FPSAC 2009 DMTCS proc.(subm.), by the authors, 1-12

Enumeration of alternating sign matrices of
even size (quasi)-invariant under a
guarter-turn rotation

Jean-Christophe Aval, Philippe Duchon

LaBRI, Université Bordeaux 1, CNRS
351 cours de la Libération, 33405 Talence cedex, FRANCE

The aim of this work is to enumerate alternating sign masr{@&SM) that are quasi-invariant under a quarter-turn. The
enumeration formula (conjectured by Duchon) involves, psoduct of three terms, the number of unrestrited ASM'’s
and the number of half-turn symmetric ASM’s.

Résune. L'objet de ce travail est d’énumérer les matrices a sgaléernants (ASM) quasi-invariantes par rotation
d’'un quart-de-tour. La formule d’énumération, conjeéripar Duchon, fait apparaitre trois facteurs, comprelea
nombre d’ASM quelconques et le nombre d’ASM invariantesdzami-tour.

1 Introduction

An alternating sign matrixs a square matrix with entries if—1,0,1} and such that in any row and
column: the non-zero entries alternate in sign, and theiristequal tol. Their enumeration formula was
conjectured by Mills, Robbins and Rumsey (4), and proved &jbZrger (8), and almost simultaneously
by Kuperberg (2). Kuperberg used a bijection between the A3d the states of a statistical square-ice
model, for which he studied and computed the partition fiomctHe also used this method in (3) to obtain
many enumeration or equinumeration results for varioussela of symmetries of ASM's, most of them
having been conjectured by Robbins (6). Among these resait®e found the following remarkable one.

Theorem 1 (Kuperberg). The numberAQT(4N) of ASM's of sizelN invariant under a quarter-turn

(QTASM's) is related to the numbdi( V') of (unrestricted) ASM’s of siz& and to the numbed 1 (22V)
of ASM’s of siz& N invariant under a half-turn (HTASM’s) by the formula:

AQT(4N) = ART(2N)A(N)*. (1)

More recently, Razumov and Stroganov (5) applied Kuperbatgategy to settle the following result,
also conjectured by Robbins (6) and relative to QTASM's dai site.

Theorem 2 (Razumov, Stroganov)The numbers of QTASM’s of odd size are given by the following
formulas, wheredy1 (2N + 1) is the number of HTASM’s of si2éV + 1:

AQTUN —1) = ApT(2N —1)AN)? ()
AQTUN +1) = ART(2N + 1)A(N)2. (3)

It is easy to observe (and will be proved in Section 2) thastiteof QTASM’s of sizel N + 2 is empty.
But, by slightly releasing the symmetry condition at theteemf the matrix, Duchon introduced in (1)
the notion of ASM'’s quasi-invariant under a quarter turre(tiefinition will be given in Section 2) whose
class is non-empty in siz&V + 2. Moreover, he conjectured for these qQTASM’s an enumanrdtionula
that perfectly completes the three previous enumeratisuitseon QTASM. It is the aim of this paper to
establish this formula.
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Theorem 3 The numbemQT(4N + 2) of qQTASM of sizéN + 2 is given by:
AQT(4N +2)= AHT(QN + 1DA(N)A(N +1). 4)

This paper is organized as follows: in Section 2, we define A&M'’s; in Section 3, we recall the
definitions of square ice models, precise the parameterthammhrtition functions that we shall study, and
give the formula corresponding to equation (4) at the ledgastition functions; Section 4 is devoted to
the proofs.

2 ASM'’s quasi-invariant under a quarter-turn

The class of ASM'’s invariant under a rotation by a quarten{@TASM) is non-empty in sizé N — 1,
4N, and4N + 1. But this is not the case in sizeV + 2.

Lemma 4 There is no QTASM of sizeV + 2.

Proof: Let us suppose thd/ is a QTASM of even siz€L. Now we use the fact that the size of an ASM
is given by the sum of its entries, and the symmetrybto write:

2L = Z MiJ =4 x Z Mi,j (5)
1<4,j<2L 1<4,j<L
which implies that the size a¥/ has to be a multiple of. |

Duchon introduced in (1) a notion of ASM’s quasi-invariander a quarter-turn, by slightly releasing
the symmetry condition at the center of the matrix. The deédiniis more simple when considering the
height matrix associated to the ASM, but can also be givesctir.

Definition 5 An ASMM of size4 N + 2 is said to bequasi-invariant under a quarter-tigqQ TASM) if its
entries satisfy the quarter-turn symmetry

MyNto—jy1,aN+2—i+1 = M 5 (6)

except for the four central entridd/on on, Mon 2n+1, Man+1,2n5, Man+1,2v+1) that have to be either
(0,—1,—1,0) or (1,0,0,1).

We give below two examples of qQTASM’s of sigewith the two possible patterns at the center.

0 0 O 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 -1 0 1 0
10 0 -1 10 0 0 1 0 -1 1
01 -1 0 01 1 -1 0 1 0 0
0 0 O 1 0 0 0 1 0o -1 1 0
0 0 1 0 0 0 0 0 O 1 0 0

In the next section, we associate square ice models to ASKtsvarious types of symmetry.

3 Square ice models and partition functions

3.1 Notations

Using Kuperberg’s method we introduce square ice modetsaged to ASM's, HTASM'’s and (q)QTASM'’s.
We recall here the main definitions and refer to (3) for detaild many examples.
Leta € C be a global parameter. For any complex numbelifferent from zero, we denote = 1/x,
and we define:
o(x) =z —T. (7
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1 -1 0 0 0 0

Fig. 1: The 6 possible orientations, their associated weights feddrresponding entries in ASM’s

If G is a tetravalent graph, doe stateof G is an orientation of the edges such that every tetravalent
vertex has exactly two incoming and two outcoming edges.

A parameter: # 0 is assigned to any tetravalent vertex of the gr&phrhen this vertex gets a weight,
which depends on its orientations, as shown on Figure 1.

Itis sometimes easier to assign parameters, not to eaaxdrthe graph, but to the lines that compose
the graph. In this case, the weight of a vertex is defined as:

el -]
| zy |
When this convention is used, a param%ter explicitly wmitd¢ a vertex replaces the quotient of the
parameters of the lines.
We will put a dotted line to mean that the parameter of a lindifferent on the two sides of the dotted
line. We will also use divalent vertices, and in this casettite edges have to be both in, or both out, and
the corresponding weight is

— T —— —————

The partition function of a given ice model is]then defirlledmsSummation over all its states of the
product of the weights of the vertices.

To simplify notations, we will denote by i the vector of variableéz, ...,z ). We use the notation
X \z to denote the vectaK without the variabler.

3.2 Partition functions for classes of ASM’s

We give in Figures 2, 3, and 4 the ice models correspondingeatasses of ASM’s that we shall study,
and their partition functions. The bijection between (trieted) ASM’s and states of the square ice
model with “domain wall boundary” is now well-knowef{ (3)), and the bijections for the other classes
of symmetry may be easily checked in the same way. The camnelgmce between orientations of the ice
model and entries of ASM’s is given in Figure 1.

TN

Z(N;x1,...,TN,TN41, .-, TaN) =

T

Z1

TN+1 T2N
Fig. 2: Partition function for ASM’s of sizeV

With these notations, Theorem 3 will be a consequence ofdhenfing one relative to the partition
functions.
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ZHT(ZN;ml,...,xN_l,xN,...,mgN_l,a?,y) = Y >
X
ITN-1
I
TN 2N—-1
T \\ = ZHT(2N+]_;"L'],...7xN,xN+1a~~'7x2N’x’y)
TN =
X
Z1

IN+1  X2NY

Fig. 3: Partition functions for HTASM's

ZQT(4N; Ti,...,TaN-1,7,Y)

_ ZQT(4N+2;],‘17..-7$2N7$7?J)

T

Y

Fig. 4: Partition functions for (q)QTASM of even size
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Theorem 6 Whena = wg = exp(in/3), one has folv > 1:
ZQTAN; Xon—1,2,y) = o(a) ' ZyT(2N; Xon_1,2,y) Z(N; Xon—1,2) Z(N; Xon—1,y)  (8)
and
ZQTAN +2; Xon, 2,y) = o(a) ' ZyT(2N + 1; Xon, 2,9) Z(N; Xon) Z(N + 1; Xon, 2,9).  (9)

Equation (9) is new; equation (8) is due to Kuperberg (3) far taser = y. To see that Theorem 6
implies Theorem 3 (and Theorem 1), we just have to obsertevena = wg and all the variables are set
to 1, then the weight at each vertexiga) = o(a?) thus the partition function reduces (up to multiplication
by o (a)rumber of vertices) tg the number of states.

4 Proofs

In this extended abstract, we shall only give the main idé#seoproofs. Most of them are greatly inspired
from (3). To prove Theorem 6, the method is to identify bottesi of equations (8) and (9) as Laurent
polynomials, and to produce as many specializations of siables that verify the equalities, as needed
to imply these equations in full generality.

4.1 Laurent polynomials

Since the weight of any vertex is a Laurent polynomial in thgablesr;, = andy, the partition functions
are Laurent polynomials in these variables. Moreover theycentered Laurent polynomiaise. their
lowest degree is the opposite of their highest degree (tétle half-width of the polynomial). In order
to divide by two the number of non-zero coefficients (heneertimber of required specializations)ain
we shall deal with Laurent polynomials of given parity inghariable. To do so, we group together the
states with a given orientation (indicated as subscripthénfollowing notations) at the edge where the
parameters andy meet.

So let us consider the partition functloﬁb-l- (4N; Xon_1,2,9) andZQT(4N Xon_1,2,Yy), respec-

tively odd and even parts (ﬁ,’QT(4N Xon—1,2,y) IN x; ZQT(4N + 2; Xon,z,y) and ZQT(4N +
2; Xon, x,y), respectively odd and even parts%T (4N + 2; Xon, x, y)in z; ZaT(2N XoN—1,%,Y)

andZHT(4N Xon—1,,y), respectively parts with the parity of and of N -1 of Zy1(4N; Xon—1,2,¥)

in z; and ZHT(QN + 1; Xon,z,y) andZ (2N + 1; Xon, z,y), respectively parts with the parity of
N —1andofN of Zy1(2N + 1;X2N,x,y) inx.
With these notations, the equations (8) et (9) are equivébethe following:

o(a) QT(4N'X2N—17$ y) = aT(ZN;X2N—1,I,Z/)Z(N;X2N-1,$)Z(N;X2N_1,y) (10)

(a
U(G)ZQT(4N Xon-1,2,y Zg T@N; Xon—1,2,y)Z(N; Xon—1,2)Z(N; Xon-1,y) (11)

o(a)
(a)ZQT(4N+2 Xon, z,y

) (
QT(4N—|—2 Xon,2,y) = Zy1(2N + 1 Xon, 2,9)Z(N + 1; Xon, 2,9) Z(N; Xon)  (12)
) = Zg (2N + L Xon, 2, y) Z(N + 15 Xon, 2,9) Z(N; Xan) (13)

Lemma 7 Both left-hand side and right-hand side of equations (1Pal8 centered Laurent polynomials
in the variablez, odd or even, of respective half-widtbd — 1, 2N — 2, 2N, and2N — 1. Thus to prove
each of these identities we have to exhibit specializatidngor which the equality is true, and in number
strictly exceeding the half-width.

Proof: To compute the half-width of these partition functionst josunt the number of vertices in the ice
models, and take note that non-zero entries of the AEM the first two orientations of Figure 1) give
constant weight(a?). Also, a line whose orientation changes between endpoiags have an odd (hence
non-zeo) number of theskl entries. m]
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4.2 Symmetries

To produce many specializations from one, we shall use symmeoperties of the partition functions.
The crucial tool to prove this is the Yang-Baxter equaticat thie recall below.

Lemma 8 [Yang-Baxter equationf xyz = @, then

Yy = y (14)

The following lemma gives a (now classical) example of usthefyang-baxter equation.

Lemma 9

Y T = 7 e (15)
T Y

Proof: We multiply the left-hand side by (az), with z = azy. We get

o(az) 4 ... = 7

T Y

_ T4
= X

1)

_ T
y —
= 7 o(aZ)
Zil
a
The same method, together with the easy transformation
X0 = (o(az) + o(a?)) (_’_+_‘_) (16)
gives the following lemma.
Lemma 10
) _) 7(7@2%) )
Y N i o(@®) = (18)
z o(a’yT) vy o(a’yz) vy
y _ 0@y L o@) o 19)
) (a%T) o (a2yE)

We use Lemmas 9 and 10 to obtain symmetry properties of th#igarfunctions, that we summarize
below, wheren denotes eithe2 N or 2N + 1.
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Lemma 11 The functionsZ(N; Xon) and Zy1(2N + 1; Xon, ,y) are symmetric separately in the
two sets of variablegz;, i < N} and{z;, i« > N + 1}, the functionZy1(2N; Xon—_1,,y) iS Sym-
metric separately in the two sets of variables;, « < N — 1} and {z;, ¢ > N}, and the functions
ZQT(2m; Xn-1,x,y) are symmetric in their variables;.

Moreover,ZQT(4N +2;...)is symmetric in its variables andy, and we have a pseudo-symmetry for
ZQT(4N; .. ) andZHT(QN; .. )
)

ZQT(AN; Xon—1,2,y) = 7_()ZQT(4N§X2N—17?J;$) (20)

ZuT@2N; Xon—1,2,y) = ZHT(2N; Xon—1,¥, T). (21)

)
(
o(a?) + o(a7)
( 2
Proof: For Z(N;...) and Zyt(m;...), the symmetry in two “consecutive” variables andz;, is a

direct consequence of Lemma 9. FZﬁQT(Zm; ...), we again apply Lemma 9 together with the easy
observations:

I = i and = (22)
which allow us to bring the Yang-Baxter triangle through dinalent vertices of Figure 4.
For the (pseudo-)symmetries (im, y), let us deal withZ (4N .. .), the other cases being similar or
simpler. We use equation (22) to put together the lines cimpater: andy:

ZQTAN; Xon-1,0,y) =7 @

B

and then apply Lemma 10. m]

It should be clear that we have analogous properties fontbie @1d odd parts of the partition functions.
The next (and last) symmetry property, proved by Strogaipvappears when the parameiezquals the
special valuevs = exp(im/3).

Lemma 12 Whena = wg, the partition functionZ (N; X, ) is symmetric irall its variables.

4.3 Specializations, recurrences

The aim of this paragraph is to give the value of the partifismctions in some specializations of the
variablezx or y. The first result is due to Kuperberg, the others are veryiaimi
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Lemma 13 [specialization ofZ; Kuperberg]f we denote

Alzny1, Xov\{z1, 28 11}) = H o(azkTn+1) H o(a*zNn1Ty),
2<k<N N+1<k<2N

Alzni1, Xon\{z1,2841}) = H o(arn+1Tk) H o(a*TkTN11),
2<k<N N41<k<2N

then we have:

Z(N;axN+1, Xon\z1) A(zny1, Xon\{z1, 2nv 1 D Z(N — 1; Xon\{z1,2841})  (23)
Z(N;axni1, Xon\z1) = A@nt1, Xov\{z1,2nv41})Z(N — 1; Xov\{z1, 2n41}).  (24)

Proof: We recall the method to prove equation (23). We observe thatw; = ax 1, the parameter

of the vertex at the crossing of the two lines of parametesindx x 1 is a. Thus the weight of this vertex
iso(aa) = o(1) = 0 unless the orientation of this vertex is the second on FigurBut this orientation

implies the orientation of all vertices in the rowy and in the column: .1, as shown on Figure 5. The
fixed part gives the partition functiaf in size N — 1, without parameters; andzy 1, and the weights

of the fixed part gives the factot(. . .).

N r1 = axry
TN
]/‘n
T1 = ATN+1 T
TN+1 T2N TN4+1 T2N

Fig. 5: Fixed edges for (23) on the left and (24) on the right
The case of (24) is similar, after using Lemma 11 to put thedig ., at the top of the grid.
O

We will need the following application of the Yang-Baxtemuedjon, which allows, under certain condi-
tion, a line with a change of parameter to go through a grid.

Lemma 14

I

= (25)

! X x

Proof: We iteratively apply Lemma 8 on the rows, and row by row:

v N - " |

l ar \l— x
axr :
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= TP
TNt
= T
TNt
T
O
Lemma 15 [specialization oZp 7] If we denote
Az, Xon\e1) = [ o@@miz) ][] olaawz)
1<k<N N+1<k<2N
—1
Ay(z, Xon\e1) = [ o@@mz) ][] olanizs)
1<k<N N+1<k<2N
A?_I(xN,XQNfl\xN) = H J(axka) H U(G,QIEka)
1<k<N-—1 N<k<2N-1
_0 _ _
Apg(zy, Xon_1\zn) = H o(axNTk) H o(a’x1Ty),
1<k<N-1 N<k<2N-1
then forx = 3, M, 5, D andd = D, D, ¥ " respectively, we have
ZH1 (2N +1; Xon, @, ax1) = Ay (21, Xon \21) Z5 7 (2N; Xon\a1, 71, 7) (26)
_ —1 .
ZaT(2N +1; Xon, 2, 8x1) = Ay (21, Xon\1) Z{y7(2N; Xon\71, 2, 71) (27)
thlT(QN;XQN,l,LC,aXN) =0 CLLCEN)A(;I(LCN,X2N71\{EN)ZE|T(2N— ].;XQN,l\LCN,{L‘,{EN) (28)
)

0 .
arNy) Ay (en, Xon—1\on) ZHT(2N — 15 Xon—1\on, y, o) (29)

Proof:

The proof is similar to the previous one, with the differetttat before looking at fixed edges, we need
to multiply the partition function by a given factor; we inpeet this operation by a modification of the
graph of the ice model, and apply Lemma 14. It appears thadh ease, the additional factors are exactly
cancelled by the weights of fixed vertices.

To prove (26), we multiply the left-hand side by

H o(a’zy7),

N+1<k<2N

which is equivalent to add to the line of paramejerl new lineay just below the grid; the Lemma 14
transforms the graph of Figure 6(a) into the graph of Figul®.6When we puty = ax;, we get the
indicated fixed edges, which gives as patrtition function

H o?(axT) H U(anlfk)ZHT(ZN;XQN\xl,xl,a:).
N+1<k<2N 1<k<N

Sincea®z, 7 = axiT1, the equation simplifies. To conclude, we observe that if taet svith an edge
going out from the crossing/zan (functionZ;‘T) we get at the end the same orientation (funcmall-).
a
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11 /y le
TN4+1 T2N Y TN4+1 T2N

(@) (b)
Fig. 6: Proof of (26)

Lemma 16 [specialization onQT] If we denote

ZQ(xl,Xm,l\xl) = U(ankfl)o(axlfk),

1<k<m-—1

Ag(z1; Xm—1\z1) = o(a’x1Ty)o(axkTy),

1<k<m-—1

then forx = ™, =, 3, andd = M, 3, ™ yrespectively, we have:

ZoT@m: X1, 8x1,y) = o(az17)Ag(z1, me1)Z(%T(2m =2 X1 \21,y, 71) (30)
Z%T(Zm; Xm—1,z,ax1) = o(axT1)Ag(z; Xm—1\$1)Zb-|-(2m —2; Xpmo1\x1,x1,2)  (31)
Proof: Similar to the proof of Lemma 15. m]

Remark 17 By using the (pseudo-)symmetryin y), we may transform any specialization of the variable
y into a specialization of the variable. Moreover, by using Lemma 11 and (whee wg) Lemma 12, we
obtain forZ, Zy and Zg, 2NV specializations. Now we have to compare them.

4.4 Special value of the parameter a; conclusion

Whena = wg = exp(in/3), two new ingredients may be used. The first one is Lemma 12 easiomed

in Remark 17. The second one is that with this special value of

ola) =o0(a?) o(a’z) = —o(azx) = o(a). (32)

which implies that the products appearing in the Lemmas 8&nt 16 may be written in a more compact
way:

Ay, Xon\{z1,an41}) = ola) [[  olam@nia),
k#1,N+1
Azn g, Xon\{z,2v11}) = o(a) [ oleznam),
k#1,N+1
Ay (w1, Xon\z1) = H o(azyT),

1<k<2N
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—1
Ay (xy, Xon\z1) = H o(ax1Ty),
1<k<2N
A (zn, Xon-1\2N) = H o(az,TN)
1<k<2N-1
Z?L[(CCN,Xqu\l‘N) = H o(axNTy),
1<k<2N-1
Ag(z1, Xm—1\w1) = H o?(ax1Ty),
1<k<m—1
Ag(z1, Xm—1\z1) = o?(azyTy).
1<k<m-—1
Thus we get by comparing:
Az, Xon\wi, ©) Al (5, Xon\zi) = o(az®;)Ag(zi, Xon\x;)
Z($i7X2N\$i7$)Z}q($i,X2N\$i) = U(CM@)ZQ(@,XQN\a:i)7

whence (10) and (11) imply that (12) and (13) are true (in giXe+ 2) for the 2NV specializations: =
a™z; (1 < i < N). Itis enough to prove (13) (Laurent polynomials of haliiti2N — 1), but we still
need one specialization to get (12) (half-widtN').

For (10) and (11), we observe the same kind of simplification

Az, Xon—1\wi)o(axT;) AY (2, Xon—1\7;) = o(aaT;) Ag(zi, Xon—1\74),

whence (13) and (12) for the sizéV — 2 imply that (10) and (11) are true for th¥ specializations
x =ax;, N <i<2N — 1. We obtain in the same way the coincidence forAhepecializations: = ax;,
N <i < 2N — 1. Thus we hav@N specialiations of: it is enough both for (10) (half-widtB N — 1),
and for (11) (half-widtl2 N — 2).

At this point, we havelmostproved

((10) and (11), in size N) = ((12) and (13), in sizd N + 2) = ((10) and (11), in sizd N + 4);

almost because we still neaghespecialization for (12).
We get this missing specialization, not directly fZﬁ‘T, ZaT, Z;‘T andZﬂT, but for the original

seriesZoT(4N + 2; Xon, z,y) and Zy1 (2N + 1; Xon, 7, y): indeed if we setr = ay we may apply
Lemma 14.

ay

T2N

\ ay

T

ZQT(AN +2; Xon, ay,y) = o(a) 11 o(azyy)o(a®yTe) ZQT(AN; Xon'\z2n, T2n, T2N)
1<k<2N
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o \)))m | )}
;L'1‘ o N

ay
TN+1 L2N Y
TN+1 T2N
ZHT@2N + 1; Xon,ay,y) = H o(axyy) H o(a®yTk) | ZHT(2N; Xon\zN, TN, 2N)
1<k<N N+1<k<2N

This way, we get another point where (9) is true, and thusalise we already have (13), by difference
we obtain that (12) holds fay = ax.
This completes the proof of Theorem 6.
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