QUASI-INVARIANT AND SUPER-COINVARIANT POLYNOMIALS
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ABSTRACT. The aim of this work is to extend the study of super-coinvariant poly-
nomials, introduced in [2, 3], to the case of the generalized symmetric group Gp, m,
defined as the wreath product C,,, 1S, of the symmetric group by the cyclic group.
We define a quasi-symmetrizing action of G, on Q[z1, . .., ], analogous to those
defined in [12] in the case of S,,. The polynomials invariant under this action are
called quasi-invariant, and we define super-coinvariant polynomials as polynomials
orthogonal, with respect to a given scalar product, to the quasi-invariant polynomi-
als with no constant term. Our main result is the description of a Grébner basis for
the ideal generated by quasi-invariant polynomials, from which we dedece that the
dimension of the space of super-coinvariant polynomials is equal to m™ C,, where
C,, is the n-th Catalan number.

RESUME. Le but de ce travail est d’étendre I’étude des polyndmes super-coinvariants
(définis dans [2]), au cas du groupe symétrique généralisé Gy, ,, défini comme le
produit en couronne C,, 1S, du groupe symétrique par le groupe cyclique. Nous
définissons ici une action quasi-symétrisante de Gy, m, sur Q[z1,...,2z,], analogue &
celle définie dans [12] dans le cas de S,,. Les polynémes invariants sous cette action
sont dits quasi-invariants, et les polynémes super-coinvariants sont les polynémes
orthogonaux aux polynémes quasi-invariants sans terme constant (pour un certain
produit scalaire). Notre résultat principal est I'obtention d’une base de Grobner
pour l'idéal engendré par les polynémes quasi-invariants. Nous en déduisons alors
que la dimension de ’espace des polynémes super-coinvariants est m™ C), ou C,, est
le n-ieme nombre de Catalan.

1. INTRODUCTION

Let X denote the alphabet in n variables (z1, ..., z,) and C[X| denote the space of
polynomials with complex coefficients in the alphabet X. Let G, ,, = C};,1 S, denote
the wreath product of the symmetric group S, by the cyclic group C,,. This group
is sometimes known as the generalized symmetric group (cf. [17]). It may be seen
as the group of n x n matrices in which each row and each column has exactly one
non-zero entry (pseudo-permutation matrices), and such that the non-zero entries
are m-th roots of unity. The order of G, is m" nl. When m =1, G, ,,, reduces to
the symmetric group S,, and when m = 2, Gy, 5, is the hyperoctahedral group B,
i.e. the group of signed permutations, which is the Weyl group of type B (see [14]
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for example for further details). The group G, acts classically on C[X| by the rule

(1.1) Vg € Gum, YP € C[X], g.P(X) = P(Xg),

where ¢ is the transpose of the matrix g and X is considered as a row vector. Let
Invy,m ={P € C[X] / Vg € Gpm, 9.P = P}

denote the set of Gy ,-invariant polynomials. Let us denote by Inv, , the set of

such polynomials with no constant term. We consider the following scalar product
on C[X]:

(1.2) (P,Q) = P(OX)Q(X) |x=0

where 0X stands for (0x1,...,0z,) and X = 0 stands for x; = --- =z, = 0. The
space of G, y,-coinvariant polynomials is then defined by

Covpy = {Pe€CX]/VQ € Inv,,, QOX)P =0}
= (Inv;{,m>L ~ CIX]/(Inv},,)

where (S) denotes the ideal generated by a subset S of C[X].
A classical result of Chevalley [6] states the following equality:

(1.3) dim Covy, y, = |G| = m" n!

which reduces when m = 1 to the theorem of Artin [1] that the dimension of the
harmonic space H, = Covy, ;1 (¢f. [9]) is nl.

Our aim is to give an analogous result in the case of quasi-symmetrizing action.
The ring Qsym of quasi-symmetric functions was introduced by Gessel [11] as a
source of generating functions for P-partitions [18] and appears in more and more
combinatorial contexts [5, 18, 19]. Malvenuto and Reutenauer [16] proved a graded
Hopf duality between QQSym and the Solomon descent algebras and Gelfand et. al. [10]
defined the graded Hopf algebra NC' of non-commutative symmetric functions and
identified it with the Solomon descent algebra.

In [2, 3], Aval et. al. investigated the space SH,, of super-coinvariant polynomials
for the symmetric group, defined as the orthogonal (with respect to (1.2)) of the ideal
generated by quasi-symmetric polynomials with no constant term, and proved that
its dimension as a vector space equals the n-th Catalan number:

1 (2
(1.4) dimSH, = C, = ( ")
n+1\n

Our main result is a generalization of the previous equation in the case of super-
coinvariant polynomials for the group G, .

In Section 2, we define and study a “quasi-symmetrizing” action of G, , on C[X].
We also introduce invariant polynomials under this action, which are called quasi-
invariant, and polynomials orthogonal to quasi-invariant polynomials, which are
called super-coinvariant. The Section 3 is devoted to the proof of our main result
(Theorem 2.4), which gives the dimension of the space SCov,, , of super-coinvariant
polynomials for G, ,,: we construct an explicit basis for SCouvy, ,, from which we
deduce its Hilbert series.
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2. A QUASI-SYMMETRIZING ACTION OF G, ,

We use vector notation for monomials. More precisely, for v = (vq,...,1v,) € N,
we denote X the monomial

(2.1) xtxe? -

For a polynomial P € Q[X], we further denote [X"] P(X) as the coefficient of the
monomial X” in P(X).

Our first task is to define a quasi-symmetrizing action of the group G, ,,, on C[X],
which reduces to the quasi-symmetrizing action of Hivert (cf. [12]) in the case n = 1.
This is done as follows. Let A C X be a subalphabet of X with [ variables and
K = (ki,..., k) be a vector of positive (> 0) integers. If B is a vector whose entries
are distinct variables z; multiplied by roots of unity, the vector (B). is obtained
by ordering the elements in B with respect to the variable order. Now the quasi-
symmetrizing action of g € G, is given by

(2.2) g e AK = w(g)F(Atg)) "~

where w(g) is the weight of g, i.e. the product of its non-zero entries, |g| is the matrix
obtained by taking the modules of the entries of g, and the oefficient ¢(K) is defined
as follows:

|0 if Vi, k; =0 [m)]
c(K) = { 1 if not.

Example 2.1. If m = 3 and n = 3, and we denote by j the complex number j = e%,
then for example

0 0y

100 | e (22x)

0 70
= (j2)1 1 00 .(.731,.@2)

010
<

=7 (333,331)<(2’1)
=] ($1:$3)(2’1)
= j?2i ;.

It is clear that this defines an action of the generalized symmetric group G, ,, on
C[X], which reduces to Hivert’s quasi-symmetrizing action (cf. [12], Proposition 3.4)
in the case m = 1.

Let us now study its invariant and coinvariant polynomials. We need to recall some
definitions.

A composition a« = (aq,qg,...,q) of a positive integer d is an ordered list of
positive integers (> 0) whose sum is d. For a vector v € N, let ¢(v) represent the
composition obtained by erasing zeros (if any) in v. A polynomial P € Q[X] is said
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to be quasi-symmetric if and only if, for any v and p in N*, we have
[(X"P(X) = [X*]P(X)

whenever ¢(v) = ¢(u). The space of quasi-symmetric polynomials in n variables is
denoted by Qsym,,.

The polynomials invariant under the action (2.2) of G, ,, are said to be quasi-
invariant and the space of quasi-invariant polynomials is denoted by QInv,m,, i.e.

PeQInvy, & Vg€ Gym, go P=P.

Let us recall (¢f. [12], Proposition 3.15) that QInv,; = QSym,. The following
proposition gives a characterization of QInvy, ,.
Proposition 2.2. One has

P e QInv,, < 3Q € QSym, /| P(X)=Q(X™)
where Q(X™) = Q(z, ..., z").
Proof. Let P be an element of QInuvy . Let us denote by ¢ the m-th root of unity
(= e and by g; the element of G, ,, whose matrix is

c 0
1

1
with the ( in place 7. Then we observe that the identities

1
Vi=1,... (P—i—gjoP—}—g]Q-oP—}—---—i—g;.”*loP):P

)y —
m
imply that every exponents appearing in P are multiples of m. Thus there exists
a polynomial Q € C[X] such that P(X) = Q(X™). To conclude, we note that
Sn C Gy implies that P is quasi-symmetric, whence () is also quasi-symmetric.
The reverse implication is obvious. O

Let us now define super-coinvariant polynomials:
SCovpm = {PeC[X]/VQ € QInv,m,, QOX)P =0}
= (QInv},)" = CX]/(QInv,,,)

with the scalar product defined in (1.2). This is the natural analogous to Cov, in
the case of quasi-symmetrizing actions and SCov,, reduces to the space of super-
harmonic polynomials SH,, (¢f. [3]) when m = 1.

Remark 2.3. It is clear that any polynomial invariant under (2.2) is also invariant
under (1.1), i.e. Inv,, C QInv,,. By taking the orthogonal, this implies that
SCovyp, y C Covy, 4. These observations somewhat justify the terminology.

Our main result is the following theorem which is a generalization of equality (1.4).
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Theorem 2.4. The dimension of the space Scovy, m, is given by

1 2
(2.3) dim SCov,, y, = m™ C,, = m" < n)
’ n+1\n

Remark 2.5. In the case of the hyperoctahedral group B, = G, 2, C.-O. Chow [7]
defined a class BQSym/(xq, X ) of quasi-symmetric functions of type B in the alphabet
(x9, X). His approach is quite different from ours. In particular, one has the equality:

BQSYm(zy, X) = QSym(X) + QSym(xy, X).

In the study of the coinvariant polynomials, it is not difficult to prove that the
quotient Clzy, X|/(BQSym™) is isomorphic to the quotient C[X]/{QSym™) studied
in [3]. To see this, we observe that if G is the Grobner basis of (QQSym™) constructed
in [3] (see also the next section), then the set {z, G} is a Grobner basis (any syzygy
is reducible thanks to Buchberger’s first criterion, cf. [8]).

The next section is devoted to give a proof of Theorem 2.4 by constructing an
explicit basis for the quotient C[X]/(QInv; ).

3. PROOF OF THE MAIN THEOREM

Our task is here to construct an explicit monomial basis for the quotient space
CIX1/{QInv; ). Let us first recall (cf. [3]) the following bijection which associates
to any vector » € N* a path 7(v) in the N x N plane with steps going north or east
as follows. If v = (11,...,v,), the path w(v) is

(0’0)_) (1/1,0)—>(V1,1)—>(Z/1+V2,1)—>(1/1+]/2,2)—>"'

=W+ tvyn—1)— (v1+ -+ vy,n).

For example the path associated to v = (2,1,0,3,0,1) is

—

We distinguish two kinds of paths, thus two kinds of vectors, with respect to their
“behavior” regarding the diagonal y = z. If the path remains above the diagonal, we
call it a Dyck path, and say that the corresponding vector is Dyck. If not, we say
that the path (or equivalently the associated vector) is transdiagonal. For example
n=1(0,0,1,2,0,1) is Dyck and € = (0, 3,1, 1,0, 2) is transdiagonal.
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n €

We then have the following result which generalizes Theorem 4.1 of [3] and which
clearly implies the Theorem 2.4.

Theorem 3.1. The set of monomials
Bum = {(Xn)™™*/ 7(n) is a Dyck path, 0 < a; < m}
is a basis for the quotient C[X,]/(QInv, ).
To prove this result, the goal is here to construct a Grobner basis for the ideal

Tnm = (QInv} ). We shall use results of [2, 3].
Recall that the lexicographic order on monomials is

(31) X >lex X# iff V >lex M,

if and only if the first non-zero part of the vector v — p is positive.

For any subset S of Q[X] and for any positive integer m, let us introduce 8™ =
{P(X™), P € S}. If we denote by G(I) the unique reduced monic Grébner basis
(cf. [8]) of an ideal I, then the simple but crucial fact in our context is the following.

Proposition 3.2. With the previous notations,
(32) G((&™) = G({S)™

Proof. This is a direct consequence of Buchberger’s criterion. Indeed, if for every pair
g, 9" in G((S)), the syzygy

S(g:9')
reduces to zero, then the syzygy

S(g(X™), g'(X™))
also reduces to zero in G({(S™)) by exactly the same computation. O

Let us recall that in [2] is constructed a family G of polynomials G. indexed by
transdiagonal vectors €. This family is constructed by using recursive relations of the
fundamental quasi-symmetric functions and one of its property (cf. [2]) says that the
leading monomial of G, is: LM(G.) = X¢. Since G is a Grobner basis of 7,1, the
following result is a consequence of Propositions 2.2 and 3.2.

Proposition 3.3. The set G™ is a Grobner basis of the ideal Jp m.

To conclude the proof of Theorem 3.1, it is sufficient to observe that the mono-
mials not divisible by a leading monomial of an element of G™, i.e. by a X™ for ¢
transdiagonal, are precisely the monomials appearing in the set B, r,.
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As a corollary of Theorem 3.1, one gets an explicit formula for the Hilbert series
of SCovy, . For k € N, let SCovfﬁn denote the projection

(3.3) SC’ovr(f = SCovp,m N QW[X]

where Q*)[X] is the vector space of homogeneous polynomials of degree k together
with zero.
Let us denote by F, ,,,(t) the Hilbert series of SCouvy, 1, i.e.

(3.4) Fom Zdlm SCov(k) tk.
k>0
Let us recall that in [3] is given an explicit formula for F, ;:

(3.5) Foi(t) = e <" + k)t

k0n+k

using the number of Dyck paths with a given number of factors (cf. [13]).
The Theorem 3.1 then implies the

Corollary 3.4. With the notations of (3.5), the Hilbert series of SCovy , is given

by
1—¢m
F,n ) =
m(t) 13

from which one deduces the close formula

n (1=t) = /(A-0)(1 —t — 4tma(l — t™)) — 2(1—t™)
> Fpm(t)a" = (1 —t)(2tm — 1) — 2(L — tm) '

F,(t™)
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