' Pullover’
"Dress’', 'Coat’,'Sandal’', ' Shirt’,
'Sneaker’', 'Bag’, 'Ankle_Boot")

# Build confusion matrix

cf_matrix = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(

cf_matrix /np.sum(cf_matrix, axis=1)

[:, None],
index=[i for i in classes],
columns=[i for i in classes])
plt.figure(figsize = (12,7))

sn.heatmap(df_.cm, annot=True)

nlt savefio( ' 'outnut pneo’

Beurton-Aimar Evaluating Neural Network today 17 /40



Drawing a Contengency Matrix

T-shirt/tap

Touser
-03
Pullover
Dress 4
- 0.6
Coat 0 0 0 0.075
Sandal o 0 0 o 0003
- 0.4
arie : 01 oo - 0
Sneaker 0 0 0 0044 ] 086
- 0.2
Bag 3 ooos
Ankle Boot 0 0 0 0 0 0.01 0 0.01% 097
-0.0

Tshiriop Fouser Pullover Dress  Coat  Sandal  Shit  Gneaker  Bag  Ankle Boot

Beurton-Aimar Evaluating Neural Network today 18 /40



Computer Vision

Context

@ Dedicated to semantic segmentation that is considered as a way for
the computer to understand what it is seeing.

Classification is one of the main task.
Goal: the main object is identified by the computer and labeled.
Computer is able to know the position of the object.

Most often a bounding box is set by using object contours.

e 6 66 o6 o

Segmentation is the process of dividing an image into multiple
segments or regions to simplify its representation and make it easier
to analyze.

Beurton-Aimar Evaluating Neural Network today 19 /40



Computer Vision

Semantic Segmentation

@ Segmentation provides context and meaning to individual pixels,
transforming raw images into structured data that machines can
interpret.

@ Segmenting images allows to identify and extract specific objects,
delineate boundaries, and even classify regions based on their content.

o Creating models that excel at segmentation is not just about accurate
delineation; it's about empowering machines to understand and
interpret visual data with precision and efficiency.

@ A well-designed segmentation model can significantly enhance the
performance of downstream tasks, leading to more robust and
intelligent systems?

?https://medium.com/@fernandopalominocobo/mastering-u-net-a-step-by-
step-guide-to-segmentation-from-scratch-with-pytorch-6a17c5916114

Beurton-Aimar Evaluating Neural Network today 20 /40



Semantic Segmentation

Application

@ Medical images analysis: tumor segmentation, disease diagnosis,
tissues analysis ...

Beurton-Aimar Evaluating Neural Network today 21 /40



Semantic Segmentation

Application

@ Medical images analysis: tumor segmentation, disease diagnosis,
tissues analysis ...

Normal class

Mask Union

Beurton-Aimar Evaluating Neural Network today 22 /40



Semantic Segmentation

Application

@ Medical images analysis: tumor segmentation, disease diagnosis,
tissues analysis ...

Benign class

Beurton-Aimar Evaluating Neural Network today 23 /40



Semantic Segmentation

Application

@ Medical images analysis: tumor segmentation, disease diagnosis,
tissues analysis ...

Malignant class

Beurton-Aimar Evaluating Neural Network today 24 /40



Semantic Segmentation

Application
@ Object detection: autonomous car, satellite mapmaking, J

Beurton-Aimar Evaluating Neural Network today 25 /40



Semantic Segmentation

Application

@ Robot management: agriculture monitoring

from : Yang et al.
Network for Segmenting Crops and Weeds in the Field

Beurton-Aimar

X
Figure 4. The original images and corresponding annotations (green: crop,
red: weed) in the rice dataset.

F‘ ‘$ 7, —
Image! = : =

Label

“MSFCA-Net: A Multi-Scale Feature Convolutional Attention

Evaluating Neural Network

" (2023)

today

26 / 40



Segmentation - U-Net

State of the art for semantic segmentation

EEL
26108
-
gl al 8
512 256 t
= [l =
§ & g & ”g mmp Conv 3X3, ReLU
RN - - = mmp Copy and crop
¥ 52 s
' up-conv 2X2
»d 4 1024 512
HER Do s oS | §  maxpool 2x2
o i s mmp conv Xl
B gd  Bg ]

from : Ronneberger et al. “UNet: Convolutional Networks for Biomedical
Image Segmentation” MICCAI (2015)

Beurton-Aimar Evaluating Neural Network

today 27 /40



Segmentation - U-Net

Encoder-Decoder
@ CNN architecture dedicated to image segmentation.
@ Charactired by its U-shaped structure.

@ Encoding path:

e captures the context of the input image by using a series of
convolutional and max-pooling layers to downsample the spatial
dimensions. It “contracs” the original images.

Decoding path:
e uses upsampling and convolutional layers to produce a segmentation
map that has the same spatial dimensions as the input image. It
“expands” the contracted images.

Beurton-Aimar Evaluating Neural Network today 28 /40



Segmentation - U-Net

Encoder-Decoder

@ Skip connections:

e connect the encoding and decoding paths by merging features.
o help to retain spatial details lost during downsampling, preserving the

image's local and global context.
e By maintaining this spatial information, U-Net achieves more accurate

segmentation masks.
@ The skip connections assist the network in grasping the relationships
between image parts, leading to improved segmentation results.

Beurton-Aimar Evaluating Neural Network today 29 /40



Segmentation - U-Net

First step - Double convolution

@ Repeats at each step, consists on two convolutions of 3x3 followed by

RelU activation,

class DoubleConv(nn.Module):

def __init__(self, in_channels, out._channels):
super (). —_init_-_()
self.conv_op = nn.Sequential(

nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)

)

def forward(self, x):
return self.conv_op(x)

Beurton-Aimar Evaluating Neural Network today

30/ 40



Segmentation - U-Net

Encoder path

@ Downsample part: Double convolution and Maxpooling,

class DownSample(nn.Module):

def

_-init__(self, in_channels, out_channels):
super (). —_init__()

self.conv = DoubleConv(in_channels, out_channels)
self.pool = nn.MaxPool2d( kernel_size=2, stride=2)
forward (self, x):

down = self.conv(x)
p = self.pool(down)

return down, p

Beurton-Aimar Evaluating Neural Network today

31/40



Segmentation - U-Net

Skip connections
@ Skip connections allow for the fusion of low-level and high-level
features.
@ Before doing the MaxPooling, the convolutioned tensor is saved.

@ That convolutioned tensor is later on concatenated with an
upsampled tensor with its own dimension.

Beurton-Aimar Evaluating Neural Network today

32/40



Segmentation - U-Net

Decoder
@ Upsampling part (decoding path) consists on a deconvolution followed
by a double convolution.

class UpSample(nn.Module):

def __init__(self, in_channels, out_channels):
super (). —_init__()
self.up = nn.ConvTranspose2d(in_channels, in_channels//2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)

def forward(self, x1, x2):
x1 = self.up(x1)
x = torch.cat([x1, x2], 1)
return self.conv(x)

Beurton-Aimar Evaluating Neural Network today 33 /40



Evaluating Segmentation Performance

Dice metric
@ DICE metric provides a measure of the similarity between two sets.

@ In segmentation domain the two sets are: the predicted segmentation
and the ground truth segmentation.

@ Mathematically, the DICE score is defined as:
DICEscore =2+ |ANB| / (Al + |B]|)
i.e.
Dice score = 2 * (number of common elements) / (number of
elements in set A + number of elements in set B)

.. &
&C

Beurton-Aimar Evaluating Neural Network today 34 /40




Dice Score

@ Dice coefficient ranges from 0 to 1 .
@ 1 indicates a higher degree of overlap.

@ A DICE score of 1 would mean a perfect overlap between the
predicted and ground truth segmentations.

@ In segmentation task, matrix A could be the predicted mask and
matrix B the groundtruth.

@ The resulting matrix will have a value of 1 at positions i,j only if both
matrix A and matrix B have a value of 1 at that same position i,j.

@ Caution: in Python the operator * multiplies element by element,
thus achieving that we want to do. This multiplication is not a
standard matrix multiplication!

Beurton-Aimar Evaluating Neural Network today 35 /40



Dice Score

Predicted mask

Reference mask

0.989

0.540

Beurton-Aimar

Evaluating Neural Network

today

36 /40



Dice Score

epochs_list = list(range(l, EPOCHS + 1))

plt.figure(figsize=(12, 5))

plt.subplot(1l, 2, 1)

plt.plot(epochs_list, train_losses, label="Training._Loss")
plt.plot(epochs_list, val_losses, label='Validation_Loss")
plt.xticks(ticks=list(range(1l, EPOCHS + 1, 1)))
plt.title('Loss_over_epochs’)

plt.xlabel ("Epochs")

plt.ylabel('Loss")

plt.grid()

plt.tight_layout()

plt.legend ()

plt.subplot(1l, 2, 2)

plt.plot(epochs_list, train_dcs, label="Training_DICE")
plt.plot(epochs_list, val_dcs, label="Validation_DICE")
plt.xticks(ticks=list(range(1l, EPOCHS + 1, 1)))
plt.title( 'DICE_Coefficient_over_epochs')
plt.xlabel (" Epochs’)

plt.ylabel ('DICE")

plt.grid()

plt.legend()

plt.tight_layout()
plt.show()

Beurton-Aimar Evaluating Neural Network today 37 /40



Dice Score

epochs_list = list (range(1l, EPOCHS + 1))
plt.figure(figsize=(12, 5))

plt.plot(epochs_list, train_losses, label="Training_Loss")
plt.plot(epochs_list, val_losses, label='Validation_Loss")

plt.xticks(ticks=list(range(1l, EPOCHS + 1, 1)))
plt.ylim (0, 0.05)
plt.title('Loss_over_epochs_(zoomed)")
plt.xlabel ('Epochs’)

plt.ylabel('Loss")

plt.grid ()

plt.tight_layout ()

plt.legend ()
plt.show()

Beurton-Aimar Evaluating Neural Network today 38/40



Dice Score

Loss over epochs DICE Coefficient over epochs
0,200 = 1.00 4
= Training LOsS
= Validatien Loss
0175
3.95 1
0.150
0.125
.50
2 w
g 0.100 2
0.075 0.85 4
0,050
0,80
0023 —— Training DICE
—— Walidation DIC
0.000 T T T T T T T T T T T T T .
1 2 3 4 5 6 7 8 5 10 1 H 3 4 5 6 7 8 9 1
Epochs Epochs

Beurton-Aimar Evaluating Neural Network today 39 /40



Results

Beurton-Aimar

| CARVANA |~ )
e

- C"\D,‘“\NA .

‘ﬁCﬂééégA .

Evaluating Neural Network

today

40/40



