

¹LaBRI - UMR 5800, Univ. Bordeaux, France ²EMBL - EBI - Cambrigde , UK

Working with networks and pathways in molecular biology

11/20/2017

Context

- Metabolic Networks Specifities : graph model and granularity of the studying.
- Finding Feasible Pathways : searching for equilibrium and steady state.
- ► How to Explore Results : visual tool to dynamically find patterns in the network.

Metabolic Network Design - Granularity of the studying

Building Metabolic Network

- Association of several pathways.
- Graph model : nodes and edges.
- Different models: reaction graph, metabolite graph or both.

A piece of the Pentose Phosphate Pathway

Enzyme	Substract		Produce
Glucokinase : Isomerase : Fructokinase :	Glucose + ATP Glucose-6P Fructose-6P + ATP	=	Glucose-6P + ADP Fructose-6P Fructose-6biPhosphate + ADF
			•

Interaction Matrix

Met./Réact.	Glucokinase	Isomerase	Fructokinase
Glucose	-1	0	0
ATP	-1	0	-1
Gluc-6P	1	-1	0
ADP	1	0	1
Fruct-6P	0	1	-1
Fruct-6biPhosphate	0	0	1

Interaction Matrix

Met./React.	Glucokinase	Isomerase	Fructokinase	
Glucose		0		
ATP				
Gluc-6P	1	-1	0	
ADP	(1)	0	1	
Fruct-6P	0	1	-1	
Fruct-6biPhosphate	0	0		

Interaction Matrix

Met/React	Glucokinase	Isomerase	Fructokinase	T-atp	T-adp
ATP	Ð	0		Û	0
Gluc-6P	1	-1	0	0	0
ADP	1	0	1	0	$(\mathbb{1})$
Fruct-6P	0	1	-1	0	0

Metabolic Network Design

Flux analysis

- > Dynamic analysis :
 - > Tools : Michaelis Menten equation, flux balance analysis ...
 - Requirements : quantitative information as kinetics of reactions
- Static analysis :
 - > Tools : graph theory, linear algebra, logic operators ...
 - Requirements : qualitative and structural information as definition of the set of reactions, frontiers of the model ...

Metabolic Network Design

Flux analysis

- Dynamic analysis :
 - Fools : Michaelis Menten equation, flux balance analysis ...
 - Requirements : quantitative information as kinetics of reactions

StatQuestions to the model.

- > Tools : graph theory, linear algebra, logic operators ...
- Requirements : qualitative and structural information as definition of the set of reactions, frontiers of the model ...

Questions

Enzyme / Pathway Activity

- Functional relationships between two enzymes.
- Substitutes to produce a metabolite .
- Plasticity, robustness of a metabolic pathway..

Finding the way through a graph

- Identification of routes to realize an objective function.
- Identification of control points, reactions or metabolites hubs.

Analysis of the Graph Structure

Quantification of properties

Diameter, arity of nodes, clustering coefficient .
⇒ few relevant informations.

Metabolic Graph course

- Elementary Flux Modes ¹, EFMs : set of unique and minimal set of reactions interacting together at the steady-state.
- Taking into account reversibility and stoichiometry of reactions.

Elementary Flux Modes

Method

- Using linear algebra to find all possible combinations of reactions leading to steady-state.
- Using stochioemetric matrix.
- > Allowing to validate the network description.
- Not need of kinetic values.

Elementary Flux Modes

Computation

► Tools:

- CellNetAnalyser(previously Metatool): www2.mpi-magdeburg.mpg.de/projects/cna/cna.html,
- EfmTools: www.csb.ethz.ch/tools/software/efmtool.html,
- RegEfmtools: tiny www.biotec.boku.ac.at.

Example of EFMs with their reaction names.

(11) Tg6p (2 Vpgi_p) (-2 Vpgi) (-3 Vfbp) (3 Vepi_p) (-3 Vac_g) (3 tr3) (-3 tr5) (3 node1) Gly_p1 (3 t9PPPC) irreversible

(12) Tg6y Vpgi_p -Vpgi Vepi_p Vinv -Vac_g (-3 tr5) Vgdh node1 Vasp (3 t9PPPC) (2 VCO2) irreversible

> Matrix format: all lines have the same size.

Result Analysis

Elementary Flux Modes

- > Huge number of EFMs several thousands.
- Classification:
 - Classical clustering: difficulties due to EFM properties.
 - Specific tools: dual computing of list of reactions leading feasible pathways.

Result Analysis

Elementary Flux Modes

- > Huge number of EFMs several thousands.
- Classification:
 - Classical clustering: difficulties due to EFM properties.
 - Specific tools: dual computing of list of reactions leading feasible pathways.

Minimal Cut Sets

- Idea: find the reaction/set of reactions unable pathways.
- Taking into account reversibility of reactions and stoichiometry.

Minimal Cut Sets

Dual Problem: cutting flux

- Graph theory: searching the set of nodes building a minimal cut.
- Biology: consequences of stopping/missing the activity of an enzyme?

Definition

- A MCS², is a unique and smallest set of reactions whose removal from the network would stop a given metabolic function.
- ► Hope to obtain less MCS than EFMs for a given network.
- 93,009 MCS have been obtained by computation of the plant cell network vs 114,614 EFMs.
- Result too large to be analyzed like it.

²Klamt et al J. Biol. 2004

Central Metabolism of Plant Cell Analysis

Central Metabolism of Plant Cell Analysis

Identification of network structure

- Concrete example: finding rules/constraints to produce 5 output metabolites if no entry of Glucose.
- Analysis of MCS with small size.

Results

- ▶ MCS of size 2: Identification of a set of mandatory reactions.
- MCS of size 3, 4 ...: Identification of branches/switches through the network.

Central Metabolism of Plant Cell Analysis

Identification of network structure

- Concrete example: finding rules/constraints to produce 5 output metabolites if no entry of Glucose.
- Analysis of MCS with small size.

Results

- ▶ MCS of size 2: Identification of a set of mandatory reactions.
- ▶ MCS of size 3, 4 ...: Identification of branches/switches through the network.

How to visualize this information?

Graph display?

Complex to understand!

Graph display?

Complex to understand!

Graph display?

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parallel Coordinates

${\sf Methods}$

- Display a multivariate matrix: columns are data attributes, lines/polylines are elements³.
- > Attributes are vertical axes.
- For big data set, polylines can be agregated in groups.

 $from \ http://http://mbostock.github.io/protovis/ex/cars.html.$

³Inselberg, Visual Computer, 1985

Parallel Coordinates

Visualization of EFMs

- Vertical axes are reactions, lines are EFMs.
- Values on axes present information about absence (0) of a reaction or about its forward (1) or backward activity (2).

CoPHI: Parallel Coordinates Hightly Interactive

- Web application javascript environment.
- Developped by Joris Sansen and the MaBioVis team at LaBRI (http://www.labri.fr/perso/jsansen/CoPHI.html).

COPHI

COPHI

CoPHI

CoPHI

CoPHI

Conclusion

Another way to display connections through the network

- Global view of selection.
- ▶ Rate of EFMs concerns by response to the question.

Dynamic interface driven by pre-treatments

- > Pre-treatments lead by the biological questions.
- > Dynamic interface to explore possibilities.
- > Changing the way to consider displaying of metabolic graphs.