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Abstract

In this work we present a new algorithm for digital images unsupervised enhancement with simultaneous global and

local effects, called ACE for Automatic Color Equalization. It is based on a computational model of the human visual

system that merges the two basic ‘‘Gray World’’ and ‘‘White Patch’’ global equalization mechanisms. Inspired by some

adaptation mechanisms of the human vision, it realizes a local filtering effect by taking into account the color spatial

distribution in the image. Like the human visual system, ACE is able to ‘‘adapt’’ to widely varying lighting conditions

and to extract visual information from the environment efficaciously. It has shown promising results in achieving

different equalization tasks, e.g. performing color and lightness constancy, realizing image dynamic data driven

stretching, controlling the contrast. Characteristics, tests and results are presented.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the abilities of the human visual system

is to steadily perceive a scene regardless of the

changes in lighting conditions; we refer to this

phenomenon as color constancy (Wyszecky and

Stiles, 1982). However, while the human visual

system stabilizes perception when there are illu-

minant variations, from another view point human

visual system makes the perception of object�s re-

flectances dependent on the chromatic and spatial

composition of the scene (Albers, 1975; DeValois

and DeValois, 1988). Thus the final visual ap-

pearance can not be explained with just a global

approach; identical visual stimuli in different con-

texts can originate different visual appearances.

The goal of these mechanisms is to maximize

the image�s dynamics, as well as the information

content of the perceived scene. Following this

consideration, the basic idea of this work is to

develop a digital image automatic enhancement

algorithm that mimics some characteristics of the

human visual system, in particular, color con-

stancy and lightness constancy, not considering all

its complex inner mechanisms. However, some ad-

aptation properties can be described by low level

principles like chromatic channels independent
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adaptation (McCann, 1999), White Patch (von

Kries, 1970) and Gray World (Buchsbaum, 1980)

adapting behavior, lateral inhibition mechanism

(Hartline et al., 1956) and local–global adaptation

(McCann, 1987).

In some cases the human visual system nor-

malizes its channel values, maximizing toward a

hypothetical white reference area, achieving color

constancy. We refer to this mechanism as White

Patch. When the mean luminance of the scene

changes, our visual system performs various mech-

anisms to adapt to the new condition. This allow

us to have comparable luminance perception de-

spite this change. In photography this is done by

modifying lens aperture and shutter time, in order

to acquire the image with gray levels fitted on the

available dynamic. In the imaging field, when this

happens independently between the three chro-

matic channels, some global chromatic dominant

can be eliminated. We refer to this mechanism as

Gray World. This correction mechanism is an im-

portant component of the adaptation process, but

if used as stand alone model, it fails to achieve

color constancy in some cases (Rizzi et al., 2002),

among them when Gray World assumption is not

respected. We recall the difference between Gray

World and White Patch mechanisms and Gray

World and White Patch assumptions. The first

ones are properties of image correction algorithms

while the latter are properties of images to be

corrected. These assumptions are respected for

White Patch when a white area is present in the

scene and for Gray World when all the tones in the

scene can be represented in an image with a gray

mean value, keeping the visual naturalness of the

scene. At first sight, White Patch and Gray World

can be considered as competing processes, but they

can actually be part of the same model.

Channel independence, Gray World and White

Patch mechanisms do not account for all the as-

pects of visual appearance: we need to also take

into account spatial relationships in the scene, like

other models do (McCann, 1999; Land and

McCann, 1971; Spitzer and Sherman, 2002). In

fact, visual appearance not only depends on the

above mentioned adaptation mechanisms. Other

complex mechanisms are involved in producing

the final visual result; among them perceptual

spatial interaction like assimilation and contrast

(Adelson, 1993).

ACE aims to model a simplified version of the

inner complex behavior of the human visual sys-

tem, reproducing in a qualitative way the above

mentioned adaptation mechanisms. It has been

devised primarily for the enhancement of digital

images, characterized by a lower dynamic range

compared to the high range of real world scenes.

For this reason, a quantitative assessment of the

model has not been carried out so far, it is matter

for further research.

To differentiate the real process from its model,

we use the word adaptation to indicate the bio-

logical adaptations made by the human visual

system in the real world and the word adjustment

to indicate the simplified adaptations of ACE in

the digital images domain. In this paper the term

adjustment will always refer to this meaning.

2. Computing the visual appearance

In order to approximate the visual appearance

of a scene, we have considered in our model

mechanisms of spatial interaction like lateral in-

hibition and local–global contrast. We developed

a model trying to simultaneously combine in a

unique computation some of the mechanisms

involved in the human visual perception (Gatta

et al., 2002). Within this model, every basic prin-

ciple is considered as part of a unique adaptive

behavior involving the contribution of each mecha-

nism to the final result. Each adaptive mechanism

has global and local effects as a consequence of

a number of simple local operations across the

image.

The algorithm has been implemented following

the scheme shown in Fig. 1. The first stage ac-

counts for chromatic spatial adjustment, which is

responsible for color constancy and contrast tun-

ing while a second stage configures the output

range to implement an accurate tone mapping,

performing lightness constancy. The first stage

merges the Gray World and White Patch ap-

proaches performing a kind of lateral inhibition

mechanism, weighted by pixel distance. The result

is a local–global filtering. The second stage maxi-
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mizes the image dynamic, normalizing the white at

a global level only. This two-phase structure is a

characteristic in a majority of the human visual

system computational models in the field of digital

imaging (Hurlbert, 1986; Pattanaik et al., 1998).

This algorithm requires no user supervision, no

statistic characterization and no data preparation.

In Fig. 1, I is the input image, R is an inter-

mediate result and O is the output image while

subscript c denotes the chromatic channels.

2.1. Chromatic/spatial adjustment

In the first stage, the chromatic/spatial adjust-

ment produces an output image R in which every

pixel is recomputed according to the image con-

tent. Each pixel p of the output image R is com-

puted separately for each channel c as follows:

RcðpÞ ¼
X

j2Subset;j 6¼p

rðIcðpÞ � IcðjÞÞ

dðp; jÞ
ð1Þ

where IcðpÞ � IcðjÞ accounts for the lateral inhibi-
tion mechanism, d(�) is a distance function which

weights the amount of local or global contribution,

rð�Þ is the function discussed below that accounts

for the relative lightness appearance of the pixel.

The pixel computation can be extended to

the whole image or restricted to a Subset. In all

the examples and data presented in the paper the

whole image has been used. Tests are in progress

to select random or pre-computed image subsets in

order to accelerate the computation.

In the basic formula 1 no compensation is

computed for the distance of the pixel from the

edge. Consequently, Eq. (1) has been modified with

a normalization coefficient in the following way:

RcðpÞ ¼

P

j2Subset;j 6¼p

rðIcðpÞ�IcðjÞÞ

dðp;jÞ
P

j2Subset;j 6¼p
rmax
dðp;jÞ

ð2Þ

where rmax is the maximum value of rð�Þ.

The lateral inhibition mechanism is simulated

by computing the difference between each pixel

value and all other pixels of the selected image

subset. This difference is tuned by the function rð�Þ,
later presented.

2.1.1. Global/local weight: the d(�) function

The distance dð�Þ weights the global and local

filtering effect, both present in the human visual

system. Global models, in fact, are not able to

simulate several local chromatic adaptation effects,

e.g. the simultaneous contrast or the Cornsweet

effect (Cornsweet, 1970).

Initial tests of the algorithm have been per-

formed using the Euclidean distance (Ed), but al-

ternative functions have been tested. A preliminary

comparison is shown in Fig. 2. Some of the tested

distances include Euclidean, inverse exponential,

Manhattan, maximum, Euclidean, Manhattan2,

maximum2, Euclidean3. Tested distances are shown

in Table 1, where dx and dy are the horizontal and

vertical distances between two pixels.

While only the last two distances in Fig. 2 gave

unsatisfactory results, some functions seem to

achieve better results than others even though

there was no absolute definitive function found.

For the tests in this paper we have chosen the

Euclidean distance Ed, so the distance weighting

function 1=Ed has the shape shown in Fig. 3. The

choice of the distance function requires more in-

vestigation; tests are in progress to compare Ed

and inverse exponential.

Fig. 1. Basic algorithm structure.

A. Rizzi et al. / Pattern Recognition Letters 24 (2003) 1663–1677 1665



2.1.2. Tuning the contrast: the relative lightness

appearance function r(�)
For each pixel in the image, rð�Þ, together with

dð�Þ, controls the relative pixels influence, ac-

counting for the spatial channel lightness adjust-

ment. They compute all the single contributions of

the image content to each final pixel value in the

output image. To perform a Gray World behavior,

Fig. 2. Sample image filtered with different dð�Þ function.

Table 1

Tested distances

Euclidean Inverse exponential Manhattan Maximum

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdx2 þ dy2Þ
p 1

e�aEd
dxþ dy Maxðdx;dyÞ
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rð�Þ has to be an odd function, while the White

Patch behavior is obtained by non-linear en-

hancements of relative differences between pixels.

The non-linearity of rð�Þ derives from its satura-

tion. This mechanisms does not affect the final

channel saturation, since this formula computes

the influence of only one pixel and has to be cal-

culated for all the pixel in the image (or chosen

subset). The channel saturation only depends on

the final stage of dynamic tone reproduction

scaling, further described.

We have tested different rð�Þ functions, trying to
implement an effective White Patch mechanism.

Fig. 4 displays the tested functions. Linear and

Signum functions can be seen as limit cases of a

Saturation function with unitary or infinite slope

respectively.

The variation of the slope of the function rð�Þ
acts as a contrast tuner. It can be seen in the rð�Þ
function comparison shown in Fig. 5. The higher

the slope is, the higher the contrast.

To test the rð�Þ functions color correction capa-

bilities, themeanDE distance inCIELab (Wyszecky

and Stiles, 1982) between two synthetic images of a

living room, computed with a photometric ray

tracer (Marini et al., 1999) under the A and D65

CIE illuminant, before and after the filtering has

been computed. The results are shown in Table 2,

Fig. 3. 3D shape of the weighting function 1=Ed.

Fig. 4. Tested rð�Þ functions.
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The Signum function performs the most effec-

tive color correction, but it increases the contrast

considerably, as shown in the enlarged detail of

Fig. 6. ‘‘S’’ shaped rð�Þ functions with the same

slope mechanisms are under tests.

2.2. Dynamic tone reproduction scaling

The second stage maps the intermediate pixels

matrix R into the final output image O. In this

stage, not only can a simple dynamic maximiza-

tion be made (linear scaling), but also different

reference values can be chosen in the intermediate

matrix to map into gray levels the relative lightness

appearance values of each channel. According to

the chosen reference point, an additional global

balance between Gray World and White Patch can

be added. Two linear scaling methods are pro-

posed to obtain a standard 24 bit output image

from the signed floating point matrix R. However,

alternative scaling methods can be used to take

into account non-linearities typical of the human

lightness adaptation, without changing ACE two-

phases structure.

2.2.1. Linear scaling

This simple method linearly scales the range of

values in Rc independently in the relative channel c

into the range ½0; 255
 using the formula:

Fig. 5. Sample image filtered with different rð�Þ function.

Fig. 6. Enlarged details of a synthetic image filtered using various rð�Þ functions.

Table 2

Mean DE distance between two synthetic images under the A

and D65 CIE illuminant, without any filtering (Original) and

filtered with the various rð�Þ functions

Original Linear Signum Saturation

48.74 7.26 4.54 6.94

1668 A. Rizzi et al. / Pattern Recognition Letters 24 (2003) 1663–1677



OcðpÞ ¼ round½scðRcðpÞ � mcÞ
 ð3Þ

for each pixel p where sc is the slope of the segment

½ðmc; 0Þ; ðMc; 255Þ
, with Mc ¼ maxp RcðpÞ and mc ¼
minp RcðpÞ.

In this case the linear mapping fills the available

dynamic range without further adjustment.

2.2.2. White Patch/Gray World scaling

This alternative method yields better results

linearly scaling the values in Rc with the formula 4

using Mc as white reference and the zero value in

Rc as an estimate for the medium gray reference

point to compute the slope sc. For this reason, the

available dynamic could not be used in its entirety

and tones around the very dark values could be

lost. Alternatively, some values in Oc can result

negative. In this case the values lower than zero are

set to zero.

OcðpÞ ¼ round½127:5þ scRcðpÞ
 ð4Þ

This second method adds a global Gray World

adjustment in the final scaling, thus the dynamic of

the final image is always centered around the me-

dium gray.

3. ACE filtering characteristics

In this section we present an overview of the

more significant ACE characteristics. In fact, its

automatic and unsupervised color correction are

the result of different properties. Some of these

properties depend on the algorithm�s parameters,

others depend on the image content. Quantitative

measures of some of these properties are pre-

sented. Unless differently specified, all the results

presented in this paper have been filtered using the

following parameters: whole image as subset in

formula 2, Saturation function with slope 20 as

rð�Þ, Euclidean distance as dð�Þ, WP/GW scaling in

the second stage.

3.1. Lightness constancy and dynamic modification

Most of the color correction algorithms that

‘‘search for the white’’ increase the overall light-

ness of the image in every case. On the contrary,

ACE, due to its Gray World behavior component,

is able to modify the lightness according to its

original value. In Fig. 7 two examples of ACE

filtering are shown. In the first image, that is

slightly under-exposed, ACE increases the mean

lightness, while in the second one, that is over-

exposed, ACE reduces the lightness.

The effect of the algorithm on the image dy-

namic can be seen in Fig. 8, where the same image

with its histogram is shown before and after the

ACE filtering.

Quantitatively, ACE effects on lightness and

dynamic can be seen in Table 3, where histogram

flatness is the L1 distance between the image his-

togram and a flat histogram on the same image

dimension, percentage used dynamic is the per-

centage of the used values in the available dynamic

range, percentage unused black and percentage

unused white are the percentage of contiguous

Fig. 7. ACE lightness constancy effect.
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Fig. 8. Dynamic range of an image before and after ACE filtering.

Fig. 9. Visual comparison of ACE filtering on the synthetic images.
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unused values in the lower and upper part of the

histogram respectively. Histogram flatness values

are not normalized to the image dimension since

we are interested in comparing differences of this

value on the same image, before and after the ACE

filtering: lower values correspond to flatter histo-

grams.

As it can be noticed from values in Table 3,

ACE moves lightness mean towards medium gray

and increase the percentage of used dynamic and

the flatness of the histogram.

3.2. Color constancy

In order to measure the algorithm�s ability to

perform color constancy, we have computed the

mean DE (Wyszecky and Stiles, 1982) distance

across all the corresponding pixels between two

images of the same size:

DEmean ¼

P

p2Image DEðI1ðpÞ; I2ðpÞÞ

sizex � sizey

where I1 and I2 are the images to be compared,

sizex and sizey are the image dimension in pixels.

From the mathematical point of view, this

measure allows idealized color constancy. DE ¼ 0

indicates a perfect discount of the illuminant and

consequently an absolute perception of the objects

reflectance. Such a separation between illuminant

spectral distribution and objects spectral reflec-

tance does not happen in real conditions: human

visual system performs significant, but incomplete

adaptation (McCann et al., 1976). Thus, the sig-

nificance of this measure comes from the variation

of its value after the adjustment.

For the tests, we have used two image sets: the

University of East Anglia (UEA) uncalibrated

color image database and a set of six synthetic

images generated by a photometric ray tracer

program from the same 3D scene in six different

lighting conditions. The UEA uncalibrated color

image database is a database of 392 design images

made from 28 different designs images under three

light sources using four digital cameras and two

commercial scanners arbitrarily chosen. The im-

ages were acquired under a CIE A, D65 and TL84

lights. In this paper we used only the image set

acquired with the Fuji Mx-700 digital camera. The

six synthetic images were generated with a pho-

tometric raytracing algorithm (Marini et al., 1999)

from a 3D living room model. The light sources

used were the standard Cie illuminant A, B, C,

D65 and a Hg lamp; the latter image was obtained

using a mix of these illuminants.

On the synthetic image set, we have measured

the mean DE chromatic distance for any couple of

illuminants before (Table 4) and after the ACE

filtering (Table 5).

A visual comparison of the ACE filtering on the

synthetic images is shown in Fig. 9. As it can be

noticed, the chromatic dominant of the illuminant

is strongly reduced. In the image with more than

one illuminant ACE leaves some local color bleeds.

This result is in line with the human behavior in

which the chromatic adaptation fails, and we can

notice easily the illuminant color, if different illu-

minants are present in the field of view.

The same measures have been done on the UEA

uncalibrated color image database, on every pat-

tern, obtaining the results summarized in Table 6.

Since ACE realizes low level HVS mechanisms,

it is not able to distinguish an orange cast due to a

tungsten illuminant from the orange of a sunset

landscape. In the case of images with a natural

strong dominant color (i.e. underwater images,

sunsets, etc.), filtering with ACE eliminates the

natural color dominant producing a chromatic

Table 3

Lightness and dynamic data of the two images in Fig. 7 in the same order

Orig ACE Orig ACE

Mean 70.61 126.94 194.73 132.27

Histogram flatness 38249.38 17151.75 48669.59 22442.88

Percentage used dynamic 93.36 97.26 98.83 99.61

Percentage unused black 0.39 0 1.17 0

Percentage unused white 3.90 0 0 0
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distorted image. Similar problem can occur with

particular images far from both the gray world

and the white patch assumptions. To solve this

problem, a higher level scenes classification pro-

gram can be used before the ACE filtering to de-

tect these cases and avoid the filtering or filter with

a conservative parameter tuning to preserve the

original image color.

3.3. Global and local filtering effect

ACE performs simultaneously global and local

filtering. In the example of Fig. 10, ACE eliminates

the global green dominant, due to the illumination

of the scene. This color correction could not be

obtained using a global algorithms like White

Patch. In fact, in the right upper corner of the

image there is visible a white spot. Applying the

White Patch global algorithm in presence of a

white pixel produces an unchanged image.

In Fig. 11 the local effect of ACE is shown. The

pixel differences (bottom Fig. 11) between the

original and the ACE filtered images (top Fig. 11)

are visualized around the 128 gray and are shown

separately for each chromatic channel. Pixels with

different gray values have been changed differently;

this indicates the ACE local filtering effect.

The ACE local effect is visible also in Fig. 12,

where histograms of RMS error (in RGB) and DE

(in CIELab) computed for each couple of corre-

sponding pixels between the original and the ACE

output of Fig. 11 are drawn. The width of these

curves is an index of the numerical and perceptual

locality of ACE filtering.

3.4. Contrast modification

Several definitions of image contrast have been

proposed so far, but the concept of perceived

contrast is still a matter of discussion in the field of

digital imaging as well as in the psycho-physics.

Classic definitions (e.g. Weber, Michelson), used in

several research fields (Michelson, 1927; Jain,

1989; Peli, 1997), are limited to a global notion of

contrast that does not take into account essential

local properties of perceived contrast in images.

In ACE the parameter which is responsible of

the contrast modification is the relative lightness

appearance function rð�Þ which is a local operator.

This results in a contrast modification which can

have independent global and local effects. In Fig.

13 an ACE filtering example is shown; the global

contrast decreases while the local one increases, as

visible in the image details.

Table 5

Mean DE on the ACE filtered synthetic images

Filtered A B C D65 Hg Mix

A 0

B 6.19 0

C 7.22 1.81 0

D65 6.94 1.68 1.33 0

Hg 8.48 5.05 5 5.09 0

Mix 8.74 8.08 8.63 8.46 10.34 0

Table 4

Mean DE on the original synthetic images

Before A B C D65 Hg Mix

A 0

B 36.12 0

C 52.56 17.06 0

D65 48.56 12.51 6.45 0

Hg 46.1 18.42 21.05 19.15 0

Mix 27.1 9.52 25.76 21.55 24.49 0

1672 A. Rizzi et al. / Pattern Recognition Letters 24 (2003) 1663–1677



3.5. Data driven color dequantization

Using ACE to filter an image with a limited

color palette, results in a data driven color de-

quantization. This interesting property derives

from its local behavior, according to which all the

pixels are recomputed in relation to the rest of the

image with a weighting mechanisms that gives

more importance to near pixels. This local re-

computation is the criterion for the final spatial

distribution in the image of the histogram original

quantized value. In the example shown in Fig. 14

liner scaling has been used.

3.6. Following the human vision

We have tested the algorithm on some classic

visual illusions in order to verify whether the ACE

model behaves qualitatively like the human visual

system. Alternative computational models have

been tested in a similar way (Marini and Rizzi,

2000).

Two visual configurations have been chosen

that originate simultaneous contrast and Corn-

sweet effect respectively. These configurations and

the relative ACE outputs are shown in Figs. 15

and 16. Notice that both the ACE computations

follow qualitatively the expected visual appearance

of the two configurations. Quantitative measures

of these shifts will be matter of further research.

Fig. 10. ACE color constancy effect in presence of white pixels.

Table 6

Mean DE on the UEA images, across the illuminants, before

and after the ACE fltering, with the relative decreasing ratio

N Before After After/before

1 40.72 19.73 0.48

2 44.34 17.23 0.39

3 40.39 26.69 0.66

4 41.76 15.53 0.37

5 – – –

6 37.64 18.66 0.5

7 42.11 20.53 0.49

8 41.30 15.20 0.37

9 45.15 25.33 0.56

10 41.96 26 0.62

11 39.53 17.29 0.44

12 47.97 23.05 0.48

13 48.26 24.6 0.51

14 39.84 14.06 0.35

15 38.54 11.52 0.3

16 39.96 13.61 0.34

17 47.12 28.37 0.6

18 42.7 30.97 0.73

19 41.49 15.34 0.37

20 47.89 25.26 0.53

21 43.19 22.03 0.51

22 38.18 17.47 0.46

23 41.16 22.46 0.55

24 40.27 20.11 0.5

25 43.18 18.27 0.42

26 39.87 15.95 0.4

27 44.78 37.29 0.83

28 42.12 27.66 0.66

Mean 42.27 21.12 0.5
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3.7. ACE computational time

The basic ACE algorithm, which has not been

optimized, has an OðN 2Þ computational cost where
N is the pixels number of the image. On a

PIII@700Mhz, running Windows 2000, takes 8.500

to compute a 100� 75 pixels image and 604400 to

compute a 192� 192 pixels image. These data re-

fer to computations in which the whole image is

used as subset in formula 2.

A multilevel approach or an automatic selection

of image subsets are two of the possible driving

lines for its optimization. Tests are in progress to

select random or pre-computed image subsets in

order to accelerate the computation.

Regarding the first approach, an optimized

version of the algorithm based upon a local linear

look up table (LLL) speed-up technique (Rizzi and

Gatta, 2002) has been developed and is currently

under test. The idea underlying the LLL method,

shown in Fig. 17, is to apply the ACE algorithm to

a small sub-sampled version of the original image

and to create three LUT mapping functions (for R,

G and B) between the two sub-sampled images

(the ACE filtered and the original sub-sampled

one). These mapping functions are then used to

quickly filter the original full size image, generat-

ing each pixel in the final color corrected image,

via a local interpolation on the LUT values, sep-

arately on each chromatic channel.

At a preliminary analysis, this speed-up method

has given promising results. A visual comparison

of the basic and LLL–ACE algorithms do not re-

veal significant differences (see Fig. 18) while the

computational times are strongly reduced (200 for

the image 192� 192 and almost instantaneous for

the image 100� 75, using a scaling factor 4).

4. Conclusions and perspectives

A new algorithm for unsupervised digital image

color equalization, called ACE, has been pre-

sented. It derives from a new model that tries to

mimic relevant adaptation behaviors of the human

Fig. 12. RMS (in RGB) and DE (in CIELab) histograms be-

tween the original and the ACE output of Fig. 11.

Fig. 11. ACE local filtering effect.
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Fig. 14. ACE color dequantization (linear scaling).

Fig. 13. ACE global and local contrast modification effect.
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Fig. 15. Simultaneous contrast visual configuration and the

relative ACE filtering.

Fig. 16. Cornsweet effect and the relative ACE filtering.

Fig. 17. Local linear LUT ACE scheme.

Fig. 18. Local linear LUT ACE and basic ACE visual comparison.
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visual system, such as lightness constancy and

color constancy. The first phase of visual encod-

ing, recovers the appearance of the scene areas and

the second phase of display mapping normalizes

the values of the filtered image, maximizing its

dynamic.

Results are promising: ACE has proven to

achieve an effective color constancy correction and

a satisfactory tone equalization performing si-

multaneously global and local image correction.

However, ACE is an ongoing research; to tune

some of its internal functions and parameters

further investigation is required. In particular,

different weighting distances dð�Þ, relative lightness
appearance functions rð�Þ and alternative linear

and logarithmic tone reproduction scaling meth-

ods are under test. The computational cost of the

basic algorithm is very high. To overcome this

limitation a multilevel version has been developed;

also its performance is under test.
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