IDEALS OF QUASI-SYMMETRIC FUNCTIONS AND
SUPER-COVARIANT POLYNOMIALS FOR §,
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ABSTRACT. The aim of this work is to study the quotient ring R, of the ring
Q[z1,...,2,] over the ideal 7, generated by non-constant homogeneous quasi-
symmetric functions. This article is a sequel of [2], in which we investigated the
case of infinitely many variables. We prove here that the dimension of R,, is given
by C,, the nt* Catalan number. This is also the dimension of the space SH,, of
super-covariant polynomials, defined as the orthogonal complement of 7,, with re-
spect to a given scalar product. We construct a basis for R,, whose elements are
naturally indexed by Dyck paths. This allows us to understand the Hilbert series
of SH,, in terms of number of Dyck paths with a given number of factors.

1. INTRODUCTION

We study, in this paper, a natural analog of the space H,, of covariant polynomials
of §,. Let X denote the n variables z1,...,z, and Q[X]| denote the ring of polyno-
mials in the variables X. Let Z,, denote the ideal of Q[X| generated by all symmetric
polynomials with no constant term. That is

In = <hk(X)ﬂ k > O)a

where h;(X) is the £ homogeneous symmetric polynomials in the variables X. (cf.
[18]). We consider the following scalar product on Q[X]:

(1.1) (P,Q) = P(0X)Q(X)|x_,

where 0X stands for 0x1,...,0x, and in the same spirit X = 0 stands for z; =--- =
7, = 0. The space H,, is defined as the orthogonal complement, denoted by Z.-, of
the ideal Z,, in Q[X].

Equivalently (c¢f. [11], Proposition 1.2.3), covariant polynomials (also known as
Sp-harmonic polynomials) can be defined as polynomials P such that Q(0X)P = 0,
for any symmetric polynomial ¢ with no constant term. Since elements of H,, satisfy
the Laplace equation

(022 + -+ 022)P= AP =0,

every covariant polynomial is also harmonic.
Classical results [1, 22| state that the space H, affords a graded S,-module struc-
ture and is isomorphic (as a representation of S,) to the left regular representation.
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Furthermore, as a graded S,,-module, H,, is isomorphic to the quotient

The space @, appears naturally in other contexts; for instance, as the cohomology
ring of the variety of complete flags [7]. The discussion above implies that

(1.2) dimH, = n!.

Part of the interesting results surrounding the study of H,, involve the fact that it
can also be described as the linear span of all partial derivatives of the Vandermonde
determinant. This is a special case of a general result for finite groups generated by
reflections [22].

By analogy, we consider here the space SH,, = J:- of super-covariant polynomials,
where 7, is the ideal generated by quasi-symmetric polynomials with no constant
term. Since the ring of symmetric polynomials is a subring of the ring of quasi-
symmetric polynomials, we have Z,, C J,, hence J; C T+, thus

SHTL g Hna

which justifies the terminology. Quasi-symmetric polynomials were introduced by
Gessel in 1984 [13] and have since appeared as a crucial tool in many interesting
algebraico-combinatorial contexts (cf. [6, 12, 19, 20, 21]).

As in the corresponding symmetric setup, we have a graded isomorphism

and the approach used in the following work concentrates on this alternate descrip-
tion. We construct a basis of R,, by giving an explicit set of monomial representatives.
This set is naturally indexed by Dyck paths of length n, hence we obtain the following
main theorem.

Theorem 1.1. The dimension of SH,, is given by the well known Catalan numbers:

(1.4) dimSH, — dimR, = C, = —— <2 ") .
n+1\n

In fact, taking into account the grading (with respect to degree), we have the Hilbert
series

n—1 n—1
—k/n+k
15 dim SH®¢# = 3 th
(1:5) 2 dmSHIE =3 %

The article contains five sections. In Section 2 we recall useful definitions and basic
properties. In Section 3 we construct a family G of generators for the ideal J, and
state useful properties of this set. Section 4 is devoted to the proof of the first part
of Theorem 1.1. We construct an explicit basis for R,, which allows us in Section 5
to obtain the Hilbert series of SH,,.

Before we start, let us remark that F. Hivert [15] has developed an action of the
Hecke algebra on Q[X| for which a polynomial is invariant if and only if it is quasi-

symmetric. One way to reformulate his result is to consider the generators e; = (qlf;")
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of the Hecke algebra, where 7; are the standard generators and ¢ is an arbitrary
parameter. Then

(1-6) eiei:tlei_( g €;

1+ q)?
acts, via Hivert’s action, as zero on the polynomial ring. Hence, the quotient of the
Hecke algebra by the relation (1.6), classicaly known as the Temperley-Lieb algebra
TL,(q) (cf. [16]), faithfully acts on polynomials. At ¢ = 1 this is a subalgebra of the
symmetric group algebra. The ring of quasi-symmetric polynomials is then identified
as the invariants Q[X]7%~(@ of the algebra TL,(q) for any value of q. The algebra
TL,(q) is known to have dimension equal to C,. It is striking to discover in this
context that the space R,, above also has dimension C),. In analogy to the classical
covariant theory, one would like to see an action of T'L,(¢q) on R,, which would identify
it as the left regular representation. Unfortunatly, Hivert’s action is not compatible
with multiplication and does not preserve the ideal 7,, hence it does not induce
the desired action on the quotient. This observation raises many new avenues of
investigation.

2. BASIC DEFINITIONS

A composition a« = (a1, @, ..., ) of a positive integer d is an ordered list of
positive integers (> 0) whose sum is d. We denote this by o = d and also say that o
is a composition of size d and denote this by |a|. The integers «; are the parts of «,
and the length /() is set to be the number of parts of a. We denote by 0 the unique
empty composition of size d = 0.

There is a natural one-to-one correspondence between compositions of d and sub-
sets of {1,2,...,d—1}. Let S = {ay, ag, ..., ax} be such a subset, with a; < --- < qy,
then the composition associated to S is ay(S) = (a1 —ag, aa—ay, - . ., agr1—ayx), where
we set ag := 0 and agy1 := d. We denote by D(«) the set associated to « through
this correspondence. For compositions a and [, we say that § is a refinement of «,
if D(a) C D(3), and denote this by § > «a.

We use vector notation for monomials. More precisely, for v = (vq,...,1,) € N*,
we denote X” the monomial

(2.1) xytag? e

For a polynomial P € Q[X], we further denote [X"] P(X) as the coefficient of the
monomial X” in P(X).

For a vector v € N, let ¢(v) represent the composition obtained by erasing zeros
(if any) in v. A polynomial P € Q[X] is said to be quasi-symmetric if and only if,
for any v and p in N*, we have

[X"]P(X) = [X*]P(X)
whenever ¢(v) = ¢(u). The space of quasi-symmetric polynomials in n variables is

denoted by @)sym,,. The space stmfzd) of homogeneous quasi-symmetric polynomials
of degree d admits as linear basis the set of monomial quasi-symmetric polynomials
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indexed by compositions of d. More precisely, for each composition « of d with at
most n parts, we set

(2.2) My= > X"

c(v)=a
For the 0 composition, we set My = 1. Another important linear basis is that of the
fundamental quasi-symmetric polynomials (cf. [13]):

(2.3) Fo=>) M

Bra
with @ = n and £(a) < n. For example, with n = 4,
Fo (21,29, 23,24) = Mo (21,2, %3, T4) + Mi11(21, T2, T3, T4)
= $12$2 + .’1312.’153 + .’1?121'4 + 1'22 T3 + .1722 T4+ 3?32 , Xy
+21ToT3 + T1 To Ty + T1 T3 Ty + To T3 Xy

Part of the interest of fundamental quasi-symmetric functions comes from the
following properties. The first is trivial, but very useful and the second comes from
the theory of P-partitions [20, 21].

Proposition 2.1. For a = (a1, ay,...,04) = d,

xlF(alfl,a%...,ak)(X) + Fa(-rZ; s 7mn) Zf ap > 1:
Q4 F(X)=
1 F(as,05,001) (T25 - - Tn) + Fo(22, ..., 20)  if o = 1.

Let u =wu;---u; € S and v = vy -+ -V € Sjgy1,04m)- Let uwv denote the set of
shuffles of the words u and v, i.e. uww is the set of all permutations w of £+ m such
that v and v are subwords of w. In particular © wv contains (ejnm) permutations.
Let D(u) = {4, u; > u;y1} denote the descent set of u. If § and 7 are the two
compositions such that D(5) = D(u) and D(y) = D(v), then

Proposition 2.2 ([21], Exercise 7.93).
(2:5) FsFy= 3 Fopn(nw):

weU W

In (2.1), the monomials are in correspondence with vectors v € N*. Just as for
compositions, the size v; + --- + v, of v is denoted by |v|. It is also convenient to
denote by ¢(v) the position of its last non-zero component. As usual, v + u is the
componentwise addition of vectors.

For ease of reading, we reserve the use of «, 8 and v to represent compositions,
and the other Greek letters to represent vectors. We use the same symbol « for both
the composition (o, ..., ) and the word «; -- - oy, likewise for vectors.In general,
the length of vectors (or number of variables) is fixed and equal to n. If w is a word
of integers (that is an element of Nt for 0 < k < n) we denote by w0* = w0™* the
vector whose first k£ parts are the letters of w, to which are added n — k zeros at the
end. If u = uy---ux and v = vy - - - v, are words of integers, the word

UV = UL ULV * Uy
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is the concatenation of u and v.
We next associate to any vector v a path 7(v) in the N x N plane with steps going
north or east as follows. If v = (vy, ..., v,), the path 7(v) is

(0,0) — (1/1,0) — (1/1,1) — (1/1 +l/2,1) — (1/1 +I/2,2) —

=W+ tvpn—1)— (11 4+ +vpn).
For example the path associated to v = (2,1,0,3,0,1) is

V) =

—

Observe that the height of the path is always n, whereas its width is |v|.

We distinguish two kinds of paths, thus two kinds of vectors, with respect to
their “behavior” with respect to the diagonal y = z. If the path remains above the
diagonal, we call it a Dyck path, and say that the corresponding vector is Dyck. If
not, we say that the path (or equivalently the associated vector) is transdiagonal.
For example n = (0,0,1,2,0,1) is Dyck and ¢ = (0,2, 1,0, 2,2) is transdiagonal.

n €

Observe that v = vy - - - v, is transdiagonal if and only if there exists 1 < m < n
such that

(2.6) m< v+ 4 Uy
Recall that the classical lexicographic order, on monomials of same degree, is
(27) XV zlex X” iff v zlex H,

where we say that v is lexicographically larger than p, v >ex p, if the first non-zero
part of the vector v — u is positive. For example

x‘z’ S1ex x%xg >1ex xlacg >1ex :1:3 since  (3,0) >ex (2,1) >1ex (1,2) >1ex (0,3).
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3. THE G BASIS

Following [2], we exploit relations (2.4) to construct a family
g = {Gs} C jn

indexed by vectors that are transdiagonal. For a any composition of & < n, the
polynomial G, with ¢ := «0*, is defined to be

(3.1) G, :=F,.

When a # 0, the vector ¢ = a0* is clearly transdiagonal. For a general vector ¢
(not of the form a0*), the polynomial G, is defined recursively in the following way.
Let ¢ = w0aB0* be the unique factorization of € such that w is a word of k£ — 1
non-negative integers, a > 0 is a positive integer, and  is a composition (parts > 0).
Then we set

(3'2) G. = GwaﬁO* — Tk Gw(a—l)ﬂo*-

By induction on the length of the indexing vectors, both terms on the right of (3.2)
are well defined, and we have

e ((waB0*) = b(w(a —1)50%) = £(e) — 1;
e waf0* and w(a — 1)B0* are transdiagonal as soon as ¢ is transdiagonal.

In fact, let m be the first ordinate where 7(¢) crosses the diagonal, this is to say the
smallest integer such that m < e;+::-+¢,,. Then the second assertion follows from

§01+"'+§0m>w1+"'+wm:51+"'+5m_1>m_1)
where ¢ = waf0* and ¢ = w(a — 1)50*.
For example,
G120 = Gia00 — T2 G100

= Flg(x1,$2,$3,$4) — T2 F11($1,332,$3,$4)
2 2 2 2 2 2
= T1%2° + 123" + 214" +X2x3" +To2Ts” +T3T4" + X1 T2T3 + X1 To Ty

+ 212324 + To X3 Ty — T (T1 To + X1 T3 + T1 Ty + To T3 + To Ty + T3 Ty)
2 2 2 2 2 2 2
= 123" + X134 +T1T4" — T2 T3 — T2" Ty +T2X3° + ToXy” + T3T4™.

We observe on this example that the leading monomial (in lex order) of Gigg is

X120 = z1292229. This holds in general for the G family as stated in the following

proposition, for which all technical details can be found in [2].

Proposition 3.1 ([2], Corollary 3.4). The leading monomial LM (G.) of G, is X°.

4. PROOF OF THE MAIN THEOREM

We now give an explicit basis for the space R,, naturally indexed by Dyck paths.
This proves the first part of Theorem 1.1.

Theorem 4.1. The set of monomials
(4.1) B, ={X" | n(n) is a Dyck path}

15 a basis of the space R,,.
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The proof is achieved in a few steps. We start with the following lemma.

Lemma 4.2. Any P(X) € Q[X] is in the linear span of B, modulo J,,. That is
(4.2) P(X)= > ¢X" (mod J,).
XneBy

Proof. Tt clearly suffices to show that (4.2) holds for any monomial X", with v trans-
diagonal. We assume that there exists X” not reducible of the form (4.2) and we
choose X¢ to be the smallest amongst them with respect to the lexicographic order.
Let us write

X® = LM(Ge)
= (X*—G.)+Ge
= X°-G. (modJ,).
All monomials in (X¢ — G.) are lexicographically smaller than X¢ thus they are

reducible. This contradicts our assuption on X¢ and completes our proof. 0

Thus B, spans the space R,. We now prove its linear independence. This is
equivalent to showing that the set G is a Grobner basis of the ideal J,. A crucial
lemma is the following one, which is the quasi-symmetric analogue of a classical result
is the case of symmetric polynomials ([11], Theorem I1.2.2).

Lemma 4.3. If we denote by L[S] the linear span of a set S, then
(4.3) QX]|=LX"F, | X"eB,, a=r>0].
Proof. We have already obtained the following reduction for any monomial X¢ in
QLX].
X = Z c, X" (mod Jp,),
X"€By
which is equivalent to

(4.4) X= ) X"+ ) QuF..
XneB, alEr>1

We then apply the reduction (4.4) to each monomial of the Q),’s and use Proposition
2.2 to reduce products of fundamental quasi-symmetric functions. We obtain (4.3)
in a finite number of operations since degrees strictly decrease at each operation,
because o =7 > 1 implies deg Q, < |¢]. O

The next lemma is the final step in our proof of the Theorem 4.1.

Lemma 4.4. The set G is a linear basis of the ideal J,, i.e.

(4.5) JIn = LG, | € transdiagonal].
Proof. Let us denote by A, the set
(4.6) A = {X¢ | 2525 ab e B).

Now the algebra endomorphism of Q[X] that reverses the variables,

Ti = Tp—i+t1,
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clearly fixes the subalgebra Qsym. In fact it maps F, to F,,, where o’ is the reverse
composition.
It follows from Lemma 4.3 and the endomorphism above that:

(4.7) QX] =L[X*F, | X¢ € A, al=1>0].

Now to prove Lemma 4.4, we reduce the problem as follows. We first use (4.7) and
Proposition 2.2 to write

TIn = (Fa, a|=5>0)qx =L[X F,Fs | X¢€eA,, aEs>0, BFt>1]
=L[XF, | Xt e A, yETr>1].
It is now sufficient to prove that for all X¢ € A, and all v =r > 1
(4.8) X¢F, € L[G. | € transdiagonal).

But Lemma 4.2 implies that any monomial of degree greater than n is in J,. Hence
to prove (4.8), we need only show it for £ and 7 such that |£] + |y| < n. To do that,
we reduce the product

(4.9) o (o (- (25 (a1 F))))
recursively, using

(4.10) Tk Guppor = Gup+1)p0r — Guop+1)s0*
or

(4.11) Ty Guoroor = Guwor10r — Guoror0+-

Relations (4.10) and (4.11) are immediate consequences of the definition of the G
basis (Relation (3.2)).

We have to show that the vectors € generated in this process are all transdiagonal
and that the length £(¢) always remains at most equal to n. Let us first check that
the transdiagonal part. This is obvious in the case of relation (4.11). In the other
case (relation (4.10)), for ¢ = wbB0*, it is sufficient to observe that if m is such that

P14+t Om>m
with m > £(w) (if not, it is evident), then
O+t >m+1>m  and o4+ @l >m+1

where ¢' = w(b+1)80*, and ¢" = w0(b+ 1)50*. We shall now prove that the length
of the €’s always remains at most equal to n. For this we need to keep track of the
term €4,). Two cases have to be considered.

e First case: £y comes from ay,) that has shifted to the right by Relation
(4.10). It could move at most |£| steps to the right, whence

le) < le) + €] <ol + ¢ < n.
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e Second case: gg) is a “1” generated by relation (4.11) that has shifted to the
right. If it is generated by a multiplication by z;, then we consider the vector

N =&n€n—1---&0"
Since X¢ € A, implies m(n) is a Dyck path, we have
n| <€n)=n—k+1
hence the generated “1” can shift at most to position
k+n<k+n-—Fk=n.
O

The recursive process used to reduce a product of form (4.9) is illustrated in the
following example, where n = 5.

T1 13 Fy = an3(331 F21)
= $3(G31000 - G03100)
= z3 G'31000 — 3 Go3100
= G31100 — G'31010 — Goz200 + Go3020-

End of proof of Theorem 4.1. By Lemma 4.2, the set B, spans the quotient R,. As-
sume we have a linear dependence relation modulo 7,, ¢.e. there exists P

P= ) aX‘eI,.
X¢€Bn

By Lemma 4.4, 7, is linearly spanned by the G.’s, thus

P = Z b.G..

€ transdiagonal

This implies LM (P) = X¢, with ¢ transdiagonal, which is absurd. O

A consequence of Lemma 4.4 and Theorem 4.1 is that the set G is a Grobner basis
of J, with respect to the lex order. From this we see bellow that a minimal Grobner
basis of 7, is obtained from G if we select the G, € G such that 7(e) has exactly one
step under the line y = x and no other horizontal steps after that.

Corollary 4.5. A minimal Grébner basis for T, is given by
(4.12) {G.e G |e=w0", L(w)=|w|+1, w+- - +ws<s, fors<l(w)}.

Proof. Theorem 4.1 implies that the monomial ideal LT(J,) of leading terms of 7,
is generated by all monomials X" where 7(n) is transdiagonal. For any such 7 let m
be the smallest integer such that m < n; +---+n,, and let e =7, - - - 9, 100" where
a=m—1—m —---—np_1. The monomial X¢ divides X" which shows that LT(7,)
is generated by the leading monomials of the G, in (4.12). This gives that (4.12) is a
Grobner basis. To show minimality, consider X¢ a monomial that stricly divides the
leading monomial of a G, in (4.12). Since 7(e) has exactly one step under the line
y = x, we have that 7(¢) is not transdiagonal and X¢ & LT(J,). Hence the leading
monomials of the G in (4.12) is a minimal set of generators for LT(7,,). O
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5. HILBERT SERIES

Since Theorem 4.1 gives us an explicit basis for the quotient R,,, which is isomor-
phic to SH,, as a graded vector space, we are able to refine relation (1.4) by giving
the Hilbert series of the space of super-covariant polynomials. For £ € N, let SH%’“)

and R denote the projections
(5.1) SH® = SH, N Q¥ [X]~ R, n Q¥ [X]=RW

where Q*)[X] is the vector space of homogeneous polynomials of degree k together
with zero. Here, we represent Dyck paths horizontally, with n rising steps (1,1) and
n falling steps (1,—1). Let us denote by D{¥) the number of Dyck paths of length
2n ending by exactly k falling steps and by C% the number of Dyck paths of length
2n which have exactly k factors, i.e. £+ 1 points on the axis. The next figure gives
an example of a Dyck path of length 28, ending with 4 falling steps and made of 3
factors.

It is well known that

kE(2n—k—1)!
5.2 D =k =
(5:2) " " n!(n—k)!

?

where the first equality is classical (¢f. [23] for example for a bijective proof), and
the second corresponds to [17], formula (7).
Let us denote by F,(t) the Hilbert series of SH,,, i.e.

(5.3) F,(t) =) dimSH ¢,

k>0

Theorem 5.1. For 0 < k <n — 1, the dimension of SH;’“) 18 given by

(5.4) dim SH® = dimR®) = D("h = cln=k) = Z; ]]z (" ‘]: k) .
For k > n the dimension of SH® is 0.
Proof. By Theorem 4.1, we know that the set

B, ={X" | m(n) is a Dyck path}

is a basis for R,,. It is then sufficient to observe that the path 7(n) associated to n
ends by exactly n — |n| falling steps. O

For example, we have:
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n | Fu(t)
111
2 [ 1+¢
3| 14+2t+2¢
4 |1+ 3t+5t%+ 53
5|1+ 4t + 9% + 143 + 14¢*
6 | 1+ 5t + 14¢2 + 283 + 42t* + 4217
7|1+ 6t + 20t% + 483 + 90t* + 132¢° + 1325
This gives
n—k(n+k\,
(5.5) Fn(t)_;n%( L )t.

from which one easily deduces that the generating series for the F,(t)’s is

1—-—+v1-4 -2
S R)an = =Y =T 2T

(5.6) o 2(t+z-1)

Remark 5.2. The study of various filtrations of the space Q[X], with respect to
family of ideals of quasi-symmetric polynomials, will be the object of a forthcoming

paper [3].
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