

## Partie B — thème 5

## Détection de contours



#### variations « significatives » donnant des indications sur les objets ou structures de l'image

- définition intuitive : discontinuité de luminance ou de couleur
- comment caractériser un contour, sur quels critères?
- comment passer d'une image à une image de contours ?



## Partie B — thème 5

## Détection de contours



variations « significatives » donnant des indications sur les objets ou structures de l'image

- définition intuitive : discontinuité de luminance ou de couleur
- comment caractériser un contour, sur quels critères?
- comment passer d'une image à une image de contours ?



## Partie B — thème 5

## Détection de contours



variations « significatives » donnant des indications sur les objets ou structures de l'image

- définition intuitive : discontinuité de luminance ou de couleur
- comment caractériser un contour, sur quels critères?
- comment passer d'une image à une image de contours ?



## Partie B — thème 5

## Détection de contours



- variations « significatives » donnant des indications sur les objets ou structures de l'image
- définition intuitive : discontinuité de luminance ou de couleur
- comment caractériser un contour, sur quels critères?
- comment passer d'une image à une image de contours ?



## Partie B — thème 5

## Détection de contours



- variations « significatives » donnant des indications sur les objets ou structures de l'image
- définition intuitive : discontinuité de luminance ou de couleur
- comment caractériser un contour, sur quels critères?
- comment passer d'une image à une image de contours ?

discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - plus simple mais ne préserve pas la cohérence globale : dégradées, bruit
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





#### discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - plus simple mais ne préserve pas la cohérence globale : dégradées, bruit.
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





#### discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - > plus simple mais ne préserve pas la cohérence globale : dégradées, bruit
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





#### discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - > plus simple mais ne préserve pas la cohérence globale : dégradées, bruit
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





#### discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - > plus simple mais ne préserve pas la cohérence globale : dégradées, bruit
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





#### discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - > plus simple mais ne préserve pas la cohérence globale : dégradées, bruit
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





#### discontinuités globales : frontières de régions

- segmentation : cohérence, contours fermés
- possibilité d'ajustement à un modèle cible
- discontinuités locales : contours de luminance
  - > plus simple mais ne préserve pas la cohérence globale : dégradées, bruit
  - possibilité de prise en compte des textures
- détection de contours : méthodes locales





# 2. Détection des contours et méthodes dérivatives

2.1. Caractérisation des contours selon une direction









contour vertical, caractérisation horizontale

modélisation de dérivée première la transition

dérivée seconde

domaine continu : modélisation par une augmentation ou diminution d'amplitude

- caractéristiques du contour : importance de la variation (pente), coordonnée du point médian
- localisation dérivative du contour
  - ordre 1 : extrémums de la dérivée première
  - ordre 2 : passage par zéro de la dérivée seconde

# 2. Détection des contours et méthodes dérivatives

2.1. Caractérisation des contours selon une direction









contour vertical, caractérisation horizontale

*modélisation de dérivée première la transition* 

dérivée seconde

- domaine continu : modélisation par une augmentation ou diminution d'amplitude
- caractéristiques du contour : importance de la variation (pente), coordonnée du point médian
- localisation dérivative du contour
  - ordre 1 : extrémums de la dérivée première
  - ordre 2 : passage par zéro de la dérivée seconde

# 2. Détection des contours et méthodes dérivatives

2.1. Caractérisation des contours selon une direction









contour vertical, caractérisation horizontale

*modélisation de dérivée première la transition* 

dérivée seconde

domaine continu : modélisation par une augmentation ou diminution d'amplitude

- caractéristiques du contour : importance de la variation (pente), coordonnée du point médian
- localisation dérivative du contour
  - ordre 1 : extrémums de la dérivée première
  - ordre 2 : passage par zéro de la dérivée seconde

### 2.2. Caractérisation des contours en dimension 2

- Principe
  - déterminer l'emplacement des transitions significatives dans toutes les directions
  - produire une image différentielle représentative des transitions spatiale
- Ordre 1 : caractérisation par le vecteur gradient de la fonction image



analogie avec les images topographiques niveaux de gris ↔ altitudes transitions ↔ dénivelés contours ↔ courbes de niveau



direction du gradientnorme du gradientnormale au contour (pente)importance du contour (dénivelé) $\Phi = \arctan\left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x}\right)$  $|\nabla I(i,j)| = \sqrt{(\frac{\partial I}{\partial i})^2 + (\frac{\partial I}{\partial j})^2}$ 

### 2.2. Caractérisation des contours en dimension 2

- Principe
  - déterminer l'emplacement des transitions significatives dans toutes les directions
  - produire une image différentielle représentative des transitions spatiale
- $\circ$  Ordre 1 : caractérisation par le vecteur gradient de la fonction image



direction du gradientnorme du gradientnormale au contour (pente)importance du contour (dénivelé)
$$\Phi = \arctan\left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x}\right)$$
 $|\nabla I(i,j)| = \sqrt{(\frac{\partial I}{\partial i})^2 + (\frac{\partial I}{\partial j})^2}$ 

### 2.2. Caractérisation des contours en dimension 2

- Principe
  - déterminer l'emplacement des transitions significatives dans toutes les directions
  - produire une image différentielle représentative des transitions spatiale
- $\circ$  Ordre 1 : caractérisation par le vecteur gradient de la fonction image



| direction du gradient                                                                                                       | norme du gradient                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| normale au contour (pente)                                                                                                  | importance du contour (dénivelé)                                                              |
| $\Phi = \arctan\left(\begin{array}{c} \frac{\partial I}{\partial y} \ / \ \frac{\partial I}{\partial x} \end{array}\right)$ | $  abla I(i,j)  = \sqrt{(rac{\partial I}{\partial i})^2 + (rac{\partial I}{\partial j})^2}$ |

 $\circ\,$  Ordre 2 : utilisation du Laplacien (approximation de la dérivée seconde)

• expression de la dérivée seconde de la fonction image I(x, y) :

$$\frac{\partial^2 I}{\partial \vec{N^2}} = \frac{\partial^2 I}{\partial x^2} \cos^2 \Phi + 2 \frac{\partial^2 I}{\partial x \partial y} \cos \Phi \sin \Phi + \frac{\partial^2 I}{\partial y^2} \sin^2 \Phi$$

approximation par l'opérateur laplacien

$$\Delta I(x,y) = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

- mêmes passages par zéro que la dérivée seconde
- simple à mettre en œuvre
- isotrope (invariant par totation)

 $\circ\,$  Ordre 2 : utilisation du Laplacien (approximation de la dérivée seconde)

• expression de la dérivée seconde de la fonction image I(x, y) :

$$\frac{\partial^2 I}{\partial \vec{N}^2} = \frac{\partial^2 I}{\partial x^2} \cos^2 \Phi + 2 \frac{\partial^2 I}{\partial x \partial y} \cos \Phi \sin \Phi + \frac{\partial^2 I}{\partial y^2} \sin^2 \Phi$$

approximation par l'opérateur laplacien

$$\Delta I(x,y) = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

- mêmes passages par zéro que la dérivée seconde
- simple à mettre en œuvre
- isotrope (invariant par totation)

### 2.3. Principe des méthodes dérivatives d'ordre 1 ou 2

- différenciation spatiale du premier ordre
  - calcul du gradient
  - recherche des maximums de la norme du gradient
- différenciation spatiale du second ordre
  - calcul du laplacien
  - recherche des passages par zéro



construction de l'image des contours d'une image monochrome 2D

- images différentielles : calcul des dérivées partielles discrètes
- localisation précise des contours : seuillage

### 2.3. Principe des méthodes dérivatives d'ordre 1 ou 2

- différenciation spatiale du premier ordre
  - calcul du gradient
  - recherche des maximums de la norme du gradient
- différenciation spatiale du second ordre
  - calcul du laplacien
  - recherche des passages par zéro





#### construction de l'image des contours d'une image monochrome 2D

- images différentielles : calcul des dérivées partielles discrètes
- localisation précise des contours : seuillage

# 3. Calcul des dérivées partielles d'une image discrètes

- 3.1. Formulation de la dérivation partielle discrète
  - définition continue :

 $I: D \subset \mathbb{R}^2 \rightarrow [0,1] \qquad (fonction image)$  $\frac{\partial I(x,y)}{\partial x} = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$  $\frac{\partial I(x,y)}{\partial y} = \lim_{h \to 0} \frac{I(x,y+h) - I(x,y)}{h}$ 

• en discret :  $h \ge 1 \Rightarrow$  approximation par différence finie (h = 1)

$$\frac{\partial I(i,j)}{\partial j} = I(i,j+1) - I(i,j)$$
  
$$\frac{\partial I(i,j)}{\partial i} = I(i+1,j) - I(i,j)$$

# 3. Calcul des dérivées partielles d'une image discrètes

- 3.1. Formulation de la dérivation partielle discrète
  - définition continue :

 $I: D \subset \mathbb{R}^2 \rightarrow [0,1] \qquad (fonction image)$  $\frac{\partial I(x,y)}{\partial x} = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$  $\frac{\partial I(x,y)}{\partial y} = \lim_{h \to 0} \frac{I(x,y+h) - I(x,y)}{h}$ 

• en discret :  $h \ge 1 \Rightarrow$  approximation par différence finie (h = 1)

# 3. Calcul des dérivées partielles d'une image discrètes

- 3.1. Formulation de la dérivation partielle discrète
  - définition continue :

 $I: D \subset \mathbb{R}^2 \rightarrow [0,1] \qquad (fonction image)$  $\frac{\partial I(x,y)}{\partial x} = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$  $\frac{\partial I(x,y)}{\partial y} = \lim_{h \to 0} \frac{I(x,y+h) - I(x,y)}{h}$ 

▶ en discret :  $h \ge 1 \Rightarrow$  approximation par différence finie (h = 1)

$$\frac{\partial I(i,j)}{\partial j} = I(i,j+1) - I(i,j)$$

$$\frac{\partial I(i,j)}{\partial i} = I(i+1,j) - I(i,j)$$

$$i = I(i+1,j) - I(i,j)$$

▶ le calcul des DP discrètes se traduit par un produit de convolution :

$$\begin{array}{rcl} \frac{\partial I}{\partial i} & = & \left[ \begin{array}{c} -1 \\ 1 \end{array} \right] * I \\ \frac{\partial I}{\partial j} & = & \left[ \begin{array}{c} -1 & 1 \end{array} \right] * I \end{array}$$

• on peut également utiliser les noyaux :  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  et  $\begin{bmatrix} 1 & -1 \end{bmatrix}$ 

la dérivée partielle d'une image possède des valeurs positives et négatives :

$$\frac{\partial I}{\partial i}$$
,  $\frac{\partial I}{\partial j}$ : [0..255]  $\longrightarrow$  [-255..255]

ce n'est donc pas une image directement affichable

▶ le calcul des DP discrètes se traduit par un produit de convolution :

$$rac{\partial I}{\partial i} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} * I \ rac{\partial I}{\partial j} = \begin{bmatrix} -1 & 1 \end{bmatrix} * I$$

• on peut également utiliser les noyaux :  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  et  $\begin{bmatrix} 1 & -1 \end{bmatrix}$ 

la dérivée partielle d'une image possède des valeurs positives et négatives :

$$\frac{\partial I}{\partial i}$$
,  $\frac{\partial I}{\partial j}$ : [0..255]  $\longrightarrow$  [-255..255]

ce n'est donc pas une image directement affichable

▶ le calcul des DP discrètes se traduit par un produit de convolution :

$$rac{\partial I}{\partial i} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} * I \ rac{\partial I}{\partial j} = \begin{bmatrix} -1 & 1 \end{bmatrix} * I$$

- on peut également utiliser les noyaux :  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  et  $\begin{bmatrix} 1 & -1 \end{bmatrix}$
- ▶ la dérivée partielle d'une image possède des valeurs positives et négatives :

$$\frac{\partial I}{\partial i}$$
,  $\frac{\partial I}{\partial j}$  : [0..255]  $\longrightarrow$  [-255..255]

ce n'est donc pas une image directement affichable

deux stratégies pour ramener les valeurs de la DP dans la dynamique de l'image

 $[-255..255] \longrightarrow [0..255]$ 

- $\left| \frac{\partial I(i,j)}{\partial .} \right| \text{ (valeur absolue) : perte de l'orientation de la dérivée} \\ \frac{1}{2} \frac{\partial I(i,j)}{\partial .} + 127 \text{ (normalisation par rapport à un gris moyen) : réduction de la }$ 
  - dynamique mais conservation de l'orientation



#### valeur absolue



#### normalisation



## ★ Visualisation des dérivées partielles : valeur absolue et maximum



## ★ Visualisation des dérivées partielles : valeur absolue et maximum



## ★ Visualisation des dérivées partielles : valeur absolue et maximum



#### 3.2. Opérateurs dérivatifs dédiés à la détection de contours

- Amélioration de la localisation du contour
  - calcul de la différence autour du point à dériver

$$\begin{array}{ccc} \frac{\partial}{\partial i} : & \left( \begin{array}{c} -1 \\ 1 \end{array} \right) & \longrightarrow & \left( \begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right) \\ \frac{\partial}{\partial j} : & \left( \begin{array}{c} -1 \\ 1 \end{array} \right) & \longrightarrow & \left( \begin{array}{c} -1 \\ 0 \end{array} \right) \end{array}$$



#### 3.2. Opérateurs dérivatifs dédiés à la détection de contours

- Amélioration de la localisation du contour
  - calcul de la différence autour du point à dériver

$$\begin{array}{ccc} \frac{\partial}{\partial i} : & \left( \begin{array}{c} -1 \\ 1 \end{array} \right) & \longrightarrow & \left( \begin{array}{c} 0 \\ 1 \end{array} \right) \\ \frac{\partial}{\partial j} : & \left( \begin{array}{c} -1 \\ 1 \end{array} \right) & \longrightarrow & \left( \begin{array}{c} -1 \\ 0 \end{array} \right) \end{array}$$



#### 3.2. Opérateurs dérivatifs dédiés à la détection de contours

- Amélioration de la localisation du contour
  - calcul de la différence autour du point à dériver

$$\begin{array}{ccc} \frac{\partial}{\partial i} : & \left( \begin{array}{c} -1 \\ 1 \end{array} \right) & \longrightarrow & \left( \begin{array}{c} 0 \\ 1 \end{array} \right) \\ \frac{\partial}{\partial j} : & \left( \begin{array}{c} -1 \\ 1 \end{array} \right) & \longrightarrow & \left( \begin{array}{c} -1 \\ 0 \end{array} \right) \end{array}$$



• Réduction de la sensibilité à la texture et au bruit

filtrage passe-bas avant dérivation



- réduction des détails et épaississement des contours
- construction de dérivateurs contenant le filtrage passe-bas : convolution d'une dérivation dans une direction avec un lissage dans la direction orthogonale
• Réduction de la sensibilité à la texture et au bruit

filtrage passe-bas avant dérivation



- réduction des détails et épaississement des contours
  - construction de dérivateurs contenant le filtrage passe-bas : convolution d'une dérivation dans une direction avec un lissage dans la direction orthogonale

# ★ Composition de dérivation et lissage

On précalcule la composition (dérivation o lissage) en effectuant la convolution des deux opérateurs :

$$\begin{pmatrix} -1 & 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Quel est l'opérateur résultant?



# ★ Composition de dérivation et lissage

On précalcule la composition (dérivation o lissage) en effectuant la convolution des deux opérateurs :

$$\begin{pmatrix} -1 & 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Quel est l'opérateur résultant?

A
 B
 C
 D

 
$$\begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$ 
 $\begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ 
 $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}$ 

Attention : on applique le symétrique du noyau

#### • Opérateurs de Prewitt et de Sobel

composition entre une dérivation et un lissage dans la direction orthogonale

• dérivateurs : 
$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 et  $\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$ 

▶ lissage avec ( 1 1 1 ) : opérateur de Prewitt

$$\frac{\partial}{\partial i} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \qquad \frac{\partial}{\partial j} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

▶ lissage avec ( 1 2 1 ) : opérateur de Sobel

$$\frac{\partial}{\partial i} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \qquad \qquad \frac{\partial}{\partial j} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

#### • Opérateurs de Prewitt et de Sobel

composition entre une dérivation et un lissage dans la direction orthogonale

• dérivateurs : 
$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 et  $\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$ 

lissage avec (1 1 1): opérateur de Prewitt

$$\frac{\partial}{\partial i} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \qquad \frac{\partial}{\partial j} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

▶ lissage avec ( 1 2 1 ) : opérateur de Sobel

$$\frac{\partial}{\partial i} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \qquad \qquad \frac{\partial}{\partial j} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$









Prewitt

Sobel

- Critères de Canny [1983]
  - contour 1D modélisé par une fonction de Heaviside H(t) noyée dans un bruit gaussien

$$H(t) = \begin{cases} 0 ext{ si } t < 0 \\ 1 ext{ si } t \ge 0 \end{cases}$$

 $I(t) = A \times H(t) + \nu(t)$ 

- trois critères pour évaluer la performance d'un détecteur
  - 1. détection : manquer le moins possible de contours
  - 2. localisation : aussi proche que possible du contour véritable
  - 3. unicité : fournir une seule localisation par contour
- recherche d'un filtre  $\Phi$  t.q. le contour corresponde à max ( $\Phi * I$ )
  - solution approximable par la dérivée d'une gaussienne : (-1 0 1) \* G<sub>o</sub>
  - justification formelle des opérateurs de Prewitt et Sober
  - algorithme de détection de contours de Canny (§5.5,

- Critères de Canny [1983]
  - contour 1D modélisé par une fonction de Heaviside H(t) noyée dans un bruit gaussien

$$H(t) \hspace{0.1 cm} = \hspace{0.1 cm} \left\{ egin{array}{c} 0 \hspace{0.1 cm} ext{si} \hspace{0.1 cm} t < 0 \ 1 \hspace{0.1 cm} ext{si} \hspace{0.1 cm} t \geq 0 \end{array} 
ight.$$

$$I(t) = A \times H(t) + \nu(t)$$

- trois critères pour évaluer la performance d'un détecteur
  - 1. détection : manquer le moins possible de contours
  - 2. localisation : aussi proche que possible du contour véritable
  - 3. unicité : fournir une seule localisation par contour
- recherche d'un filtre  $\Phi$  t.q. le contour corresponde à max ( $\Phi * I$ )
  - solution approximable par la dérivée d'une gaussienne : (-1 0 1) \* G<sub>a</sub>
  - justification formelle des opérateurs de Prewitt et Sober
  - algorithme de détection de contours de Canny (§5.5)

- Critères de Canny [1983]
  - contour 1D modélisé par une fonction de Heaviside H(t) noyée dans un bruit gaussien
  - $H(t) = \begin{cases} 0 \text{ si } t < 0 \\ 1 \text{ si } t \ge 0 \end{cases}$   $I(t) = A \times H(t) + \nu(t)$
  - trois critères pour évaluer la performance d'un détecteur
    - 1. détection : manquer le moins possible de contours
    - 2. localisation : aussi proche que possible du contour véritable
    - 3. unicité : fournir une seule localisation par contour

recherche d'un filtre  $\Phi$  t.q. le contour corresponde à max ( $\Phi * I$ )

- solution approximable par la dérivée d'une gaussienne : (-1 0 1 ) \* G<sub>d</sub>
- justification formelle des opérateurs de Prewitt et Sobel
- algorithme de détection de contours de Canny (§5.5,

- Critères de Canny [1983]
  - contour 1D modélisé par une fonction de Heaviside H(t) noyée dans un bruit gaussien
  - $egin{array}{rcl} H(t) &=& \left\{ egin{array}{ccc} 0 & ext{si} & t < 0 \ 1 & ext{si} & t \geq 0 \end{array} 
    ight. 
    ight. \ H(t) &=& A imes H(t) + 
    u(t) \end{array} 
    ight.$

# trois critères pour évaluer la performance d'un détecteur

- 1. détection : manquer le moins possible de contours
- 2. localisation : aussi proche que possible du contour véritable
- 3. unicité : fournir une seule localisation par contour
- recherche d'un filtre  $\Phi$  t.q. le contour corresponde à max ( $\Phi * I$ )
  - ▶ solution approximable par la dérivée d'une gaussienne : ( −1 0 1 ) \* G
  - justification formelle des opérateurs de Prewitt et Sobel
  - algorithme de détection de contours de Canny (§5.5)

- Critères de Canny [1983]
  - contour 1D modélisé par une fonction de Heaviside H(t) noyée dans un bruit gaussien

$$egin{array}{rcl} H(t) &=& \left\{ egin{array}{cccc} 0 & ext{si} & t < 0 \ 1 & ext{si} & t \geq 0 \end{array} 
ight. \ H(t) &=& A imes H(t) + 
u(t) \end{array} 
ight.$$

# ▶ trois critères pour évaluer la performance d'un détecteur

- 1. détection : manquer le moins possible de contours
- 2. localisation : aussi proche que possible du contour véritable
- 3. unicité : fournir une seule localisation par contour

# ► recherche d'un filtre $\Phi$ t.q. le contour corresponde à max ( $\Phi * I$ )

- $\blacktriangleright$  solution approximable par la dérivée d'une gaussienne :  $(-1 \ 0 \ 1 \ ) \ * \ {\it G}_{\sigma}$
- justification formelle des opérateurs de Prewitt et Sobel
- algorithme de détection de contours de Canny (§5.5)

#### • Filtre de Deriche [1987]

- solution exacte à l'équation de Canny
- opérateurs de dérivation D et de lissage L (intégration de D)

$$D(t) = -c t e^{-\alpha |t|}$$
  

$$L(t) = k (\alpha |t| + 1) e^{-\alpha |t|}$$

opérateurs séparables

convolution de la dérivation et du lissage dans des directions orthogonales :

$$\frac{\partial I}{\partial i} = D_i * (L_j * I)$$
  
$$\frac{\partial I}{\partial j} = D_j * (L_i * I)$$

contrôle du lissage au moyen du paramètre  $\alpha$ 

support infini mais implémentation récursive (voir mise en œuvre annexe A)

#### • Filtre de Deriche [1987]

- solution exacte à l'équation de Canny
- opérateurs de dérivation D et de lissage L (intégration de D)

$$D(t) = -c t e^{-\alpha |t|}$$
  

$$L(t) = k (\alpha |t| + 1) e^{-\alpha |t|}$$

opérateurs séparables

convolution de la dérivation et du lissage dans des directions orthogonales :

$$\frac{\partial I}{\partial i} = D_i * (L_j * I)$$
  
$$\frac{\partial I}{\partial j} = D_j * (L_i * I)$$

contrôle du lissage au moyen du paramètre  $\alpha$ 

support infini mais implémentation récursive (voir mise en œuvre annexe A)

#### • Filtre de Deriche [1987]

- solution exacte à l'équation de Canny
- ▶ opérateurs de dérivation *D* et de lissage *L* (intégration de *D*)

$$D(t) = -c t e^{-\alpha |t|}$$
  

$$L(t) = k (\alpha |t| + 1) e^{-\alpha |t|}$$

opérateurs séparables

convolution de la dérivation et du lissage dans des directions orthogonales :

$$\frac{\partial I}{\partial i} = D_i * (L_j * I)$$
  
$$\frac{\partial I}{\partial j} = D_j * (L_i * I)$$

 $\blacktriangleright$  contrôle du lissage au moyen du paramètre  $\alpha$ 

support infini mais implémentation récursive (voir mise en œuvre annexe A)



<u>∂1</u> ∂j



- 4.1. Calcul des dérivées seconde discrètes
  - le laplacien est la somme des dérivées secondes

$$\Delta I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

$$\frac{\partial}{\partial j} \left( \begin{array}{c} \frac{\partial}{\partial j} I \end{array} \right) = \left( \begin{array}{cc} -1 & 1 \end{array} \right) *_{j} \left( \begin{array}{c} \left( \begin{array}{c} -1 & 1 \end{array} \right) *_{j} I \end{array} \right)$$
$$= \left( \left( \begin{array}{c} -1 & 1 \end{array} \right) *_{j} \left( \begin{array}{c} -1 & 1 \end{array} \right) \right) *_{j} I$$
$$= \left( \begin{array}{c} 1 & -2 & 1 \end{array} \right) *_{j} I$$
$$\frac{\partial}{\partial i} \left( \begin{array}{c} \frac{\partial}{\partial i} I \end{array} \right) = \left( \begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) *_{i} I$$

- 4.1. Calcul des dérivées seconde discrètes
  - le laplacien est la somme des dérivées secondes

$$\Delta I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

$$\frac{\partial}{\partial j} \left( \begin{array}{c} \frac{\partial}{\partial j} I \end{array} \right) = \left( \begin{array}{ccc} -1 & 1 \end{array} \right) *_{j} \left( \begin{array}{ccc} (-1 & 1 \end{array} \right) *_{j} I \\ = \left( \left( \begin{array}{ccc} -1 & 1 \end{array} \right) *_{j} \left( \begin{array}{c} -1 & 1 \end{array} \right) \right) *_{j} I \\ = \left( \begin{array}{ccc} 1 & -2 & 1 \end{array} \right) *_{j} I \\ \frac{\partial}{\partial i} \left( \begin{array}{c} \frac{\partial}{\partial i} I \end{array} \right) = \left( \begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) *_{i} I \end{array}$$

- 4.1. Calcul des dérivées seconde discrètes
  - le laplacien est la somme des dérivées secondes

$$\Delta I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

$$\frac{\partial}{\partial j} \left( \begin{array}{c} \frac{\partial}{\partial j} I \end{array} \right) = (-1 \quad 1 \ ) *_j \left( \begin{array}{cc} (-1 \quad 1 \ ) *_j I \end{array} \right)$$
$$= \left( (-1 \quad 1 \ ) *_j (-1 \quad 1 \ ) \right) *_j I$$
$$= (1 \quad -2 \quad 1 \ ) *_j I$$
$$\frac{\partial}{\partial i} \left( \begin{array}{c} \frac{\partial}{\partial i} I \end{array} \right) = \left( \begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) *_j I$$

- 4.1. Calcul des dérivées seconde discrètes
  - le laplacien est la somme des dérivées secondes

$$\Delta I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

$$\frac{\partial}{\partial j} \left( \begin{array}{c} \frac{\partial}{\partial j} I \end{array} \right) = \left( \begin{array}{ccc} -1 & 1 \end{array} \right) *_{j} \left( \begin{array}{ccc} (-1 & 1 \end{array} \right) *_{j} I \\ = \left( \left( \begin{array}{ccc} -1 & 1 \end{array} \right) *_{j} \left( \begin{array}{c} -1 & 1 \end{array} \right) \right) *_{j} I \\ = \left( \begin{array}{ccc} 1 & -2 & 1 \end{array} \right) *_{j} I \\ \frac{\partial}{\partial i} \left( \begin{array}{c} \frac{\partial}{\partial i} I \end{array} \right) = \left( \begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) *_{i} I \end{array}$$

## 4.2. Opérateur laplacien discret

 $\Delta I$ 

► formulation discrète de l'opérateur laplacien :

$$\begin{aligned} (i,j) &= \left( \begin{array}{ccc} 1 & -2 & 1 \end{array} \right) *_{j} I + \left( \begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) *_{i} I \\ &= \left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{array} \right) *_{i} I \\ &= I(j-1,j) + I(j+1,j) + I(i,i-1) + I(i,i+1) - 4I(i,j-1) \\ \end{aligned}$$

#### alternatives

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

## 4.2. Opérateur laplacien discret

► formulation discrète de l'opérateur laplacien :

$$\Delta I(i,j) = (1 -2 1) *_{j} I + \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} *_{i} I$$
$$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} * I$$
$$= I(j-1,j) + I(j+1,j) + I(i,i-1) + I(i,i+1) - 4I(i,j)$$

#### alternatives

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

## 4.2. Opérateur laplacien discret

► formulation discrète de l'opérateur laplacien :

$$\Delta I(i,j) = (1 -2 1) *_{j} I + \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} *_{i} I$$
$$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} * I$$
$$= I(j-1,j) + I(j+1,j) + I(i,i-1) + I(i,i+1) - 4I(i,j)$$

#### ► alternatives

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

## 4.3. Combinaison avec un filtrage passe-bas

- l'opérateur laplacien est très sensible au bruit
- pour la détection de contours : combinaison avec un filtrage gaussien
- $\Delta G_{\sigma}$  : *laplacian of gaussian* (filtre LOG ou chapeau mexicain [Marr et Hildreth, 1980])

$$\Delta G_{\sigma} = \frac{\partial^2 G_{\sigma}}{\partial x^2} + \frac{\partial^2 G_{\sigma}}{\partial y^2} = 1 - \frac{x^2 + y^2}{2\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$



▶ approximable par une différence  $G_{\sigma_1} - G_{\sigma_2}$  de deux gaussiennes (DOG), avec  $\frac{\sigma_2}{\sigma_1} \simeq 1.6$  (voir annexe B)

# ★ Dérivées partielles d'image monochrome



La notation  $\frac{\partial I}{\partial j+}$  (resp.  $\frac{\partial I}{\partial j-}$ ) représente la dérivée partielle calculée en faisant la différence entre le point suivant (resp. le point précédent) et le point courant.

|   | $I_1$                             | $I_2$                             | <i>I</i> 3     | <i>I</i> 4     |
|---|-----------------------------------|-----------------------------------|----------------|----------------|
| А | $\frac{\partial I}{\partial j+}$  | $\frac{\partial I}{\partial j -}$ | $  \nabla I  $ | $\Delta l$     |
| В | $\frac{\partial I}{\partial j+}$  | $\frac{\partial I}{\partial j -}$ | $\Delta l$     | $  \nabla I  $ |
| С | $\frac{\partial I}{\partial j -}$ | $\frac{\partial I}{\partial j+}$  | $  \nabla I  $ | $\Delta I$     |
| D | $\frac{\partial I}{\partial j -}$ | $\frac{\partial I}{\partial j+}$  | $\Delta I$     | $  \nabla I  $ |

# ★ Dérivées partielles d'image monochrome



La notation  $\frac{\partial I}{\partial j+}$  (resp.  $\frac{\partial I}{\partial j-}$ ) représente la dérivée partielle calculée en faisant la différence entre le point suivant (resp. le point précédent) et le point courant.

|   | $I_1$                             | $I_2$                             | <i>I</i> 3     | <i>I</i> 4     |
|---|-----------------------------------|-----------------------------------|----------------|----------------|
| Α | $\frac{\partial I}{\partial j+}$  | $\frac{\partial I}{\partial j -}$ | $  \nabla I  $ | $\Delta I$     |
| В | $\frac{\partial I}{\partial j+}$  | $\frac{\partial I}{\partial j -}$ | $\Delta l$     | $  \nabla I  $ |
| С | $\frac{\partial I}{\partial j -}$ | $\frac{\partial I}{\partial j+}$  | $  \nabla I  $ | $\Delta l$     |
| D | $\frac{\partial I}{\partial j -}$ | $\frac{\partial I}{\partial j+}$  | $\Delta l$     | $  \nabla I  $ |

# 5. De l'image différentielle à l'image de contours

# 5.1. Localisation des contours



image différentielle : maximums de la norme gradient, zéros du laplacien / LOG
 image des contours : seuillage

# 5.2. Méthode historique : croix de Roberts

premier opérateur différentiel [1965]

calcul d'un gradient à partir de différences finies diagonales :

 $D_1 = I(i, j+1) - I(i+1, j)$  $D_2 = I(i, j) - I(i+1, j+1)$ 

- $\blacktriangleright$  norme euclidienne ( $D=\sqrt{D_1^2+D_2^2})$
- seuillage global



# 5.2. Méthode historique : croix de Roberts

premier opérateur différentiel [1965]

calcul d'un gradient à partir de différences finies diagonales :

 $D_1 = I(i, j+1) - I(i+1, j)$  $D_2 = I(i, j) - I(i+1, j+1)$ 

 $\blacktriangleright$  norme euclidienne ( $D=\sqrt{D_1^2+D_2^2})$ 

seuillage global



## 5.2. Méthode historique : croix de Roberts

- premier opérateur différentiel [1965]
- calcul d'un gradient à partir de différences finies diagonales :
  - $D_1 = I(i, j+1) I(i+1, j)$  $D_2 = I(i, j) - I(i+1, j+1)$
- norme euclidienne ( $D = \sqrt{D_1^2 + D_2^2}$ )
- seuillage global







 $Th_1(D)$ 



## 5.3. Maximums de la norme du gradient

- $\circ\,$  Calcul de norme du gradient
  - trois possibilités définition générale de la norme dans  $\mathbb{R}^2$  :  $\left(|x|^p + |y|^p\right)^{\hat{p}}$



#### • Recherche des maximums par seuillage global



- ▶ très simple à mettre en œuvre, mais compromis entre
  - le critère de détection du maximum possible de contours
  - le critère d'unicité de la localisation par contour
- seuil élevés : contours plus fins mais contours manquants (perte de maximums locaux)
- seuil bas : contours épais (+ bruit / texture)

• Plusieurs possibilités pour guider le choix du seuil

seuillage relativement à la moyenne ou à la médiane

$$extsf{TH}_I(i) = \left\{egin{array}{cc} 0 & extsf{si} & i < \mu(I) \ 1 & extsf{sinon} \end{array}
ight.$$

▶ relativement à un pourcentage de valeurs à éliminer : histogramme cumulé





le plus petit *s* t.q.  $ar{h}(s) > 0.8$ 

• Plusieurs possibilités pour guider le choix du seuil

seuillage relativement à la moyenne ou à la médiane

$$extsf{TH}_I(i) = \left\{egin{array}{cc} 0 & extsf{si} & i < \mu(I) \ 1 & extsf{sinon} \end{array}
ight.$$

▶ relativement à un pourcentage de valeurs à éliminer : histogramme cumulé



# Exemple avec le dérivateur de Sobel



Seuillage à la médiane (50%)

1



Image (inversée) de  $||\nabla I||$ 



Seuillage à 90%

Seuillage à la moyenne

## exemple avec les dérivateurs de Sobel et de Deriche



#### Sobel

#### Deriche



norme du gradient

## exemple avec les dérivateurs de Sobel et de Deriche

#### Deriche





Sobel



seuillage à la moyenne
### • Recherche des maximums locaux





• Recherche des maximums locaux dans la direction du vecteur gradient (Canny)



*p*<sub>1</sub> et *p*<sub>2</sub> : à distance 1 de *p* dans la direction de ∇*l*(*p*) = (∂*l*/∂*x*, ∂*l*/∂*y*) = (∂*l*/∂*j*, -∂*l*/∂*i*)
 *p* est un maximum local si ||∇*l*(*p*)|| > ||∇*l*(*p*<sub>1</sub>)|| et ||∇*l*(*p*)|| > ||∇*l*(*p*<sub>2</sub>)||
 estimation de ||∇*l*(*p*<sub>1</sub>)|| et ||∇*l*(*p*<sub>2</sub>)|| par interpolation ou approximation

• Recherche des maximums locaux dans la direction du vecteur gradient (Canny)



*p*<sub>1</sub> et *p*<sub>2</sub> : à distance 1 de *p* dans la direction de ∇*I*(*p*) = (∂*I*/∂*x*, ∂*I*/∂*y*) = (∂*I*/∂*j*, -∂*I*/∂*i*)
 *p* est un maximum local si ||∇*I*(*p*)|| > ||∇*I*(*p*<sub>1</sub>)|| et ||∇*I*(*p*)|| > ||∇*I*(*p*<sub>2</sub>)||
 estimation de ||∇*I*(*p*)|| et ||∇*I*(*p*<sub>2</sub>)|| par interpolation ou approximation

• Recherche des maximums locaux dans la direction du vecteur gradient (Canny)



▶  $p_1$  et  $p_2$ : à distance 1 de p dans la direction de  $\nabla I(p) = (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}) = (\frac{\partial I}{\partial i}, -\frac{\partial I}{\partial i})$ ▶ p est un maximum local si  $||\nabla I(p)|| > ||\nabla I(p_1)||$  et  $||\nabla I(p)|| > ||\nabla I(p_2)||$ 

estimation de  $||\nabla I(p_1)||$  et  $||\nabla I(p_2)||$  par interpolation ou approximation



interpolation bilinéaire point entier le plus proche

• Recherche des maximums locaux dans la direction du vecteur gradient (Canny)



▶  $p_1$  et  $p_2$ : à distance 1 de p dans la direction de  $\nabla I(p) = (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}) = (\frac{\partial I}{\partial i}, -\frac{\partial I}{\partial i})$ ▶ p est un maximum local si  $||\nabla I(p)|| > ||\nabla I(p_1)||$  et  $||\nabla I(p)|| > ||\nabla I(p_2)||$ 

estimation de  $||\nabla I(p_1)||$  et  $||\nabla I(p_2)||$  par interpolation ou approximation



 $\nabla(P)$ 

 $\theta = atan2(-\frac{\partial I}{\partial i}, \frac{\partial I}{\partial i})$ 

interpolation bilinéaire point entier le plus proche



norme du gradient de Deriche

seuillage global à 90%

maxim. locaux seuillés à 90%

## 5.4. Passages par zéro du laplacien



un zéro correspond à un changement de signe horizontal ou vertical :

possible de tester si le signe du produit est négatif

• très sensible au bruit  $\rightarrow$  LOG / DOG + seuillage





## 5.5. Algorithme de Canny

## • Étapes de l'algorithme

- ▶ solution à l'optimisation des trois critères : détection, localisation et unicité
- approximation de l'opérateur optimal par une dérivée de gaussienne (localisation)
  - 1. lissage de l'image avec un filtre gaussien
  - 2. calcul des dérivées partielles de l'image avec

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 et  $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ 

amélioration : utilisation de l'opérateur optimal de Deriche

- localisation des points de contours
  - 3. sélection des maximums locaux (unicité)
  - 4. seuillage par hystérésis (détection)

## • Seuillage par hystérésis

### compromis entre

- conservation des contours (seuil bas)
- suppression du bruit (seuil haut)

## utilisation conjointe de deux niveaux de seuil

 $S_H$  : seuil haut  $S_B$  : seuil bas un pixel P est retenu si  $i_P \ge S_H$ ou  $S_H \ge i_P \ge S_B$ , et P est connexe à un pixel retenu

#### mise en œuvre

- 1. sélection des points  $\geq S_H$
- 2. répeter jusqu'à convergence (éventuellement. un nombre max de fois) : rajout des points  $\geq S_B$  adjacents à un point retenu

utilisable pour n'importe quel seuillage

## • Seuillage par hystérésis

## compromis entre

- conservation des contours (seuil bas)
- suppression du bruit (seuil haut)

## utilisation conjointe de deux niveaux de seuil

 $\begin{array}{l} S_{H}: seuil \ haut\\ S_{B}: seuil \ bas\\ un \ pixel \ P \ est \ retenu \ si\\ i_{P} \geq S_{H}\\ \text{ou} \ S_{H} \geq i_{P} \geq S_{B}, \ \text{et} \ P \ \text{est connexe} \ \text{a} \ \text{un pixel retenu} \end{array}$ 

### mise en œuvre

- 1. sélection des points  $\geq S_H$
- 2. répeter jusqu'à convergence (éventuellement. un nombre max de fois) : rajout des points  $\geq S_B$  adjacents à un point retenu
- utilisable pour n'importe quel seuillage

## • seuillage par hystérésis des maximums locaux d'un gradient de Deriche ( $\alpha = 0.9$ )



seuil bas

hystérésis

## • seuillage par hystérésis des maximums locaux d'un gradient de Deriche ( $\alpha = 0.9$ )



seuil bas

avec l'opérateur optimal de Deriche





3.0 = 90 = 40

avec l'opérateur optimal de Deriche





= 1.4  $\begin{array}{rcl} \alpha & = & 1.4 \\ T_h & = & 60 \\ T_l & = & 30 \end{array}$ 

#### avec l'opérateur optimal de Deriche





= 1.0 $\begin{array}{rcl}
 & = & 1.6 \\
 & T_h & = & 60 \\
 & T_l & = & 8
\end{array}$ 

## avec l'opérateur optimal de Deriche



 $\begin{array}{rcl} \alpha & = & 0.5 \\ T_h & = & 20 \\ T_l & = & 4 \end{array}$ 

#### méthode de Canny standard



Image convertie en monochrome et normalisée entre 0 et 1



Chris Tralie (http://www.ctralie.com/Teaching/EdgeCornerBlob/)

## ANNEXE A

## Implémentation récursive du filtre de Deriche

filtre de Deriche .

$$D(t) = -c t e^{-\alpha|t|}$$
  

$$L(t) = k (\alpha|t|+1)e^{-\alpha|t|}$$

implémentation récursive du filtre de dérivation D $I^{+}(t) = I(t-1) + 2e^{-\alpha}I^{+}(t-1) - e^{-2\alpha}I^{+}(t-2)$  $I^{-}(t) = I(t+1) + 2e^{-\alpha}I^{-}(t+1) - e^{-2\alpha}I^{-}(t+2)$  $I^{D}(t) = (1 - e^{-\alpha})^{2} (I^{+}(t) - I^{-}(t))$ 

implémentation récursive filtre de lissage L

$$I^{+}(t) = a_0 I(t) + a_1 I(t-1) + b_1 I^{+}(t-1) + b_2 I^{+}(t-2)$$

$$I^{-}(t) = a_2 I(t+1) + a_3 I(t+2) + b_1 I^{-}(t+1) + b_2 I^{-}(t+2)$$

$$I^{L}(t) = I^{-}(t) + I^{+}(t)$$

avec: 
$$\begin{cases} k = \frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}} \\ b_1 = 2e^{-\alpha} \\ b_2 = -e^{-2\alpha} \end{cases} \begin{cases} a_0 = k \\ a_1 = k(\alpha-1)e^{-\alpha} \\ a_2 = k(\alpha+1)e^{-\alpha} \\ a_3 = -ke^{-2\alpha} \end{cases}$$

filtre de Deriche :

$$D(t) = -c t e^{-\alpha|t|}$$
  

$$L(t) = k (\alpha|t|+1)e^{-\alpha|t|}$$

► implémentation récursive du filtre de dérivation D  $I^{+}(t) = I(t-1) + 2e^{-\alpha}I^{+}(t-1) - e^{-2\alpha}I^{+}(t-2)$   $I^{-}(t) = I(t+1) + 2e^{-\alpha}I^{-}(t+1) - e^{-2\alpha}I^{-}(t+2)$  $I^{D}(t) = (1 - e^{-\alpha})^{2} (I^{+}(t) - I^{-}(t))$ 

implémentation récursive filtre de lissage L

$$I^{+}(t) = a_0I(t) + a_1I(t-1) + b_1I^{+}(t-1) + b_2I^{+}(t-2)$$
  

$$I^{-}(t) = a_2I(t+1) + a_3I(t+2) + b_1I^{-}(t+1) + b_2I^{-}(t+2)$$
  

$$I^{L}(t) = I^{-}(t) + I^{+}(t)$$

avec:  $\begin{cases} k = \frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}} \\ b_1 = 2e^{-\alpha} \\ b_2 = -e^{-2\alpha} \end{cases} \begin{cases} a_0 = k \\ a_1 = k(\alpha-1)e^{-\alpha} \\ a_2 = k(\alpha+1)e^{-\alpha} \\ a_2 = -ke^{-2\alpha} \end{cases}$ 

application de ces filtres dans les deux directions de l'image
 par exemple, lissage en ligne :

$$I^{+}(i,j) = a_0 I(i,j) + a_1 I(i,j-1) + b_1 I^{+}(i,j-1) + b_2 I^{+}(i,j-2)$$

$$I^{-}(i,j) = a_2 I(i,j+1) + a_3 I(i,j+2) + b_1 I^{-}(i,j+1) + b_2 I^{-}(i,j+2)$$

$$L_i(i,j) = I^{-}(i,j) + I^{+}(i,j)$$

## ANNEXE B

# Approximation du Laplacien de gaussienne (LOG)

• Approximation du LOG par différence de gaussiennes (DOG)

utilisation de deux gaussiennes de variance proche :

 $\frac{\sigma}{\sigma'}$  de l'ordre de 1.6



bénéficie de l'impémentation récursive du filtre gaussien



