Notes de Cours - Programmation 1
2011 - 2012

Pascal Ferraro

18 septembre 2011

Table des matieres

1 Introduction a la programmation en Langage C 9
1.1 Quelques Références 11
1.2 Historique 11
1.3 LeLangage C e 11
1.4 D’un programme a son exécution 12

1.4.1 Forme générale d'un programme C 12
1.4.2 Un exemple de programme L 12
1.4.3 Commentaires sur lecode 13
1.5 Lacompilation e 13
1.5.1 Illustration de la chaine programme - exécutable 15
1.6 Le premier module 15
1.6.1 Décomposition du programme 15
1.6.2 La compilation séparée Lo 17
1.7 Un changement d’implémentation 17
1.7.1 Un nouveau client du module Somme 18
1.8 Résumé e 18
1.9 Une courte introduction a la qualité d’un logiciel 19
1.9.1 Sources d’erreurs Lo o e e e e 19

1.10

1.9.2 Lanon qualité des systemes informatiques a des conséquences qui peuvent

SEre treS Graves i o e e e e e e e e e e 21
1.9.3 Evaluation de la qualité logicielle 22
1.9.4 Amélioration de la qualité 23
Tests Unitaires o 0 e 24
1.10.1 Le test boite blanche oo 24

1.10.2 Le test bolte noire 25
1.10.3 Le test de non-régression Lo 25
1.10.4 Outils automatiques L 25
1.10.5 Conclusion e 25

1.10.6 Concrétement 26

Chapitre 1

Introduction a la programmation en
Langage C

Sommaire

1.1 Quelques Références. it 11
1.2 Historique i e e e e e e e e e e e e e e e e e e 11
1.3 LeLangage C i i i i i i ittt ittt ittt e e e 11
1.4 D’un programme a son exécution 0L, 12
1.4.1 Forme générale d’un programme C 12
1.4.2 Un exemple de programme 12
1.4.3 Commentaires sur lecode 13
1.5 Lacompilationt 13
1.5.1 Illustration de la chaine programme - exécutable 15
1.6 Le premiermodule00 15
1.6.1 Décomposition du programme 15
1.6.2 La compilation séparée 17
1.7 Un changement d’implémentation 17
1.7.1 Un nouveau client du module Somme 18
1.8 Résumé i i i i e e e e e e e e e e e e e 18
1.9 Une courte introduction a la qualité d’un logiciel 19
1.9.1 Sources d'erreurs 19

1.9.2 La non qualité des systemes informatiques a des conséquences qui
peuvent étre trées graves 21
1.9.3 Evaluation de la qualité logicielle 22
1.9.4 Amélioration de la qualité L. 23
1.10 Tests Unitaires o o i i i i ittt ittt e e e e e 24
1.10.1 Le test boite blanche oL 24
1.10.2 Le test boite noire L 25
1.10.3 Le test de non-régression 25
1.10.4 Outils automatiques L oo 25
1.10.5 Conclusion 25
1.10.6 Concretement 26

Objectifs Cette unité d’enseignement traite un grand nombre de techniques de base de la
programmation en vue d’augmenter la lisibilité et la modularité du code, et donc d’améliorer
la maintenabilité.

Equipe pédagogique
— Chargé de cours : Pascal Ferraro
— Chargés de TD : Aurélie Bugeau, Marie-Christine Counilh, Stefka Gueorguieva et Jean-
Claude Ville.

Organisation
— Cours Magistraux 20
— Travaux Dirigés 40
Mode d’évaluation :
— Controle Continu (CC) (coeff 0.5)
— Devoir Surveillé obligatoire (DS) - 1h20
— Travaux Pratiques (TP)
— 3 Tests (T)
— Note de CC = (0.5*DS)+(0.25*TP)+4(0.25*T)
— Premiere Session
— Examen (EX1) : 1h30 (coeff 0.5)
— Résultat lere session : 0.5*EX1 + 0.5*max(CC,EX1)
— Deuxieme Session
— Epreuves 2nde session : Examen (EX2)- 1h30
— Résultat 2nde session : 0.5*EX2 + 0.5%max(CC,EX2)

L’objectif de ce premier chapitre est de :

1. présenter la chaine allant de I’écriture d’un programme a son exécution,

2. d’introduire la notion de module avec les concepts d’interface et d’implémentation,
3. de montrer la compilation séparée,
4

. d’illustrer les qualités d’un module/programme et de montrer comment une fonction
peut étre testée.

1.1 Quelques Références

1. Braquelaire (J.-P.). — Méthodologie de la programmation en C. — Dunod, 2000, troisieme
édition.

2. Cassagne (B.). — Introduction au langage C. —
http://clips.imag.fr/commun/bernard.cassagne/Introduction_ANSI_C.html.

3. Delannoy (C.). — Programmer en langage C. — Eyrolles, 1992.

4. Faber (F.). — Introduction a la programmation en ANSI-C. —
http://www.ltam.lu/Tutoriel_Ansi_C/.

5. Kernighan (B.W.) et Richie (D.M.). — The C programming language. — Prentice Hall,
1988, seconde édition.

6. Loukides (M.) et Oram (A.). - Programming with GNU software. - O’Reilly, 1997.

1.2 Historique

Le C a été congu en 1972 par Dennis Richie et Ken Thompson, chercheurs aux Bell Labs,
afin de développer un systeme d’exploitation UNIX sur un DEC PDP-11. En 1978, Brian
Kernighan et Dennis Richie publient la définition classique du C dans le livre The C' Pro-
gramming language. Le C devenant de plus en plus populaire dans les années 80, plusieurs
groupes mirent sur le marché des compilateurs comportant des extensions particulieres. En
1983, PANSI (American National Standards Institute) décida de normaliser le langage; ce
travail s’acheva en 1989 par la définition de la norme ANSI C. Celle-ci fut reprise telle quelle
par I'ISO (International Standards Organization) en 1990.

1.3 Le Langage C

Le langage C est un langage de programmation qui appartient au paradigme de la program-
mation impérative. 1l n’est pas consacré qu’a la programmation systeme. C’est a la fois un
langage :

— compilé,

B typév

— avec des instructions bas-niveau (au plus pres de la machine).

1.4 D’un programme a son exécution

1.4.1 Forme générale d’un programme C

Un programme source C se présente sous forme d’une collection d’objets externes (variables
et fonctions), dont la définition est éventuellement donnée par des fichiers séparés.

Tout programme C est composé d’un programme principal, c’est une fonction parti-
culiere qui porte toujours le nom de main.

Une variable est un objet manipulé par le programme, qui possede un nom et un type. Le
type définit I’ensemble des valeurs possibles pour 1’objet.

En C, tout module (sous-programme) porte le nom de fonction. Une fonction est un sous-
programme. Il s’agit d’un mécanisme permettant de donner un nom a un bloc afin de pouvoir
le réutiliser en différents points du programme. Une fonction permet d’enfermer certains trai-
tements dans une ”boite noire”, dont on peut ensuite se servir sans se soucier de la maniere
dont elle a été programmée. Toutes les fonctions, dont le programme principal, sont constituées
d’un bloc. Un bloc est une suite d’instructions & l'intérieur d’accolades ”{ }”.

1.4.2 Un exemple de programme

Exemple le fichier progSomme.c

#include <stdlib.h>
#include <stdio.h>

int somme(int);

int main(int argc, char **arg)

{

int i = 10;
printf("La somme des %d premiers entiers est %d \n", i, somme(i));

int somme(int i)

{

int resultat = O;
for (int k = 0; k <= i; k++)
{
resultat += k;

}

return resultat;

1.4.3 Commentaires sur le code

— Un bloc commence par une accolade ouvrante { et se termine par une accolade fermante
}.

— Les commentaires se mettent entre /* et */. Les commentaires peuvent alors étre sur
plusieurs lignes. On peut également utiliser \\, mais alors le commentaire ne s’étale que
sur une seule ligne.

— void main() définit une fonction appelée main qui ne recoit pas d’arguments. C’est le
nom du programme principal. void signifie que la fonction ne retourne rien. On parle
souvent dans ce cas de procédure.

— La directive #include permet l'inclusion des fichiers stdlib.h et stdio.h

— Il y a une différence entre définition et déclaration :

— La déclaration de la fonction somme
— La définition de la fonction somme

— Toutes les instructions sont terminées par un “; ”

— On définit un programme principal par la fonction main

— On utilise la notion de bloc d’instructions.

— On utilise le type int

— On définit une variable et on l’initialise en méme temps

— On utilise la fonction printf : le programme principal (fonction main) appelle la fonction
printf, de la bibliotheque stdio.h, pour afficher la séquence de caracteres "La somme
des %d premiers entiers est %d /n” dans laquelle chaque % indique I’endroit ou
I'un des arguments suivants (le deuxiéme, troisiéme, etc.) doit se substituer, et sous quel
format 'afficher. Le caractere /n est un caractere spécial permettant le retour a la ligne

— On utilise une boucle d’instruction for (...; ...; ...) Lecode quisuit immédiatement
le for va étre éxécuté autant de fois qu’il y a de passages dans la boucle.

A Tintérieur des parentheses, il y a trois parties :

1. initialisation : iCompteur=1k=0 Elle s’effectue une seule fois, avant I’entrée dans la
boucle.

2. test de la condition : k<=i Cette partie controle le déroulement de la boucle. Cette
condition est évaluée :
— Si la condition est vraie, on exécute le corps de la boucle (resultat+=k), puis on
passe a la phase d’incrémentation (k++).
— Si la condition est fausse, la boucle se termine.

3. incrémentation : 'instruction k++ est équivalente & k = k + 1. Apres cette phase,
la boucle reprend en 2.

— On passe des parametres et on récupere une valeur en retour de la fonction somme.

1.5 La compilation

Le C est un langage compilé (par opposition aux langages interprétés). Cela signifie qu'un
programme C est décrit par un fichier texte, appelé fichier source. Ce fichier n’étant évidemment

10

pas exécutable par le microprocesseur, il faut le traduire en langage machine. Cette opération
est effectuée par un programme appelé compilateur. La compilation se décompose en fait en
4 phases successives :

1. Le traitement par le préprocesseur : le fichier source est analysé par le préprocesseur
qui effectue des transformations purement textuelles (remplacement de chaines de ca-
racteres, inclusion d’autres fichiers source ...).

2. La compilation : la compilation proprement dite traduit le fichier généré par le préprocesseur
en assembleur, c’est-a-dire en une suite d’instructions du microprocesseur qui utilisent
des mnémoniques rendant la lecture possible.

3. L’assemblage : cette opération transforme le code assembleur en un fichier binaire, c’est-
a-dire en instructions directement compréhensibles par le processeur. Généralement, la
compilation et ’assemblage se font dans la foulée, sauf si I’on spécifie explicitement que
I’on veut le code assembleur. Le fichier produit par I’assemblage est appelé fichier objet.

4. L’édition de liens : un programme est souvent séparé en plusieurs fichiers source, pour
des raisons de clarté mais aussi parce qu’il fait généralement appel a des librairies de
fonctions standard déja écrites. Une fois chaque code source assemblé, il faut donc lier
entre eux les différents fichiers objets. L’édition de liens produit alors un fichier dit
exécutable.

Les différents types de fichiers utilisés lors de la compilation sont distingués par leur suffixe.
Les fichiers source sont suffixés par .c, les fichiers prétraités par le préprocesseur par .1i, les
fichiers assembleur par .s, et les fichiers objet par .o. Les fichiers objets correspondant aux
librairies pré-compilées ont pour suffixe .a.

Le compilateur C sous UNIX s’appelle cc. On utilise de préférence le compilateur gcc du
projet GNU. Ce compilateur est livré gratuitement avec sa documentation et ses sources. Par
défaut, gcc active toutes les étapes de la compilation. On le lance par la commande :

gcc [options] fichier.c [-llibrairies]

Par défaut, le fichier exécutable s’appelle a.out. Le nom de ’exécutable peut étre modifié a
I’aide de 'option -o.

Les éventuelles librairies sont déclarées par la chaine -1librairie. Dans ce cas, le systeme
recherche le fichier 1iblibrairie.a dans le répertoire contenant les librairies pré-compilées
(généralement /usr/1ib/). Par exemple, pour lier le programme avec la librairie mathématique,
on spécifie -1m. Le fichier objet correspondant est 1ibm.a. Lorsque les librairies pré-compilées
ne se trouvent pas dans le répertoire usuel, on spécifie leur chemin d’acces par 'option -L.

Les options les plus importantes du compilateur gcc sont les suivantes :

— —c : supprime I’édition de liens; produit un fichier objet.

— -E : n’active que le préprocesseur (le résultat est envoyé sur la sortie standard).

— -g : produit des informations symboliques nécessaires au débogueur.

— -Inom-de-répertoire : spécifie le répertoire dans lequel doivent étre recherchés les
fichiers en-tétes a inclure (en plus du répertoire courant).

— -Lnom-de-répertoire : spécifie le répertoire dans lequel doivent étre recherchées les
librairies précompilées (en plus du répertoire usuel).

11

— -0 nom-de-fichier : spécifie le nom du fichier produit. Par défaut, le exécutable fichier
s’appelle a.out.

— -0, -01, -02, -03 : options d’optimisations. Sans ces options, le but du compilateur est
de minimiser le cotit de la compilation. En rajoutant 1'une de ces options, le compilateur
tente de réduire la taille du code exécutable et le temps d’exécution. Les options cor-
respondent & différents niveaux d’optimisation : =01 (similaire & -0) correspond a une
faible optimisation, -03 a ’optimisation maximale.

— =S : n’active que le préprocesseur et le compilateur ; produit un fichier assembleur.

— —v : imprime la liste des commandes exécutées par les différentes étapes de la compilation.

— =W : imprime des messages d’avertissement (warning) supplémentaires.

— -Wall : imprime tous les messages d’avertissement.

1.5.1 Illustration de la chaine programme - exécutable

Pour compiler le programme on utilise le compilateur gcc :
gcc —-std=c99 -c progSomme.c

La compilation génere un fichier progSomme .o
— Ou est la fonction printf ?
— Comment le compilateur vérifie que cette fonction est correctement utilisée 7
— On ne peut pas 'exécuter.
Pour pouvoir le rendre exécutable on utilise I’éditeur de liens :

gcc progSomme.o -0 progSomme

L’édition de liens génére d’un fichier progSomme qui est exécutable.

L’éditeur de lien a trouvé la fonction printf dans la bibliotheque standard (1ibstdc.a

ou libc.a).

— définition d’une bibliotheque,

— Quel est le résultat de I'exécution ?

— Le programme principal : Quelle est la fonction qui est appelée au moment du lancement
de 'exécutable ?
int main(int argc, char **argv)

1.6 Le premier module

1.6.1 Décomposition du programme

On découpe le méme programme en plusieurs fichiers :

— somme.h : ce fichier constitue I'interface du module somme. Il contient les déclarations
nécessaires a 'utilisation du module somme par un client.

— somme. ¢ : Ce fichier constitue I'implémentation du module somme. Il contient les définitions
(codes) nécessaires au fonctionnement du module somme.

12

— client1Somme.c : Ce fichier est 'utilisation par un client des fonctionnalités présentées

par le module somme.
Le code du fichier somme.h

#ifndef _Somme_h_
#define _Somme_h_
extern int somme(int);
#endif

Le code du fichier somme.c :

#include "Somme.h"
int somme(int i)

{

int resultat = O;

for (int k = 0; k <= i; k++)
{
resultat += k;
}
return resultat;

}

Le code du fichier clienti1Somme.c :

#include <stdlib.h>
#include <stdio.h>

#include "Somme.h"

int main(int argc, char #**arg)

{

int i = 10;

printf("La somme des J%d entiers est %d \n", i, somme(i));

}

On dit que le module clientiSomme est un client du module fournisseur somme. Un
module fournit un ensemble d’informations qui peuvent étre utilisées par un module client.
Cette notion sera précisée plus tard. Mais on peut remarquer que le fichier clientiSomme

inclut le fichier somme.h pour vérifier la bonne utilisation du module somme.

Un module en langage C est composé de deux fichiers :

1. Le fichier .h représente ’interface d’un module. Il contient I’ensemble des déclarations
(fonctions, variables) qui peuvent étre utilisés par les clients du module. Il peut également
contenir des définitions de types ainsi que des pseudo-constantes ou des macros.

13

De maniére conceptuelle I'interface d’un module présente 1’ensemble des services/variables
du module qui peuvent étre utilisés par un des clients du module. Elle représente la per-
ception par l'extérieur des fonctionnalités d’un module. L’interface d’un module peut
évoluer, mais elle doit le faire de maniere compatible. C’est-a-dire que la maniere dont
un client percevait un module & un instant donné ne peut diminuer, elle ne peut que
croitre. Pourquoi est-il facile de trouver TOUS les clients d’un module ?

2. Le fichier . c représente I'implémentation d’un module. Il doit fournir une implémentation
(du code) & ce qui est présenté par linterface (services, types, variables). Il s’agit
donc d’une solution informatique choisie pour réaliser 'interface. Cette solution in-
formatique peut donc évoluer pour étre plus efficace, plus lisible, plus sécuritaire ...
L’implémentation doit donc donner du code a tous les services décrits par I'interface
et il peut y avoir aussi du code pour des services internes a I'implémentation. On peut
remarquer que le fichier somme.c inclut I'interface du module somme & savoir le fichier
somme.h.

1.6.2 La compilation séparée

On doit dans un premier temps, compiler séparément le module somme, pour cela on exécute
la commande

gcc —-std=c99 -c somme.c
Puis on compile ensuite le fichier clientiSomme :
gcc —-std=c99 -c clientlSomme.c

On a donc obtenu deux fichiers .o qui sont somme.o et client1Somme.o. Ces deux fichiers
doivent maintenant étre assemblés pour créer un exécutable.

gcc clientlSomme.o somme.o -0 clientlSomme

On peut maintenant exécuter le programme.

1.7 Un changement d’implémentation
On change maintenant I'implémentation du module somme.

#include "Somme.h"
int somme(int i)

{

int resultat = O;

14

while(i >=0)
{
resultat += i;
i--;
}
return resultat;

}

Qu’est-ce que 'on doit refaire pour que le module clienti1Somme puisse fonctionner avec la
nouvelle implémentation ?

1. 11 faut refaire la compilation du module somme.

2. Il faut refaire ’édition de lien.

1.7.1 Un nouveau client du module Somme

#include "Somme.h"
int somme(int i)

{

int resultat = O;

while(i >=0)
{
resultat += i;
i--;
}
return resultat;

}

Que doit-on faire pour que le nouveau client puisse utiliser le module somme.
1. Il faut compiler le module client2Somme.

2. 1l faut faire I’édition de lien avec le module somme.

1.8 Résumé

— Le fichier .h contient les déclarations.

— Le fichier .c contient les définitions.

— Le client d’'un module contient les appels reflétant 'utilisation du module.

— Il faut que les définitions soient en accord avec les déclarations. On inclut toujours
les déclarations dans I'implémentation. C’est & dire que dans un module “Module”, la
premiere ligne du fichier “module.c” est toujours #include module.h.

15

— Il faut que les utilisations soient en adéquation avec les déclarations. Dans un mo-
dule “CLIENT” qui utilise un module “FOURNISSEUR” on met toujours l'inclusion
de “FOURNISSEUR.H” dans CLIENT.C. Sur notre exemple :

somme.o: somme.h somme.c
gcc —c -std=c99 somme.c
clientlSomme.o: somme.h clientlSomme.c
gcc —c std=c99 clientlSomme.c
clientlSomme: somme.o clientSomme.o
gcc std=c99 ClientlSomme.o
somme.o -0 clientSomme.o
gcc std=c99 clientlSomme.o somme.o —o clientSomme.

— Si somme.h est modifié toutes les directives de compilation doivent étre réxécutées.

— Si somme.c change, on refait la compilation de somme.c et I’édition de lien, on ne re-
comppile pas client1Somme. c.

— Si clientlSomme.c change on refait la compilation de clienti1Somme.c et on refait
I’édition de lien.

1.9 Une courte introduction a la qualité d’un logiciel

Selon 'TEEE, un logiciel est : Des programmes, procédures, ainsi que possiblement de la
documentation et des données liées a 'opération d’un systéme informatique.

Les Bugs/défauts/fautes sont la conséquence d’erreurs humaines. Ils résulte de la non-
conformiteé aux exigences et se manifeste comme une panne lors de I'exécution.

1.9.1 Sources d’erreurs

Neuf sources d’erreurs :

1. Mauvaise définition des exigences

2. Problemes de communication entre clients et développeurs

Déviations délibérées des exigences du logiciel

Erreur de conception (logique)

Erreurs de programmation

Non conformité & la documentation ainsi qu’aux instructions de programmation
Insuffisance du processus de tests

Erreurs de l'interface usagers ainsi que de de la procédure

© © N ok W

Erreurs de documentation

16

How PI’OjeCtS Rea”y Work (Version 1.5) Create your own cartoon at www.projectcartoon.com

www pr www proje

“How the customer How the project leader How the analyst How the programmer at the beta testers “How the business
explained it understood it designed it wrote it received consultant described it

wwaDroje

W t project was

www o

“ customer

. .. marketing

~ What operations Hw tcustomer was
documented installed billed advertised really needed

F1GURE 1.1 — Une illustration d’une conception logicielle

17

1.9.2 La non qualité des systéemes informatiques a des conséquences qui

peuvent étre tres graves

Un bug informatique est une anomalie dans un programme informatique I’empéchant de
fonctionner correctement. Sa gravité peut aller de bénigne (défauts d’affichage mineurs) a
majeure (explosion du vol 501 de la fusée Ariane 5). Ces erreurs involontaires de conception
et de codage représentent un tiers du colit des sinistres informatiques! La malveillance quant
a elle cause 60% de ce cofit.

Voici quelques bugs bien identifiées :

12/10/2006 La ”mauvaise utilisation” d’un logiciel a I’origine d’accidents de radiothérapie
a Epinal - Entre mai 2004 et aout 2005, des patients traités aux rayons pour des cancers
de la prostate ont subi des surdosages dus a des erreurs de paramétrage d’un logiciel.
Conséquences actuelles : 5 déces et des complications chez 721 patients...

Cause : "erreur humaine”. Cause réelle : "mauvaise ergonomie d’un logiciel obsolete”.

7 C’est la faute de l'informatique”. Arrét de la distribution par écrit de leur évaluation
aux éleves lors de la derniere séance de chaque cours dans une grande école.

Cause évoquée : mise en place d’un nouveau logiciel de gestion.

Convocation de centenaires a 1’école. Convocation a 1’école primaire de personnes agées
de 106 ans.

Cause : codage sur deux caracteres.

Mission Vénus : passage a 5 000 000 de Km de la planeéte, au lieu de 5 000 Km prévus.
Cause : remplacement d’une virgule par un point (au format US des nombres).
Mariner 1 : la premiére sonde spatiale du programme Mariner, envoyée par la NASA le
27 juillet 1962. La sonde fut détruite peu de temps apres son envol. Colt : 80 millions
de dollars.

Cause : un trait d’union oublié dans un programme Fortran (< plus colteux trait
d’union de l'histoire >, Arthur C. Clarke).

Passage de la ligne. Au passage de I’équateur un F16 se retrouve sur le dos.

Cause : changement de signe de la latitude mal pris en compte.

Y2K : Le bug de ’an 2 000 La lutte contre le bogue de ’an 2000 a cotité a la France
500 milliards de francs. Cause : la donnée ”année” était codée sur deux caracteres, pour
gagner un peu de place.

Socrate. Les plantages fréquents du systeme de réservation de places Socrate de la SNCF,
sa mauvaise ergonomie, le manque de formation préalable du personnel, ont amené un
report important et durable de la clientele vers d’autres moyens de transport.

Cause : rachat par la SNCF d’un systéme de réservation de places d’une compagnie
aérienne, sans réadaptation totale au cahier des charges du transport ferroviaire.
Sécurité de la carte bleue. Le secret des cartes bancaires repose essentiellement sur un
algorithme, qui a été publié sur un newsgroup !

Terminaux de paiement. Le 22 décembre 2001 les 750 000 terminaux de payement chez
les commercants ne répondaient plus, ce qui entrainé de longues files d’attente en cette
période d’achats de Noél. Cause : saturation des serveurs de la société Atos chargés des
autorisation de paiements dépassant 600F. Les autorisation de débit prennent habituel-
lement quelques dizaines de secondes, 'attente a frolé la demi-heure.

Conséquence : des clients abandonnent leurs chariots pleins. Le groupe Leclerc a chiffré
son préjudice a 2 millions d’euros.

18

— Echec du premier lancement d’Ariane V. Au premier lancement de la fusée Ariane V,
celle ci a explosé en vol.
La cause : logiciel de plate forme inertielle repris tel quel d’Ariane IV sans nouvelle
validation. Ariane V ayant des moteurs plus puissants s’incline plus rapidement que
Ariane IV, pour récupérer I’accélération diie a la rotation de la Terre. Les capteurs ont
bien détecté cette inclinaison d’Ariane V, mais le logiciel I’a jugée non conforme au plan
de tir (d’Ariane IV), et a provoqué l'ordre d’auto destruction. En fait tout se passait
bien...
Coiit du programme d’étude d’Ariane V : 38 milliards de Francs, pour 39 secondes
de vol apres 10 années de travail ...
http://www.inria.fr/actualites/inedit/inedit14_evea.fr.html .

On dit qu’il y a des bugs dans tous les logiciels, en petit nombre, et elles ne génent
généralement pas le fonctionnement du systéme et peuvent demeurer inconnues pendant une
longue période. Par contre, certains logiciels sont dits buggés, ils contiennent beaucoup de
bugs qui perturbent parfois gravement le fonctionnement du systeme.

De fagon générale, les programmes des éleves (et des profs) ne marchent jamais du premier
coup! Pourtant ce sont des gens réputés intelligents 7 Alors ou est le probleme ? Quelles sont
les solutions ?

Etes-vous préts a garantir la qualité des logiciels que vous écrivez 7 Leur validite et leur
fiabilité 7 Pourriez-vous démontrer la qualité 7 Pourquoi hésitez-vous ?

Les bugs surviennnent quand le logiciel ne correspond pas au besoin.

Un bug est un non-respect de la spécification du systeme, c’est-a-dire de la définition de ses
fonctionnalités, de ce que le systeme est censé faire. Un programme buggé est un programme
dont la mise en ceuvre ne vérifie pas la spécification.

1.9.3 Evaluation de la qualité logicielle

La norme ISO 9126 définit six groupes d’indicateurs de qualité des logiciels :

— la capacité fonctionnelle. c’est-a~dire la capacité qu’ont les fonctionnalités d’un logiciel
a répondre aux besoins explicites ou implicites des usagers. En font partie la précision,
I'interopérabilité, la conformité aux normes et la sécurité ;

— la facilité d’utilisation, qui porte sur effort (le peu d’) nécessaire pour apprendre &
manipuler le logiciel. En font partie la facilité de compréhension, d’apprentissage et
d’exploitation et la robustesse - une utilisation incorrecte n’entraine pas de dysfonction-
nement ;

— la fiabilité, c’est-a-~dire la capacité d’un logiciel de rendre des résultats corrects quels que
soient les conditions d’exploitation. En font partie la tolérance de pannes - la capacité
d’un logiciel de fonctionner méme en étant handicapé par la panne d'un composant
(logiciel ou matériel) ;

— la performance, c’est-a-~dire le rapport entre la quantité de ressources utilisées (moyens
matériels, temps, personnel), et la quantité de résultats délivrés. En font partie le temps
de réponse, le débit et I’extensibilité - capacité a maintenir la performance méme en cas
d’utilisation intensive ;

— la maintenabilité, qui porte sur Ueffort (le peu d’) nécessaire en vue de corriger ou de

19

transformer le logiciel. En font partie I’extensibilité, c’est-a-dire le peu d’effort nécessaire
pour y ajouter de nouvelles fonctions;

— la portabilité, c’est-a-dire 'aptitude d’un logiciel de fonctionner dans un environnement
matériel ou logiciel différent de son environnement initial. En font partie la facilité d’ins-
tallation et de configuration pour le nouvel environnement.

Chaque caractéristique contient des sous-caractéristiques. Il y a 27 sous-caractéristiques.

En résumé, un programme devrait toujours étre :
— Fiable : On peut avoir confiance dans ces résultats, on peut dire aussi conforme a ces
spécifications fonctionnelles,
— Robuste : Il peux fonctionner dans des conditions anormales sans s’areter.
— Extensible : On peut ajouter de nouvelles fonctionnalités, étendre le périmétre des
données facilement.
Maintenable : Il peut étre corrigé facilement (qualité proche de I'extensibilité)
— Sécurisé : Il ne peut compromettre les ressources sur lesquelles il s’éxécute.
Un module doit étre :
— Lisible : Facile a comprendre a la premiere lecture.
— Autonome : Faiblement couplé, c’est a dire le module dépend le moins possible d’autres
modules.

— Maintenable : les modifications d’une partie de 'implémentation doivent impliquer un
nombre minimal de modifications de code. (NON DUPLICATION DE CODE, séparation
entre interface et implémentation)

— Robuste et fiable (méme notion que pour un programme, mais au niveau du module).

1.9.4 Amélioration de la qualité

En génie logiciel, la recherche d’abstraction, de dissimulation, de structuration, d’unifor-
mité, de complétude et de confirmabilité sont des mesures destinés a améliorer la qualité du
logiciel, en factorisant le code, c’est-a-dire en n’écrivant qu’une fois des instructions similaires.
Cela permet que les modifications soient le plus locales possibles. Cette factorisation concerne
les structures de données elles-mémes (notamment par 1'usage des classes et de 1’héritage),
et les traitements (par l'usage des boucles, fonctions et procédures). Un gain complémentaire
de réduction du code source est apporté par le polymorphisme et la liaison dynamique (qui
éliminent les < procédures aiguillage >) en programmation objet.

La modularité, c’est-a-dire la qualité d’un logiciel d’étre découpé en de nombreux mo-
dules, permet 'abstraction et la dissimulation. Associée avec un couplage faible, elle vise a
augmenter la maintenabilité du logiciel en diminuant le nombre de modules touchés par des
éventuelles modifications, ainsi que la fiabilité en diminuant 'impact que 1’échec d’un module
peut avoir sur les autres modules.

En jargon de programmation, un plat de spaghetti désigne un logiciel de mauvaise qualité
au couplage trop fort et au code source difficile a lire, dans lequel toute modification méme
mineure demande un intense travail de programmation.

L’abstraction vise a diminuer la complexité globale du logiciel en diminuant le nombre
de modules et en assurant ’essentiel. Elle peut également apporter une uniformité du logiciel
qui augmente son utilisabilité en facilitant son apprentissage et son utilisation.

20

La dissimulation vise a séparer completement les détails techniques du logiciel de ses
fonctionnalités selon le principe de la boite noire, en vue d’améliorer sa maintenabilité, sa
portabilité et son interopérabilité.

La structuration des instructions et des données rend clairement visible dans le code
source les grandes lignes de 'organisation des instructions et des informations manipulées, ce
qui améliore sa maintenabilité et facilite la détection des bugs.

De nombreux langages de programmation soutiennent, voire imposent I’écriture de code
source selon les principes de structuration, de modularité et de dissimulation. C’est le cas des
langages de programmation structurée et de programmation orientée objet.

1.10 Tests Unitaires

Le test unitaire consiste a tester la plus petite unité d’une application. Le test unitaire est
un composant essentiel du processus de développement. Il augmente la qualité du code produit
et réduit les temps de développement. Ces résultats sont obtenus grace a deux techniques. La
premiere est liée au fait que le test est réalisé au niveau du module. Nous sommes & ce moment
la proches des méthodes. De ce fait, les chances de générer les cas de test pouvant provoquer
des erreurs, et assurant une couverture de 100% sont plus grandes. La seconde est que le code
est testé des sa création. Ceci simplifie la recherche et la correction d’éventuelles erreurs. Cette
détection précoce des erreurs conduit a une réduction du temps de développement - et donc
des cotts -, car le temps passé pour trouver un bug et les ressources utilisées sont moindres
(des données statistiques indiquent que 2/3 des bogues problématiques en fin d’intégration
auraient pu étre détectés par un test unitaire). D’autres études montrent qu’un expert en
développement passe la moitié de son temps a débugger, cela peut aller jusqu’a 90% du temps
de développement pour un développeur non expérimentés.

Le test unitaire est basé sur trois techniques :

— le test dit boite blanche pour la structure,
— le test dit boite noire pour la fonctionnalité,
— le test de non-régression pour l'intégrité.

1.10.1 Le test boite blanche

Le test boite blanche vérifie si le code est robuste en contrélant son comportement avec des
cas de test inattendus. L’implémentation du module doit étre connue. Le but de ce test est
d’exécuter chaque branche du code avec différentes conditions d’entrée afin de détecter tous
les comportements anormaux.

Il est tres difficile de trouver manuellement les bons cas de test assurant une couverture de
code globale. Malgré le bénéfice de ce test sur la qualité, le test boite blanche est un des tests
les plus difficiles a réaliser sans outils automatiques appropriés.

21

1.10.2 Le test boite noire

Le test boite noire vérifie la fonctionnalité de I'interface publique d’une unité. Dans ce type
de test les détails sur 'implémentation ne sont pas nécessaires.

En général, le test bolte noire nécessite les étapes suivantes :

— créer un plan de test basé sur les spécifications de I'unité,

— créer des jeux de test permettant de tester les spécifications,

— appliquer les cas de test,

— vérifier que les sorties sont conformes.

Principalement, les cas de test doivent étre basés sur les spécifications. Dans le cas ou
les spécifications sont intégrées dans le code (par exemple, du code utilisant le Design by
Contract), il est possible d’automatiser le test boite noire, 'outil automatique ayant un a
priori sur le fonctionnement de I'unité.

1.10.3 Le test de non-régression

Ce test consiste a vérifier si la nouvelle version de I'unité a été corrigée et si la modification
n’a pas généré d’effets de bords. Le principe consiste a tester la nouvelle version de 1'unité
avec le jeu de test précédent.

1.10.4 Outils automatiques

Toutefois, mettre ces techniques en ceuvre peut s’avérer difficile voire méme impossible
dans un projet. Heureusement, il existe des outils ayant la capacité d’automatiser une grande
partie du test unitaire. Ces outils créent I’environnement de test et les bouchons nécessaires
au test des modules. De plus, ils géneérent et appliquent automatiquement des cas de tests
structurels, simplifient le test fonctionnel et automatisent le test de non-régression. Pour C,

1.10.5 Conclusion

Peu importe le type de processus de développement que vous utilisez. Le fait de tester le
plus tot possible va permettre de prévenir, de trouver et de corriger les bugs de maniere efficace
et économique. L’utilisation d’outils automatiques intégrés dans la chaine de développement
vous permettra de réduire les efforts nécessaires a la mise en ceuvre des tests, les cotits et les
temps de développement avec, en plus, un code de meilleure qualité.

Les tests unitaires conduisent a une méthode de développement TTD : Test Driven De-
velopment (développement dirigé par les tests). L’objectif du TDD est de produire du ”code
propre qui fonctionne”. Pour cela, deux principes sont mis en oeuvre :

— un développeur écrit du code nouveau seulement lorsqu’un test automatisé a échoué,

— toute duplication de code (ou plus généralement d’information, ou de connaissances)

doit étre éliminée. L’acronyme anglais DRY (Do not Repeat Yourself) peut étre utilisé
comme moyen mnémotechnique pour cette phase treés importante.

22

Ces deux principes doivent étre strictement respectés, méme s’ils paraissent difficiles ou bi-
zarres dans un premier temps.

1.10.6 Concreétement

On veut tester le module somme que l'on vient d’écrire, comme le module ne rend qu'un
seul service, il suffit de tester la fonction somme.

Les test unitaires portent sur le test d’'un module, on peut :
— Tester les fonctions 1 & 1;

— Tester des suites d’appel de fonction.

Le test du module somme : le module testSomme

Il faut écrire l'interface testSomme.h et I'implémentation testSomme.c :

#ifndef _Test_Somme_h_
#include <stdbool.h>
#include "Somme.h"

#define _Test_Somme_h_
extern bool testSomme(int);
#endif

On peut déja remarquer la dépendance entre le module testSomme et le module stdbool.
On écrit maintenant I'implémentation du module testSomme & savoir le fichier testSomme.c :

#include "testSomme.h"
#include "somme.h"
#include <stdlib.h>
#include <stdio.h>

static int jeuDeTest [] = {1, 4, 9, 13, 35};

bool testSomme(int valATester)

{

int resultatTheorique = valATester*(valATester+1)/2;
return resultatTheorique == somme(valATester);

}

int main(int argc, char **argv)

{
printf ("debut du Test");

int tailleJeuDeTest = sizeof (jeuDeTest)/sizeof (int)- 1;

for(int i=0; i <= tailleJeuDeTest; i++)

{

23

printf ("Test de la valeur %d \n", jeuDeTest[i]);
if (!testSomme (jeuDeTest [1]))
{
printf ("Code Faux pour la valeur %d \n", jeuDeTest[i]);
return EXIT_FAILURE;
}

printf("Test Reussi \n");
return EXIT_SUCCESS;
}

Attention, il faut regarder plus précisement le jeu de tests. Qu’est ce qui se passe avec la
valeur -27 7 Qu’est ce qui se passe avec la valuer 1000000000000 ?

