Algorithmique des graphes - Cours 7

Olivier Baudon

Université de Bordeaux

11 octobre 2021

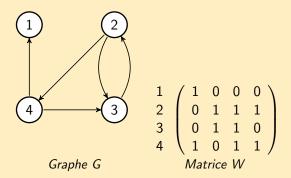
Algorithme de Warshall - Principe

L'algorithme de Floyd peut être adapté pour calculé la matrice d'adjacence de la fermeture transitive d'un graphe G orienté, c'est à dire du graphe G' tel que $ij \in E(G') \Leftrightarrow il$ existe un chemin de i à j dans G.

Algorithme de Warshall - Énoncé

Voir document "Algorithmes des graphes" page 10.

Algorithme de Warshall - Exemple



Algorithme de Warshall - Exemple

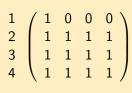
Valeurs de W initiale, puis après k = 1, 2 et 3.

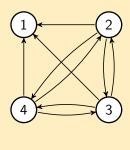
Algorithme de Warshall - Exemple

Valeurs de W pour k = 3 et k = 4

Algorithme de Warshall - Exemple

Valeur de W pour k = 4 et graphe associé





Réseau

Un réseau est un quadruplet (G, s, t, c) où :

- ► *G* est un graphe orienté;
- s et t sont deux sommets de G, appelés respectivement source et puits;
- ▶ c est une fonction de $E(G) \to \mathbb{R}^+$, qui donne la capacité de chaque arc.

Flot

Un flot f dans un réseau (G, s, t, c) est une fonction de $E(G) \to \mathbb{R}^+$ telle que :

$$\forall e \in E(G), c(e) \ge f(e) \ge 0$$

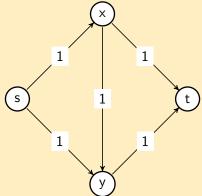
$$\forall v \in V(G) \setminus \{s, t\} \sum_{e=uv \in E(G)} f(e) = \sum_{e=vw \in E(G)} f(e)$$

Remarque : la deuxième contrainte est appelée loi de Kirchhoff, en référence à la conservation d'énergie dans les circuits électriques, et s'exprime généralement par "tout ce qui rentre est égal à tout ce qui sort".

La valeur du flot, notée val(f) sera égale à $\sum_{e=sv\in E(G)} f(e)$. Remarque : on a également $val(f) = \sum_{e=vt\in E(G)} f(e)$. L'objectif est de trouver pour un réseau (G,s,t,c) son flot de valeur maximum.

Exemple de réseau

Les étiquettes sur les arcs représentent la capacité de chaque arc.

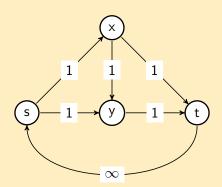


Arc retour

Si f est un flot, alors

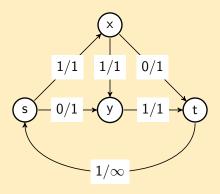
$$\sum_{e=sv\in E(G)} f(e) = \sum_{e=vt\in E(G)} f(e) = val(f).$$

 $\sum_{e=sv\in E(G)} f(e) = \sum_{e=vt\in E(G)} f(e) = val(f).$ Il est habituel de rajouter un arc, dit "de retour", de t vers s, de capacité infinie, et dont la valeur du flot est val(f). Ainsi, la loi de Kirchhoff sera respectée par tous les sommets.



Exemple de flot réalisable

Sur chaque arc e, on note deux valeurs "f(e)/c(e)" représentant respectivement la valeur du flot et la capacité de l'arc e. Le flot ci-dessous est de valeur 1.



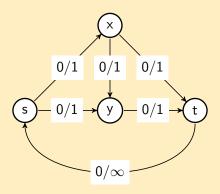
Formulation sous forme d'un programme linéaire

Le problème de flots peut s'exprimer à l'aide d'un programme linéaire : $max\{f(ts)|0\leq f\leq c, Bf=0\}$ où B est la matrice d'incidence de G augmenté de l'arc retour, f et c des vecteurs indicés par $E(G)\cup\{ts\}$ contenant respectivement la valeur du flot sur chaque arc et les capacités des arcs.

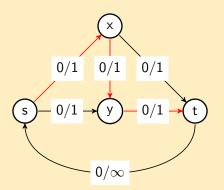
Rappel : $B_{ij} = -1$ si l'arc j est un arc sortant de i, 1 si j est un arc entrant de i, 0 sinon.

On peut donc résoudre le problème de flots à l'aide d'un algorithme de résolution d'un programme linéaire, tel que l'algorithme du simplexe.

Recherche d'une chaîne augmentante par marquage direct

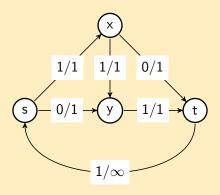


Recherche d'une chaîne augmentante par marquage direct

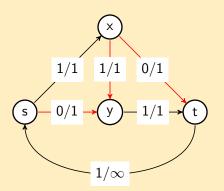


Chaîne augmentante : s, x, y, t. Augmentation : +1.

Recherche d'une chaîne augmentante par marquage indirect

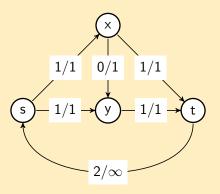


Recherche d'une chaîne augmentante par marquage indirect



Chaîne augmentante : s, y, x, t. Augmentation : +1.

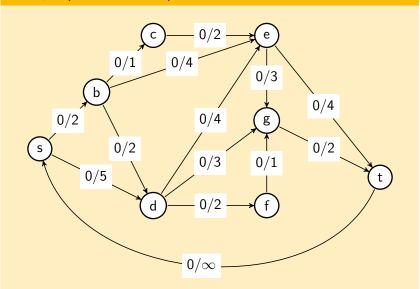
Recherche d'une chaîne augmentante par marquage indirect



Algorithme de Ford-Fulkerson

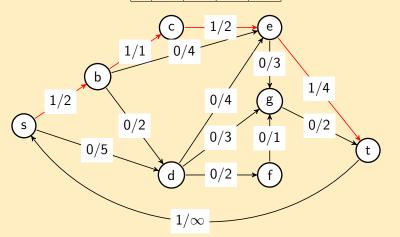
Voir document "Algorithmes des graphes" pages 11 et 12.

Exemple (Ford-Fulkerson)



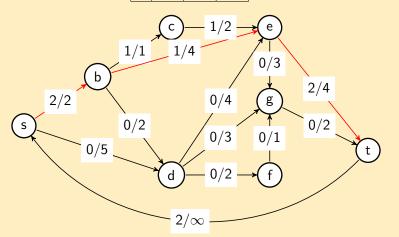
Exemple (Ford-Fulkerson)

	S	Ь	С	e	t
,		+2	+1	+1	+1



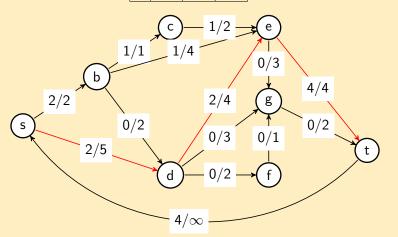
Exemple (Ford-Fulkerson)

S	Ь	e	t	
	+1	+1	+1	



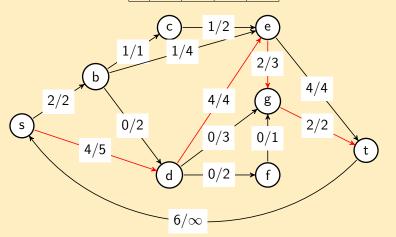
Exemple (Ford-Fulkerson)

S	d	e	t
	+5	+4	+2



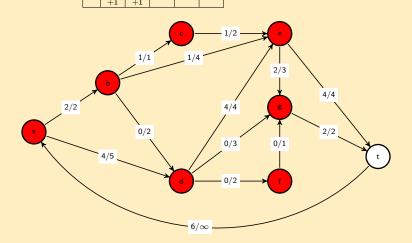
Exemple (Ford-Fulkerson)

S	d	e	g	t
	+3	+2	+2	+2



Exemple (Ford-Fulkerson)

	5	d	g	е	С	Ь
		+1	+1	+1	+1	+1
٠	s	d	f			
		1.1	1.1			



Notion de coupe

Une coupe est un sous-ensemble C de V(G) contenant s et ne contenant pas t.

La valeur d'une coupe C, val(C), est définie par :

$$\mathit{val}(C) = \sum_{e = \mathit{uv}, u \in C, v \notin C} c(e)$$

Théorème

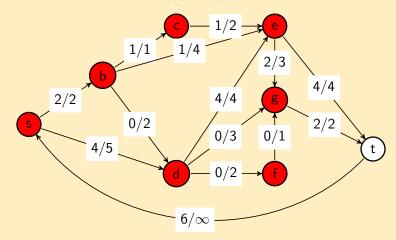
Soit f un flot réalisable sur un réseau R = (G, s, t, c) et C une coupe de R. Alors $val(f) \le val(C)$

Théorème "Flot max = coupe min"

Soit f un flot maximum sur un réseau R = (G, s, t, c) et C une coupe minimum de R. Alors val(f) = val(C)

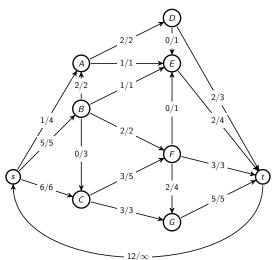
Exemple (Ford-Fulkerson)

$$Y = \{s, b, c, d, e, f, g\}. \ val(Y) = c(et) + c(gt) = 6 = val(f)$$



Flots - exercice (examen 2016)

Résoudre le problème du flot maximum sur le graphe ci-dessous et donner la coupe minimum correspondante.

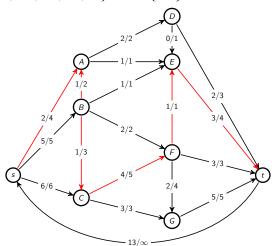


Flots - exercice (examen 2016)

Chaîne augmentante (arcs en rouge avec la nouvelle valeur de f) :

	_	A		_		Ε	t
δ	∞	+3	+2	+2	+2	+1	+1

 $C+=\{ts, sA, BC, CF, FE, Et\}\ C-=\{AB\}$



Flots - exercice (examen 2016)

Recherche d'un chaîne augmentante (sommets de Y en rouge) : $\begin{vmatrix} v & s & A & B & C & F & G \\ \hline \delta & \infty & +2 & +1 & +1 & +1 & +1 \end{vmatrix}$

On n'a pas réussi à atteindre t, donc $Y=\{s,A,B,C,F,G\}$ doit être une coupe minimum. val(Y)=c(AD)+c(AE)+c(BE)+c(FE)+c(Ft)+c(Gt)=2+1+1+1+3+5=13=val(f)

