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The aim of this work is to enumerate alternating sign matrices (ASM) that are quasi-invariant under a quarter-turn. The
enumeration formula (conjectured by Duchon) involves, as aproduct of three terms, the number of unrestrited ASM’s
and the number of half-turn symmetric ASM’s.

Résuḿe. L’objet de ce travail est d’énumérer les matrices à signes alternants (ASM) quasi-invariantes par rotation
d’un quart-de-tour. La formule d’énumération, conjecturée par Duchon, fait apparaı̂tre trois facteurs, comprenant le
nombre d’ASM quelconques et le nombre d’ASM invariantes pardemi-tour.

1 Introduction
An alternating sign matrixis a square matrix with entries in{−1, 0, 1} and such that in any row and
column: the non-zero entries alternate in sign, and their sum is equal to1. Their enumeration formula was
conjectured by Mills, Robbins and Rumsey (4), and proved by Zeilberger (8), and almost simultaneously
by Kuperberg (2). Kuperberg used a bijection between the ASM’s and the states of a statistical square-ice
model, for which he studied and computed the partition function. He also used this method in (3) to obtain
many enumeration or equinumeration results for various classes of symmetries of ASM’s, most of them
having been conjectured by Robbins (6). Among these resultscan be found the following remarkable one.

Theorem 1 (Kuperberg). The numberAQT(4N) of ASM’s of size4N invariant under a quarter-turn
(QTASM’s) is related to the numberA(N) of (unrestricted) ASM’s of sizeN and to the numberAHT(2N)
of ASM’s of size2N invariant under a half-turn (HTASM’s) by the formula:

AQT(4N) = AHT(2N)A(N)2. (1)

More recently, Razumov and Stroganov (5) applied Kuperberg’s strategy to settle the following result,
also conjectured by Robbins (6) and relative to QTASM’s of odd size.

Theorem 2 (Razumov, Stroganov).The numbers of QTASM’s of odd size are given by the following
formulas, whereAHT(2N + 1) is the number of HTASM’s of size2N + 1:

AQT(4N − 1) = AHT(2N − 1)A(N)2 (2)

AQT(4N + 1) = AHT(2N + 1)A(N)2. (3)

It is easy to observe (and will be proved in Section 2) that theset of QTASM’s of size4N + 2 is empty.
But, by slightly releasing the symmetry condition at the center of the matrix, Duchon introduced in (1)
the notion of ASM’s quasi-invariant under a quarter turn (the definition will be given in Section 2) whose
class is non-empty in size4N +2. Moreover, he conjectured for these qQTASM’s an enumeration formula
that perfectly completes the three previous enumeration results on QTASM. It is the aim of this paper to
establish this formula.

†This work has been supported by the ANR project MARS (BLAN06-2 0193)
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Theorem 3 The numberAQT(4N + 2) of qQTASM of size4N + 2 is given by:

AQT(4N + 2) = AHT(2N + 1)A(N)A(N + 1). (4)

This paper is organized as follows: in Section 2, we define qQTASM’s; in Section 3, we recall the
definitions of square ice models, precise the parameters andthe partition functions that we shall study, and
give the formula corresponding to equation (4) at the level of partition functions; Section 4 is devoted to
the proofs.

2 ASM’s quasi-invariant under a quarter-turn
The class of ASM’s invariant under a rotation by a quarter-turn (QTASM) is non-empty in size4N − 1,
4N , and4N + 1. But this is not the case in size4N + 2.

Lemma 4 There is no QTASM of size4N + 2.

Proof: Let us suppose thatM is a QTASM of even size2L. Now we use the fact that the size of an ASM
is given by the sum of its entries, and the symmetry ofM to write:

2L =
∑

1≤i,j≤2L

Mi,j = 4 ×
∑

1≤i,j≤L

Mi,j (5)

which implies that the size ofM has to be a multiple of4. 2

Duchon introduced in (1) a notion of ASM’s quasi-invariant under a quarter-turn, by slightly releasing
the symmetry condition at the center of the matrix. The definition is more simple when considering the
height matrix associated to the ASM, but can also be given directly.

Definition 5 An ASMM of size4N + 2 is said to bequasi-invariant under a quarter-turn(qQTASM) if its
entries satisfy the quarter-turn symmetry

M4N+2−j+1,4N+2−i+1 = Mi,j (6)

except for the four central entries(M2N,2N , M2N,2N+1, M2N+1,2N , M2N+1,2N+1) that have to be either
(0,−1,−1, 0) or (1, 0, 0, 1).

We give below two examples of qQTASM’s of size6, with the two possible patterns at the center.
















0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 −1 1 0
0 1 −1 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

































0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 −1 0 1 0 0
0 1 0 −1 1 0
0 0 0 1 0 0

















In the next section, we associate square ice models to ASM’s with various types of symmetry.

3 Square ice models and partition functions
3.1 Notations
Using Kuperberg’s method we introduce square ice models associated to ASM’s, HTASM’s and (q)QTASM’s.
We recall here the main definitions and refer to (3) for details and many examples.

Let a ∈ C be a global parameter. For any complex numberx different from zero, we denotex = 1/x,
and we define:

σ(x) = x − x. (7)
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Fig. 1: The 6 possible orientations, their associated weights and the corresponding entries in ASM’s

If G is a tetravalent graph, anice stateof G is an orientation of the edges such that every tetravalent
vertex has exactly two incoming and two outcoming edges.

A parameterx 6= 0 is assigned to any tetravalent vertex of the graphG. Then this vertex gets a weight,
which depends on its orientations, as shown on Figure 1.

It is sometimes easier to assign parameters, not to each vertex of the graph, but to the lines that compose
the graph. In this case, the weight of a vertex is defined as:

x

y

=
xy

When this convention is used, a parameter explicitly written at a vertex replaces the quotient of the
parameters of the lines.

We will put a dotted line to mean that the parameter of a line isdifferent on the two sides of the dotted
line. We will also use divalent vertices, and in this case thetwo edges have to be both in, or both out, and
the corresponding weight is1:

b =

1 1

b b

The partition function of a given ice model is then defined as the summation over all its states of the
product of the weights of the vertices.

To simplify notations, we will denote byXN the vector of variables(x1, . . . , xN ). We use the notation
X\x to denote the vectorX without the variablex.

3.2 Partition functions for classes of ASM’s
We give in Figures 2, 3, and 4 the ice models corresponding to the classes of ASM’s that we shall study,
and their partition functions. The bijection between (unrestricted) ASM’s and states of the square ice
model with “domain wall boundary” is now well-known (cf. (3)), and the bijections for the other classes
of symmetry may be easily checked in the same way. The correspondence between orientations of the ice
model and entries of ASM’s is given in Figure 1.

Z(N ; x1, . . . , xN , xN+1, . . . , x2N ) =

x1

x2

xN

xN+1 x2N

Fig. 2: Partition function for ASM’s of sizeN

With these notations, Theorem 3 will be a consequence of the following one relative to the partition
functions.
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ZHT(2N ; x1, . . . , xN−1, xN , . . . , x2N−1, x, y) =

x1

xN−1

y
x

xN x2N−1

x1

x2

xN

x

xN+1 x2Ny

= ZHT(2N + 1; x1, . . . , xN , xN+1, . . . , x2N , x, y)

Fig. 3: Partition functions for HTASM’s

ZQT(4N ; x1, . . . , x2N−1, x, y) =

b

b

b

b

b

b

x1

x2

x2N−1

x

y

b

b

b

b

b

b

x1

x2

x2N

x

y

= ZQT(4N + 2; x1, . . . , x2N , x, y)

Fig. 4: Partition functions for (q)QTASM of even size
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Theorem 6 Whena = ω6 = exp(iπ/3), one has forN ≥ 1:

ZQT(4N ; X2N−1, x, y) = σ(a)−1ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y) (8)

and

ZQT(4N + 2; X2N , x, y) = σ(a)−1ZHT(2N + 1; X2N , x, y)Z(N ; X2N)Z(N + 1; X2N , x, y). (9)

Equation (9) is new; equation (8) is due to Kuperberg (3) for the casex = y. To see that Theorem 6
implies Theorem 3 (and Theorem 1), we just have to observe that whena = ω6 and all the variables are set
to 1, then the weight at each vertex isσ(a) = σ(a2) thus the partition function reduces (up to multiplication
by σ(a)number of vertices) to the number of states.

4 Proofs
In this extended abstract, we shall only give the main ideas of the proofs. Most of them are greatly inspired
from (3). To prove Theorem 6, the method is to identify both sides of equations (8) and (9) as Laurent
polynomials, and to produce as many specializations of the variables that verify the equalities, as needed
to imply these equations in full generality.

4.1 Laurent polynomials
Since the weight of any vertex is a Laurent polynomial in the variablesxi, x andy, the partition functions
are Laurent polynomials in these variables. Moreover they are centered Laurent polynomials,i.e. their
lowest degree is the opposite of their highest degree (called the half-width of the polynomial). In order
to divide by two the number of non-zero coefficients (hence the number of required specializations) inx,
we shall deal with Laurent polynomials of given parity in this variable. To do so, we group together the
states with a given orientation (indicated as subscripts inthe following notations) at the edge where the
parametersx andy meet.

So let us consider the partition functionsZQT(4N ; X2N−1, x, y) andZQT(4N ; X2N−1, x, y), respec-

tively odd and even parts ofZQT(4N ; X2N−1, x, y) in x; ZQT(4N + 2; X2N , x, y) andZQT(4N +

2; X2N , x, y), respectively odd and even parts ofZQT(4N + 2; X2N , x, y)in x; ZHT(2N ; X2N−1, x, y)

andZHT(4N ; X2N−1, x, y), respectively parts with the parity ofN and ofN−1 of ZHT(4N ; X2N−1, x, y)

in x; andZHT(2N + 1; X2N , x, y) andZHT(2N + 1; X2N , x, y), respectively parts with the parity of
N − 1 and ofN of ZHT(2N + 1; X2N , x, y) in x.

With these notations, the equations (8) et (9) are equivalent to the following:

σ(a)ZQT(4N ; X2N−1, x, y) = ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y) (10)

σ(a)ZQT(4N ; X2N−1, x, y) = ZHT(2N ; X2N−1, x, y)Z(N ; X2N−1, x)Z(N ; X2N−1, y) (11)

σ(a)ZQT(4N + 2; X2N , x, y) = ZHT(2N + 1; X2N , x, y)Z(N + 1; X2N , x, y)Z(N ; X2N ) (12)

σ(a)ZQT(4N + 2; X2N , x, y) = ZHT(2N + 1; X2N , x, y)Z(N + 1; X2N , x, y)Z(N ; X2N ) (13)

Lemma 7 Both left-hand side and right-hand side of equations (10-13) are centered Laurent polynomials
in the variablex, odd or even, of respective half-widths2N − 1, 2N − 2, 2N , and2N − 1. Thus to prove
each of these identities we have to exhibit specializationsof x for which the equality is true, and in number
strictly exceeding the half-width.

Proof: To compute the half-width of these partition functions, just count the number of vertices in the ice
models, and take note that non-zero entries of the ASM (i.e. the first two orientations of Figure 1) give
constant weightσ(a2). Also, a line whose orientation changes between endpoints must have an odd (hence
non-zeo) number of these±1 entries. 2
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4.2 Symmetries
To produce many specializations from one, we shall use symmetry properties of the partition functions.
The crucial tool to prove this is the Yang-Baxter equation that we recall below.

Lemma 8 [Yang-Baxter equation]If xyz = a, then

x

y

z

=

x

y

z

. (14)

The following lemma gives a (now classical) example of use ofthe Yang-baxter equation.

Lemma 9

x

y
. . . =

y

x
. . . . (15)

Proof: We multiply the left-hand side byσ(az), with z = axy. We get

σ(az)
x

y
. . . =

y

x
z . . .

=
y

x
z . . .

=
y

x
. . . z

=
y

x
. . . z

=
y

x
. . . σ(az)

2

The same method, together with the easy transformation

z =
(

σ(az) + σ(a2)
)

(

+
)

(16)

gives the following lemma.

Lemma 10

x

y
. . . =

σ(a2) + σ(xy)

σ(a2yx) y

x
. . . (17)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . . (18)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . . (19)

We use Lemmas 9 and 10 to obtain symmetry properties of the partition functions, that we summarize
below, wherem denotes either2N or 2N + 1.
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Lemma 11 The functionsZ(N ; X2N) and ZHT(2N + 1; X2N , x, y) are symmetric separately in the
two sets of variables{xi, i ≤ N} and{xi, i ≥ N + 1}, the functionZHT(2N ; X2N−1, x, y) is sym-
metric separately in the two sets of variables{xi, i ≤ N − 1} and {xi, i ≥ N}, and the functions
ZQT(2m; XN−1, x, y) are symmetric in their variablesxi.

Moreover,ZQT(4N + 2; . . .) is symmetric in its variablesx andy, and we have a pseudo-symmetry for
ZQT(4N ; . . .) andZHT(2N ; . . .):

ZQT(4N ; X2N−1, x, y) =
σ(a2) + σ(xy)

σ(a2yx)
ZQT(4N ; X2N−1, y, x) (20)

ZHT(2N ; X2N−1, x, y) =
σ(a2) + σ(xy)

σ(a2yx)
ZHT(2N ; X2N−1, y, x). (21)

Proof: For Z(N ; . . .) andZHT(m; . . .), the symmetry in two “consecutive” variablesxi andxi+1 is a
direct consequence of Lemma 9. ForZQT(2m; . . .), we again apply Lemma 9 together with the easy
observations:

= b

b

b

b and = b b (22)

which allow us to bring the Yang-Baxter triangle through thedivalent vertices of Figure 4.
For the (pseudo-)symmetries in(x, y), let us deal withZQT(4N ; . . .), the other cases being similar or

simpler. We use equation (22) to put together the lines of parameterx andy:

ZQT(4N ; X2N−1, x, y) =

b

b

b

b

b

bx

y

=

y x

b

b

b

b

b

and then apply Lemma 10. 2

It should be clear that we have analogous properties for the even and odd parts of the partition functions.
The next (and last) symmetry property, proved by Stroganov (7), appears when the parametera equals the
special valueω6 = exp(iπ/3).

Lemma 12 Whena = ω6, the partition functionZ(N ; X2N) is symmetric inall its variables.

4.3 Specializations, recurrences
The aim of this paragraph is to give the value of the partitionfunctions in some specializations of the
variablex or y. The first result is due to Kuperberg, the others are very similar.
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Lemma 13 [specialization ofZ; Kuperberg]If we denote

A(xN+1, X2N\{x1, xN+1}) =
∏

2≤k≤N

σ(axkxN+1)
∏

N+1≤k≤2N

σ(a2xN+1xk),

A(xN+1, X2N\{x1, xN+1}) =
∏

2≤k≤N

σ(axN+1xk)
∏

N+1≤k≤2N

σ(a2xkxN+1),

then we have:

Z(N ; axN+1, X2N\x1) = A(xN+1, X2N\{x1, xN+1})Z(N − 1; X2N\{x1, xN+1}) (23)

Z(N ;axN+1, X2N\x1) = A(xN+1, X2N\{x1, xN+1})Z(N − 1; X2N\{x1, xN+1}). (24)

Proof: We recall the method to prove equation (23). We observe that whenx1 = āxN+1, the parameter
of the vertex at the crossing of the two lines of parameterx1 andxN+1 is ā. Thus the weight of this vertex
is σ(aā) = σ(1) = 0 unless the orientation of this vertex is the second on Figure1. But this orientation
implies the orientation of all vertices in the rowx1 and in the columnxN+1, as shown on Figure 5. The
fixed part gives the partition functionZ in sizeN − 1, without parametersx1 andxN+1, and the weights
of the fixed part gives the factorA(. . .).

x1 = axN+1

xN

x2

xN+1 x2N

x1 = ax1

xN

x2

xN+1 x2N

Fig. 5: Fixed edges for (23) on the left and (24) on the right

The case of (24) is similar, after using Lemma 11 to put the linexN+1 at the top of the grid.
2

We will need the following application of the Yang-Baxter equation, which allows, under certain condi-
tion, a line with a change of parameter to go through a grid.

Lemma 14
x

ax

=

x

ax

(25)

Proof: We iteratively apply Lemma 8 on the rows, and row by row:

x

ax

=
x

xax
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=
x

xax

=
x

xax

=
ax

x
.

2

Lemma 15 [specialization ofZHT] If we denote

A1
H(x1, X2N\x1) =

∏

1≤k≤N

σ(a2x1xk)
∏

N+1≤k≤2N

σ(axkx1)

A
1

H(x1, X2N\x1) =
∏

1≤k≤N

σ(a2xkx1)
∏

N+1≤k≤2N

σ(ax1xk)

A0
H(xN , X2N−1\xN) =

∏

1≤k≤N−1

σ(axkxN )
∏

N≤k≤2N−1

σ(a2xNxk)

A
0

H(xN , X2N−1\xN) =
∏

1≤k≤N−1

σ(axNxk)
∏

N≤k≤2N−1

σ(a2xkxN ),

then for⋆ = , , , and� = , , , respectively, we have

Z⋆

HT(2N + 1; X2N , x,ax1) = A1
H(x1, X2N\x1)Z

�

HT(2N ; X2N\x1, x1, x) (26)

Z�

HT(2N + 1; X2N , x,ax1) = A
1

H(x1, X2N\x1)Z
⋆

HT(2N ; X2N\x1, x, x1) (27)

Z⋆

HT(2N ; X2N−1, x,axN) = σ(axxN )A0
H(xN , X2N−1\xN )Z�

HT(2N − 1; X2N−1\xN , x, xN ) (28)

Z�

HT(2N ; X2N−1,axN, y) = σ(axNy)A
0

H(xN , X2N−1\xN )Z⋆

HT(2N − 1; X2N−1\xN , y, xN ) (29)

Proof:
The proof is similar to the previous one, with the differencethat before looking at fixed edges, we need

to multiply the partition function by a given factor; we interpret this operation by a modification of the
graph of the ice model, and apply Lemma 14. It appears that in each case, the additional factors are exactly
cancelled by the weights of fixed vertices.

To prove (26), we multiply the left-hand side by
∏

N+1≤k≤2N

σ(a2xky),

which is equivalent to add to the line of parametery, a new lineay just below the grid; the Lemma 14
transforms the graph of Figure 6(a) into the graph of Figure 6(b). When we puty = ax1, we get the
indicated fixed edges, which gives as partition function

∏

N+1≤k≤2N

σ2(axkx1)
∏

1≤k≤N

σ(a2x1xk)ZHT(2N ; X2N\x1, x1, x).

Sincea2xky = axkx1, the equation simplifies. To conclude, we observe that if we start with an edge
going out from the crossingx/x2N (functionZHT) we get at the end the same orientation (functionZHT).
2
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x1

xN

x

ay

xN+1 x2N

y

(a)

x1

xN

x

y xN+1 x2N

ay = x1

(b)
Fig. 6: Proof of (26)

Lemma 16 [specialization ofZQT] If we denote

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ(a2xkx1)σ(ax1xk),

AQ(x1; Xm−1\x1) =
∏

1≤k≤m−1

σ(a2x1xk)σ(axkx1),

then for⋆ = , , , and� = , , , respectively, we have:

Z⋆

QT(2m; Xm−1,ax1, y) = σ(ax1y)AQ(x1, Xm−1)Z
�

QT(2m − 2; Xm−1\x1, y, x1) (30)

Z�

QT(2m; Xm−1, x,ax1) = σ(axx1)AQ(x1; Xm−1\x1)Z
⋆

QT(2m − 2; Xm−1\x1, x1, x) (31)

Proof: Similar to the proof of Lemma 15. 2

Remark 17 By using the (pseudo-)symmetry in(x, y), we may transform any specialization of the variable
y into a specialization of the variablex. Moreover, by using Lemma 11 and (whena = ω6) Lemma 12, we
obtain forZ, ZHT andZQT, 2N specializations. Now we have to compare them.

4.4 Special value of the parameter a; conclusion
Whena = ω6 = exp(iπ/3), two new ingredients may be used. The first one is Lemma 12, as mentioned
in Remark 17. The second one is that with this special value ofa:

σ(a) = σ(a2) σ(a2x) = −σ(āx) = σ(ax̄). (32)

which implies that the products appearing in the Lemmas 13, 15 and 16 may be written in a more compact
way:

A(xN+1, X2N\{x1, xN+1}) = σ(a)
∏

k 6=1,N+1

σ(axkxN+1),

A(xN+1, X2N\{x1, xN+1}) = σ(a)
∏

k 6=1,N+1

σ(axN+1xk),

A1
H(x1, X2N\x1) =

∏

1≤k≤2N

σ(axkx1),
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A
1

H(x1, X2N\x1) =
∏

1≤k≤2N

σ(ax1xk),

A0
H(xN , X2N−1\xN ) =

∏

1≤k≤2N−1

σ(axkxN )

A
0

H(xN , X2N−1\xN ) =
∏

1≤k≤2N−1

σ(axNxk),

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ2(ax1xk),

AQ(x1, Xm−1\x1) =
∏

1≤k≤m−1

σ2(axkx1).

Thus we get by comparing:

A(xi, X2N\xi, x)A1
H(xi, X2N\xi) = σ(axxi)AQ(xi, X2N\xi)

A(xi, X2N\xi, x)A
1

H(xi, X2N\xi) = σ(axix)AQ(xi, X2N\xi),

whence (10) and (11) imply that (12) and (13) are true (in size4N + 2) for the2N specializationsx =
a±1xi (1 ≤ i ≤ N ). It is enough to prove (13) (Laurent polynomials of half-width2N − 1), but we still
need one specialization to get (12) (half-width2N ).

For (10) and (11), we observe the same kind of simplification

A(xi, X2N−1\xi)σ(axxi)A
0
H(xi, X2N−1\xi) = σ(axxi)AQ(xi, X2N−1\xi),

whence (13) and (12) for the size4N − 2 imply that (10) and (11) are true for theN specializations
x = axi, N ≤ i ≤ 2N − 1. We obtain in the same way the coincidence for theN specializationsx = axi,
N ≤ i ≤ 2N − 1. Thus we have2N specialiations ofx: it is enough both for (10) (half-width2N − 1),
and for (11) (half-width2N − 2).

At this point, we havealmostproved

((10) and (11), in size4N ) =⇒ ((12) and (13), in size4N + 2) =⇒ ((10) and (11), in size4N + 4);

almost, because we still needonespecialization for (12).
We get this missing specialization, not directly forZQT, ZQT, ZHT andZHT, but for the original

seriesZQT(4N + 2; X2N , x, y) andZHT(2N + 1; X2N , x, y): indeed if we setx = ay we may apply
Lemma 14.

b

b

b

b

x1

x2N

ay

y

=

b

b

b

b

y

x1

x2N

ay

ZQT(4N + 2; X2N ,ay, y) = σ(a)
∏

1≤k≤2N

σ(axky)σ(a2yxk)ZQT(4N ; X2N\x2N , x2N , x2N )
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x1

xN

ay

xN+1 x2N y

=

x1

xN

y

xN+1 x2N

ay

ZHT(2N + 1; X2N ,ay, y) =





∏

1≤k≤N

σ(axky)
∏

N+1≤k≤2N

σ(a2yxk)



 ZHT(2N ; X2N\xN , xN , xN )

This way, we get another point where (9) is true, and thus, because we already have (13), by difference
we obtain that (12) holds fory = ax.

This completes the proof of Theorem 6.
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