
Notes de Cours - Programmation 1

2011 - 2012

Pascal Ferraro

18 septembre 2011

2

Table des matières

1 Introduction à la programmation en Langage C 9

1.1 Quelques Références . 11

1.2 Historique . 11

1.3 Le Langage C . 11

1.4 D’un programme à son exécution . 12

1.4.1 Forme générale d’un programme C . 12

1.4.2 Un exemple de programme . 12

1.4.3 Commentaires sur le code . 13

1.5 La compilation . 13

1.5.1 Illustration de la châıne programme - exécutable 15

1.6 Le premier module . 15

1.6.1 Décomposition du programme . 15

1.6.2 La compilation séparée . 17

1.7 Un changement d’implémentation . 17

1.7.1 Un nouveau client du module Somme 18

1.8 Résumé . 18

1.9 Une courte introduction à la qualité d’un logiciel 19

1.9.1 Sources d’erreurs . 19

1.9.2 La non qualité des systèmes informatiques a des conséquences qui peuvent
être très graves . 21

1.9.3 Évaluation de la qualité logicielle . 22

1.9.4 Amélioration de la qualité . 23

1.10 Tests Unitaires . 24

1.10.1 Le test bôıte blanche . 24

3

4

1.10.2 Le test bôıte noire . 25

1.10.3 Le test de non-régression . 25

1.10.4 Outils automatiques . 25

1.10.5 Conclusion . 25

1.10.6 Concrètement . 26

Chapitre 1

Introduction à la programmation en
Langage C

Sommaire

1.1 Quelques Références . 11

1.2 Historique . 11

1.3 Le Langage C . 11

1.4 D’un programme à son exécution . 12

1.4.1 Forme générale d’un programme C 12

1.4.2 Un exemple de programme . 12

1.4.3 Commentaires sur le code . 13

1.5 La compilation . 13

1.5.1 Illustration de la châıne programme - exécutable 15

1.6 Le premier module . 15

1.6.1 Décomposition du programme . 15

1.6.2 La compilation séparée . 17

1.7 Un changement d’implémentation 17

1.7.1 Un nouveau client du module Somme 18

1.8 Résumé . 18

1.9 Une courte introduction à la qualité d’un logiciel 19

1.9.1 Sources d’erreurs . 19

1.9.2 La non qualité des systèmes informatiques a des conséquences qui
peuvent être très graves . 21

1.9.3 Évaluation de la qualité logicielle . 22

1.9.4 Amélioration de la qualité . 23

1.10 Tests Unitaires . 24

1.10.1 Le test bôıte blanche . 24

1.10.2 Le test bôıte noire . 25

1.10.3 Le test de non-régression . 25

1.10.4 Outils automatiques . 25

1.10.5 Conclusion . 25

1.10.6 Concrètement . 26

5

6

Objectifs Cette unité d’enseignement traite un grand nombre de techniques de base de la
programmation en vue d’augmenter la lisibilité et la modularité du code, et donc d’améliorer
la maintenabilité.

Équipe pédagogique
– Chargé de cours : Pascal Ferraro
– Chargés de TD : Aurélie Bugeau, Marie-Christine Counilh, Stefka Gueorguieva et Jean-

Claude Ville.

Organisation
– Cours Magistraux 20
– Travaux Dirigés 40

Mode d’évaluation :
– Contrôle Continu (CC) (coeff 0.5)

– Devoir Surveillé obligatoire (DS) - 1h20
– Travaux Pratiques (TP)
– 3 Tests (T)
– Note de CC = (0.5*DS)+(0.25*TP)+(0.25*T)

– Première Session
– Examen (EX1) : 1h30 (coeff 0.5)
– Résultat 1ère session : 0.5*EX1 + 0.5*max(CC,EX1)

– Deuxième Session
– Epreuves 2nde session : Examen (EX2)- 1h30
– Résultat 2nde session : 0.5*EX2 + 0.5*max(CC,EX2)

7

L’objectif de ce premier chapitre est de :

1. présenter la châıne allant de l’écriture d’un programme à son exécution,

2. d’introduire la notion de module avec les concepts d’interface et d’implémentation,

3. de montrer la compilation séparée,

4. d’illustrer les qualités d’un module/programme et de montrer comment une fonction
peut être testée.

1.1 Quelques Références

1. Braquelaire (J.-P.). – Méthodologie de la programmation en C. – Dunod, 2000, troisième
édition.

2. Cassagne (B.). – Introduction au langage C. –
http://clips.imag.fr/commun/bernard.cassagne/Introduction_ANSI_C.html.

3. Delannoy (C.). – Programmer en langage C. – Eyrolles, 1992.

4. Faber (F.). – Introduction à la programmation en ANSI-C. –
http://www.ltam.lu/Tutoriel_Ansi_C/.

5. Kernighan (B.W.) et Richie (D.M.). – The C programming language. – Prentice Hall,
1988, seconde édition.

6. Loukides (M.) et Oram (A.). – Programming with GNU software. – O’Reilly, 1997.

1.2 Historique

Le C a été conçu en 1972 par Dennis Richie et Ken Thompson, chercheurs aux Bell Labs,
afin de développer un système d’exploitation UNIX sur un DEC PDP-11. En 1978, Brian
Kernighan et Dennis Richie publient la définition classique du C dans le livre The C Pro-
gramming language. Le C devenant de plus en plus populaire dans les années 80, plusieurs
groupes mirent sur le marché des compilateurs comportant des extensions particulières. En
1983, l’ANSI (American National Standards Institute) décida de normaliser le langage ; ce
travail s’acheva en 1989 par la définition de la norme ANSI C. Celle-ci fut reprise telle quelle
par l’ISO (International Standards Organization) en 1990.

1.3 Le Langage C

Le langage C est un langage de programmation qui appartient au paradigme de la program-
mation impérative. Il n’est pas consacré qu’à la programmation système. C’est à la fois un
langage :

– compilé,
– typé,
– avec des instructions bas-niveau (au plus près de la machine).

8

1.4 D’un programme à son exécution

1.4.1 Forme générale d’un programme C

Un programme source C se présente sous forme d’une collection d’objets externes (variables
et fonctions), dont la définition est éventuellement donnée par des fichiers séparés.

Tout programme C est composé d’un programme principal, c’est une fonction parti-
culière qui porte toujours le nom de main.

Une variable est un objet manipulé par le programme, qui possède un nom et un type. Le
type définit l’ensemble des valeurs possibles pour l’objet.

En C, tout module (sous-programme) porte le nom de fonction. Une fonction est un sous-
programme. Il s’agit d’un mécanisme permettant de donner un nom à un bloc afin de pouvoir
le réutiliser en différents points du programme. Une fonction permet d’enfermer certains trai-
tements dans une ”boite noire”, dont on peut ensuite se servir sans se soucier de la manière
dont elle a été programmée. Toutes les fonctions, dont le programme principal, sont constituées
d’un bloc. Un bloc est une suite d’instructions à l’intérieur d’accolades ”{ }”.

1.4.2 Un exemple de programme

Exemple le fichier progSomme.c

#include <stdlib.h>

#include <stdio.h>

int somme(int);

int main(int argc, char **arg)

{

int i = 10;

printf("La somme des %d premiers entiers est %d \n", i, somme(i));

}

int somme(int i)

{

int resultat = 0;

for (int k = 0; k <= i; k++)

{

resultat += k;

}

return resultat;

9

}

1.4.3 Commentaires sur le code

– Un bloc commence par une accolade ouvrante { et se termine par une accolade fermante
}.

– Les commentaires se mettent entre /* et */. Les commentaires peuvent alors être sur
plusieurs lignes. On peut également utiliser \\, mais alors le commentaire ne s’étale que
sur une seule ligne.

– void main() définit une fonction appelée main qui ne reçoit pas d’arguments. C’est le
nom du programme principal. void signifie que la fonction ne retourne rien. On parle
souvent dans ce cas de procédure.

– La directive #include permet l’inclusion des fichiers stdlib.h et stdio.h
– Il y a une différence entre définition et déclaration :

– La déclaration de la fonction somme

– La définition de la fonction somme

– Toutes les instructions sont terminées par un “ ; ”
– On définit un programme principal par la fonction main

– On utilise la notion de bloc d’instructions.
– On utilise le type int

– On définit une variable et on l’initialise en même temps
– On utilise la fonction printf : le programme principal (fonction main) appelle la fonction
printf, de la bibliothèque stdio.h, pour afficher la séquence de caractères ”La somme

des %d premiers entiers est %d /n” dans laquelle chaque % indique l’endroit où
l’un des arguments suivants (le deuxième, troisième, etc.) doit se substituer, et sous quel
format l’afficher. Le caractère /n est un caractère spécial permettant le retour à la ligne

– On utilise une boucle d’instruction for (... ; ... ; ...) Le code qui suit immédiatement
le for va être éxécuté autant de fois qu’il y a de passages dans la boucle.
A l’intérieur des parenthèses, il y a trois parties :

1. initialisation : iCompteur=1k=0 Elle s’effectue une seule fois, avant l’entrée dans la
boucle.

2. test de la condition : k<=i Cette partie contrôle le déroulement de la boucle. Cette
condition est évaluée :
– Si la condition est vraie, on exécute le corps de la boucle (resultat+=k), puis on

passe à la phase d’incrémentation (k++).
– Si la condition est fausse, la boucle se termine.

3. incrémentation : l’instruction k++ est équivalente à k = k + 1. Après cette phase,
la boucle reprend en 2.

– On passe des paramètres et on récupère une valeur en retour de la fonction somme.

1.5 La compilation

Le C est un langage compilé (par opposition aux langages interprétés). Cela signifie qu’un
programme C est décrit par un fichier texte, appelé fichier source. Ce fichier n’étant évidemment

10

pas exécutable par le microprocesseur, il faut le traduire en langage machine. Cette opération
est effectuée par un programme appelé compilateur. La compilation se décompose en fait en
4 phases successives :

1. Le traitement par le préprocesseur : le fichier source est analysé par le préprocesseur
qui effectue des transformations purement textuelles (remplacement de châınes de ca-
ractères, inclusion d’autres fichiers source ...).

2. La compilation : la compilation proprement dite traduit le fichier généré par le préprocesseur
en assembleur, c’est-à-dire en une suite d’instructions du microprocesseur qui utilisent
des mnémoniques rendant la lecture possible.

3. L’assemblage : cette opération transforme le code assembleur en un fichier binaire, c’est-
à-dire en instructions directement compréhensibles par le processeur. Généralement, la
compilation et l’assemblage se font dans la foulée, sauf si l’on spécifie explicitement que
l’on veut le code assembleur. Le fichier produit par l’assemblage est appelé fichier objet.

4. L’édition de liens : un programme est souvent séparé en plusieurs fichiers source, pour
des raisons de clarté mais aussi parce qu’il fait généralement appel à des librairies de
fonctions standard déjà écrites. Une fois chaque code source assemblé, il faut donc lier
entre eux les différents fichiers objets. L’édition de liens produit alors un fichier dit
exécutable.

Les différents types de fichiers utilisés lors de la compilation sont distingués par leur suffixe.
Les fichiers source sont suffixés par .c, les fichiers prétraités par le préprocesseur par .i, les
fichiers assembleur par .s, et les fichiers objet par .o. Les fichiers objets correspondant aux
librairies pré-compilées ont pour suffixe .a.

Le compilateur C sous UNIX s’appelle cc. On utilise de préférence le compilateur gcc du
projet GNU. Ce compilateur est livré gratuitement avec sa documentation et ses sources. Par
défaut, gcc active toutes les étapes de la compilation. On le lance par la commande :

gcc [options] fichier.c [-llibrairies]

Par défaut, le fichier exécutable s’appelle a.out. Le nom de l’exécutable peut être modifié à
l’aide de l’option -o.

Les éventuelles librairies sont déclarées par la châıne -llibrairie. Dans ce cas, le système
recherche le fichier liblibrairie.a dans le répertoire contenant les librairies pré-compilées
(généralement /usr/lib/). Par exemple, pour lier le programme avec la librairie mathématique,
on spécifie -lm. Le fichier objet correspondant est libm.a. Lorsque les librairies pré-compilées
ne se trouvent pas dans le répertoire usuel, on spécifie leur chemin d’accès par l’option -L.

Les options les plus importantes du compilateur gcc sont les suivantes :
– -c : supprime l’édition de liens ; produit un fichier objet.
– -E : n’active que le préprocesseur (le résultat est envoyé sur la sortie standard).
– -g : produit des informations symboliques nécessaires au débogueur.
– -Inom-de-répertoire : spécifie le répertoire dans lequel doivent être recherchés les

fichiers en-têtes à inclure (en plus du répertoire courant).
– -Lnom-de-répertoire : spécifie le répertoire dans lequel doivent être recherchées les

librairies précompilées (en plus du répertoire usuel).

11

– -o nom-de-fichier : spécifie le nom du fichier produit. Par défaut, le exécutable fichier
s’appelle a.out.

– -O, -O1, -O2, -O3 : options d’optimisations. Sans ces options, le but du compilateur est
de minimiser le coût de la compilation. En rajoutant l’une de ces options, le compilateur
tente de réduire la taille du code exécutable et le temps d’exécution. Les options cor-
respondent à différents niveaux d’optimisation : -O1 (similaire à -O) correspond à une
faible optimisation, -O3 à l’optimisation maximale.

– -S : n’active que le préprocesseur et le compilateur ; produit un fichier assembleur.
– -v : imprime la liste des commandes exécutées par les différentes étapes de la compilation.
– -W : imprime des messages d’avertissement (warning) supplémentaires.
– -Wall : imprime tous les messages d’avertissement.

1.5.1 Illustration de la châıne programme - exécutable

Pour compiler le programme on utilise le compilateur gcc :

gcc -std=c99 -c progSomme.c

La compilation génère un fichier progSomme.o
– Où est la fonction printf ?
– Comment le compilateur vérifie que cette fonction est correctement utilisée ?
– On ne peut pas l’exécuter.
Pour pouvoir le rendre exécutable on utilise l’éditeur de liens :

gcc progSomme.o -o progSomme

L’édition de liens génére d’un fichier progSomme qui est exécutable.
– L’éditeur de lien a trouvé la fonction printf dans la bibliothèque standard (libstdc.a

ou libc.a).
– définition d’une bibliothèque,
– Quel est le résultat de l’exécution ?
– Le programme principal : Quelle est la fonction qui est appelée au moment du lancement

de l’exécutable ?
int main(int argc, char **argv)

1.6 Le premier module

1.6.1 Décomposition du programme

On découpe le même programme en plusieurs fichiers :
– somme.h : ce fichier constitue l’interface du module somme. Il contient les déclarations

nécessaires à l’utilisation du module somme par un client.
– somme.c : Ce fichier constitue l’implémentation du module somme. Il contient les définitions

(codes) nécessaires au fonctionnement du module somme.

12

– client1Somme.c : Ce fichier est l’utilisation par un client des fonctionnalités présentées
par le module somme.

Le code du fichier somme.h

#ifndef _Somme_h_

#define _Somme_h_

extern int somme(int);

#endif

Le code du fichier somme.c :

#include "Somme.h"

int somme(int i)

{

int resultat = 0;

for (int k = 0; k <= i; k++)

{

resultat += k;

}

return resultat;

}

Le code du fichier client1Somme.c :

#include <stdlib.h>

#include <stdio.h>

#include "Somme.h"

int main(int argc, char **arg)

{

int i = 10;

printf("La somme des %d entiers est %d \n", i, somme(i));

}

On dit que le module client1Somme est un client du module fournisseur somme. Un
module fournit un ensemble d’informations qui peuvent être utilisées par un module client.
Cette notion sera précisée plus tard. Mais on peut remarquer que le fichier client1Somme

inclut le fichier somme.h pour vérifier la bonne utilisation du module somme.

Un module en langage C est composé de deux fichiers :

1. Le fichier .h représente l’interface d’un module. Il contient l’ensemble des déclarations
(fonctions, variables) qui peuvent être utilisés par les clients du module. Il peut également
contenir des définitions de types ainsi que des pseudo-constantes ou des macros.

13

De manière conceptuelle l’interface d’un module présente l’ensemble des services/variables
du module qui peuvent être utilisés par un des clients du module. Elle représente la per-
ception par l’extérieur des fonctionnalités d’un module. L’interface d’un module peut
évoluer, mais elle doit le faire de manière compatible. C’est-à-dire que la manière dont
un client percevait un module à un instant donné ne peut diminuer, elle ne peut que
crôıtre. Pourquoi est-il facile de trouver TOUS les clients d’un module ?

2. Le fichier .c représente l’implémentation d’un module. Il doit fournir une implémentation
(du code) à ce qui est présenté par l’interface (services, types, variables). Il s’agit
donc d’une solution informatique choisie pour réaliser l’interface. Cette solution in-
formatique peut donc évoluer pour être plus efficace, plus lisible, plus sécuritaire ...
L’implémentation doit donc donner du code à tous les services décrits par l’interface
et il peut y avoir aussi du code pour des services internes à l’implémentation. On peut
remarquer que le fichier somme.c inclut l’interface du module somme à savoir le fichier
somme.h.

1.6.2 La compilation séparée

On doit dans un premier temps, compiler séparément le module somme, pour cela on exécute
la commande

gcc -std=c99 -c somme.c

Puis on compile ensuite le fichier client1Somme :

gcc -std=c99 -c client1Somme.c

On a donc obtenu deux fichiers .o qui sont somme.o et client1Somme.o. Ces deux fichiers
doivent maintenant être assemblés pour créer un exécutable.

gcc client1Somme.o somme.o -o client1Somme

On peut maintenant exécuter le programme.

1.7 Un changement d’implémentation

On change maintenant l’implémentation du module somme.

#include "Somme.h"

int somme(int i)

{

int resultat = 0;

14

while(i >=0)

{

resultat += i;

i--;

}

return resultat;

}

Qu’est-ce que l’on doit refaire pour que le module client1Somme puisse fonctionner avec la
nouvelle implémentation ?

1. Il faut refaire la compilation du module somme.

2. Il faut refaire l’édition de lien.

1.7.1 Un nouveau client du module Somme

#include "Somme.h"

int somme(int i)

{

int resultat = 0;

while(i >=0)

{

resultat += i;

i--;

}

return resultat;

}

Que doit-on faire pour que le nouveau client puisse utiliser le module somme.

1. Il faut compiler le module client2Somme.

2. Il faut faire l’édition de lien avec le module somme.

1.8 Résumé

– Le fichier .h contient les déclarations.
– Le fichier .c contient les définitions.
– Le client d’un module contient les appels reflétant l’utilisation du module.
– Il faut que les définitions soient en accord avec les déclarations. On inclut toujours

les déclarations dans l’implémentation. C’est à dire que dans un module “Module”, la
première ligne du fichier “module.c” est toujours #include module.h.

15

– Il faut que les utilisations soient en adéquation avec les déclarations. Dans un mo-
dule “CLIENT” qui utilise un module “FOURNISSEUR” on met toujours l’inclusion
de “FOURNISSEUR.H” dans CLIENT.C. Sur notre exemple :
somme.o: somme.h somme.c

gcc -c -std=c99 somme.c

client1Somme.o: somme.h client1Somme.c

gcc -c std=c99 client1Somme.c

client1Somme: somme.o clientSomme.o

gcc std=c99 Client1Somme.o

somme.o -o clientSomme.o

gcc std=c99 client1Somme.o somme.o -o clientSomme.

– Si somme.h est modifié toutes les directives de compilation doivent être réxécutées.
– Si somme.c change, on refait la compilation de somme.c et l’édition de lien, on ne re-

comppile pas client1Somme.c.
– Si client1Somme.c change on refait la compilation de client1Somme.c et on refait

l’édition de lien.

1.9 Une courte introduction à la qualité d’un logiciel

Selon l’IEEE, un logiciel est : Des programmes, procédures, ainsi que possiblement de la
documentation et des données liées à l’opération d’un système informatique.

Les Bugs/défauts/fautes sont la conséquence d’erreurs humaines. Ils résulte de la non-
conformiteé aux exigences et se manifeste comme une panne lors de l’exécution.

1.9.1 Sources d’erreurs

Neuf sources d’erreurs :

1. Mauvaise définition des exigences

2. Problèmes de communication entre clients et développeurs

3. Déviations délibérées des exigences du logiciel

4. Erreur de conception (logique)

5. Erreurs de programmation

6. Non conformité à la documentation ainsi qu’aux instructions de programmation

7. Insuffisance du processus de tests

8. Erreurs de l’interface usagers ainsi que de de la procédure

9. Erreurs de documentation

16

How Projects Really Work (version 1.5) Create your own cartoon at www.projectcartoon.com

How the customer
explained it

How the project leader
understood it

How the analyst
designed it

How the programmer
wrote it

What the beta testers
received

How the business
consultant described it

How the project was
documented

What operations
installed

How the customer was
billed

How it was supported What marketing
advertised

What the customer
really needed

Figure 1.1 – Une illustration d’une conception logicielle

17

1.9.2 La non qualité des systèmes informatiques a des conséquences qui
peuvent être très graves

Un bug informatique est une anomalie dans un programme informatique l’empêchant de
fonctionner correctement. Sa gravité peut aller de bénigne (défauts d’affichage mineurs) à
majeure (explosion du vol 501 de la fusée Ariane 5). Ces erreurs involontaires de conception
et de codage représentent un tiers du coût des sinistres informatiques ! La malveillance quant
à elle cause 60% de ce coût.

Voici quelques bugs bien identifiées :
– 12/10/2006 La ”mauvaise utilisation” d’un logiciel à l’origine d’accidents de radiothérapie

à Epinal - Entre mai 2004 et août 2005, des patients traités aux rayons pour des cancers
de la prostate ont subi des surdosages dus à des erreurs de paramétrage d’un logiciel.
Conséquences actuelles : 5 décès et des complications chez 721 patients...
Cause : ”erreur humaine”. Cause réelle : ”mauvaise ergonomie d’un logiciel obsolète”.

– ”C’est la faute de l’informatique”. Arrêt de la distribution par écrit de leur évaluation
aux élèves lors de la dernière séance de chaque cours dans une grande école.
Cause évoquée : mise en place d’un nouveau logiciel de gestion.

– Convocation de centenaires à l’école. Convocation à l’école primaire de personnes âgées
de 106 ans.
Cause : codage sur deux caractères.

– Mission Vénus : passage à 5 000 000 de Km de la planète, au lieu de 5 000 Km prévus.
Cause : remplacement d’une virgule par un point (au format US des nombres).

– Mariner 1 : la première sonde spatiale du programme Mariner, envoyée par la NASA le
27 juillet 1962. La sonde fut détruite peu de temps après son envol. Coût : 80 millions
de dollars.
Cause : un trait d’union oublié dans un programme Fortran (� plus coûteux trait
d’union de l’histoire �, Arthur C. Clarke).

– Passage de la ligne. Au passage de l’équateur un F16 se retrouve sur le dos.
Cause : changement de signe de la latitude mal pris en compte.

– Y2K : Le bug de l’an 2 000 La lutte contre le bogue de l’an 2000 a coûté à la France
500 milliards de francs. Cause : la donnée ”année” était codée sur deux caractères, pour
gagner un peu de place.

– Socrate. Les plantages fréquents du système de réservation de places Socrate de la SNCF,
sa mauvaise ergonomie, le manque de formation préalable du personnel, ont amené un
report important et durable de la clientèle vers d’autres moyens de transport.
Cause : rachat par la SNCF d’un système de réservation de places d’une compagnie
aérienne, sans réadaptation totale au cahier des charges du transport ferroviaire.

– Sécurité de la carte bleue. Le secret des cartes bancaires repose essentiellement sur un
algorithme, qui a été publié sur un newsgroup !

– Terminaux de paiement. Le 22 décembre 2001 les 750 000 terminaux de payement chez
les commerçants ne répondaient plus, ce qui entrâıné de longues files d’attente en cette
période d’achats de Noël. Cause : saturation des serveurs de la société Atos chargés des
autorisation de paiements dépassant 600F. Les autorisation de débit prennent habituel-
lement quelques dizaines de secondes, l’attente a frôlé la demi-heure.
Conséquence : des clients abandonnent leurs chariots pleins. Le groupe Leclerc a chiffré
son préjudice à 2 millions d’euros.

18

– Echec du premier lancement d’Ariane V. Au premier lancement de la fusée Ariane V,
celle ci a explosé en vol.
La cause : logiciel de plate forme inertielle repris tel quel d’Ariane IV sans nouvelle
validation. Ariane V ayant des moteurs plus puissants s’incline plus rapidement que
Ariane IV, pour récupérer l’accélération dûe à la rotation de la Terre. Les capteurs ont
bien détecté cette inclinaison d’Ariane V, mais le logiciel l’a jugée non conforme au plan
de tir (d’Ariane IV), et a provoqué l’ordre d’auto destruction. En fait tout se passait
bien...
Coût du programme d’étude d’Ariane V : 38 milliards de Francs, pour 39 secondes
de vol après 10 années de travail ...
http://www.inria.fr/actualites/inedit/inedit14_evea.fr.html .

On dit qu’il y a des bugs dans tous les logiciels, en petit nombre, et elles ne gênent
généralement pas le fonctionnement du système et peuvent demeurer inconnues pendant une
longue période. Par contre, certains logiciels sont dits buggés, ils contiennent beaucoup de
bugs qui perturbent parfois gravement le fonctionnement du système.

De façon générale, les programmes des élèves (et des profs) ne marchent jamais du premier
coup ! Pourtant ce sont des gens réputés intelligents ? Alors où est le problème ? Quelles sont
les solutions ?

Etes-vous prêts à garantir la qualité des logiciels que vous écrivez ? Leur validite et leur
fiabilité ? Pourriez-vous démontrer la qualité ? Pourquoi hésitez-vous ?

Les bugs surviennnent quand le logiciel ne correspond pas au besoin.

Un bug est un non-respect de la spécification du système, c’est-à-dire de la définition de ses
fonctionnalités, de ce que le système est censé faire. Un programme buggé est un programme
dont la mise en œuvre ne vérifie pas la spécification.

1.9.3 Évaluation de la qualité logicielle

La norme ISO 9126 définit six groupes d’indicateurs de qualité des logiciels :
– la capacité fonctionnelle. c’est-à-dire la capacité qu’ont les fonctionnalités d’un logiciel

à répondre aux besoins explicites ou implicites des usagers. En font partie la précision,
l’interopérabilité, la conformité aux normes et la sécurité ;

– la facilité d’utilisation, qui porte sur l’effort (le peu d’) nécessaire pour apprendre à
manipuler le logiciel. En font partie la facilité de compréhension, d’apprentissage et
d’exploitation et la robustesse - une utilisation incorrecte n’entrâıne pas de dysfonction-
nement ;

– la fiabilité, c’est-à-dire la capacité d’un logiciel de rendre des résultats corrects quels que
soient les conditions d’exploitation. En font partie la tolérance de pannes - la capacité
d’un logiciel de fonctionner même en étant handicapé par la panne d’un composant
(logiciel ou matériel) ;

– la performance, c’est-à-dire le rapport entre la quantité de ressources utilisées (moyens
matériels, temps, personnel), et la quantité de résultats délivrés. En font partie le temps
de réponse, le débit et l’extensibilité - capacité à maintenir la performance même en cas
d’utilisation intensive ;

– la maintenabilité, qui porte sur l’effort (le peu d’) nécessaire en vue de corriger ou de

19

transformer le logiciel. En font partie l’extensibilité, c’est-à-dire le peu d’effort nécessaire
pour y ajouter de nouvelles fonctions ;

– la portabilité, c’est-à-dire l’aptitude d’un logiciel de fonctionner dans un environnement
matériel ou logiciel différent de son environnement initial. En font partie la facilité d’ins-
tallation et de configuration pour le nouvel environnement.

Chaque caractéristique contient des sous-caractéristiques. Il y a 27 sous-caractéristiques.

En résumé, un programme devrait toujours être :
– Fiable : On peut avoir confiance dans ces résultats, on peut dire aussi conforme à ces

spécifications fonctionnelles,
– Robuste : Il peux fonctionner dans des conditions anormales sans s’arèter.
– Extensible : On peut ajouter de nouvelles fonctionnalités, étendre le périmêtre des

données facilement.
– Maintenable : Il peut être corrigé facilement (qualité proche de l’extensibilité)
– Sécurisé : Il ne peut compromettre les ressources sur lesquelles il s’éxécute.

Un module doit être :
– Lisible : Facile a comprendre à la première lecture.
– Autonome : Faiblement couplé, c’est à dire le module dépend le moins possible d’autres

modules.
– Maintenable : les modifications d’une partie de l’implémentation doivent impliquer un

nombre minimal de modifications de code. (NON DUPLICATION DE CODE, séparation
entre interface et implémentation)

– Robuste et fiable (même notion que pour un programme, mais au niveau du module).

1.9.4 Amélioration de la qualité

En génie logiciel, la recherche d’abstraction, de dissimulation, de structuration, d’unifor-
mité, de complétude et de confirmabilité sont des mesures destinés à améliorer la qualité du
logiciel, en factorisant le code, c’est-à-dire en n’écrivant qu’une fois des instructions similaires.
Cela permet que les modifications soient le plus locales possibles. Cette factorisation concerne
les structures de données elles-mêmes (notamment par l’usage des classes et de l’héritage),
et les traitements (par l’usage des boucles, fonctions et procédures). Un gain complémentaire
de réduction du code source est apporté par le polymorphisme et la liaison dynamique (qui
éliminent les � procédures aiguillage �) en programmation objet.

La modularité, c’est-à-dire la qualité d’un logiciel d’être découpé en de nombreux mo-
dules, permet l’abstraction et la dissimulation. Associée avec un couplage faible, elle vise à
augmenter la maintenabilité du logiciel en diminuant le nombre de modules touchés par des
éventuelles modifications, ainsi que la fiabilité en diminuant l’impact que l’échec d’un module
peut avoir sur les autres modules.

En jargon de programmation, un plat de spaghetti désigne un logiciel de mauvaise qualité
au couplage trop fort et au code source difficile à lire, dans lequel toute modification même
mineure demande un intense travail de programmation.

L’abstraction vise à diminuer la complexité globale du logiciel en diminuant le nombre
de modules et en assurant l’essentiel. Elle peut également apporter une uniformité du logiciel
qui augmente son utilisabilité en facilitant son apprentissage et son utilisation.

20

La dissimulation vise à séparer complètement les détails techniques du logiciel de ses
fonctionnalités selon le principe de la bôıte noire, en vue d’améliorer sa maintenabilité, sa
portabilité et son interopérabilité.

La structuration des instructions et des données rend clairement visible dans le code
source les grandes lignes de l’organisation des instructions et des informations manipulées, ce
qui améliore sa maintenabilité et facilite la détection des bugs.

De nombreux langages de programmation soutiennent, voire imposent l’écriture de code
source selon les principes de structuration, de modularité et de dissimulation. C’est le cas des
langages de programmation structurée et de programmation orientée objet.

1.10 Tests Unitaires

Le test unitaire consiste à tester la plus petite unité d’une application. Le test unitaire est
un composant essentiel du processus de développement. Il augmente la qualité du code produit
et réduit les temps de développement. Ces résultats sont obtenus grâce à deux techniques. La
première est liée au fait que le test est réalisé au niveau du module. Nous sommes à ce moment
là proches des méthodes. De ce fait, les chances de générer les cas de test pouvant provoquer
des erreurs, et assurant une couverture de 100% sont plus grandes. La seconde est que le code
est testé dès sa création. Ceci simplifie la recherche et la correction d’éventuelles erreurs. Cette
détection précoce des erreurs conduit à une réduction du temps de développement - et donc
des coûts -, car le temps passé pour trouver un bug et les ressources utilisées sont moindres
(des données statistiques indiquent que 2/3 des bogues problématiques en fin d’intégration
auraient pu être détectés par un test unitaire). D’autres études montrent qu’un expert en
développement passe la moitié de son temps à débugger, cela peut aller jusqu’à 90% du temps
de développement pour un développeur non expérimentés.

Le test unitaire est basé sur trois techniques :

– le test dit bôıte blanche pour la structure,
– le test dit bôıte noire pour la fonctionnalité,
– le test de non-régression pour l’intégrité.

1.10.1 Le test bôıte blanche

Le test bôıte blanche vérifie si le code est robuste en contrôlant son comportement avec des
cas de test inattendus. L’implémentation du module doit être connue. Le but de ce test est
d’exécuter chaque branche du code avec différentes conditions d’entrée afin de détecter tous
les comportements anormaux.

Il est très difficile de trouver manuellement les bons cas de test assurant une couverture de
code globale. Malgré le bénéfice de ce test sur la qualité, le test bôıte blanche est un des tests
les plus difficiles à réaliser sans outils automatiques appropriés.

21

1.10.2 Le test bôıte noire

Le test bôıte noire vérifie la fonctionnalité de l’interface publique d’une unité. Dans ce type
de test les détails sur l’implémentation ne sont pas nécessaires.

En général, le test bôıte noire nécessite les étapes suivantes :
– créer un plan de test basé sur les spécifications de l’unité,
– créer des jeux de test permettant de tester les spécifications,
– appliquer les cas de test,
– vérifier que les sorties sont conformes.
Principalement, les cas de test doivent être basés sur les spécifications. Dans le cas ou

les spécifications sont intégrées dans le code (par exemple, du code utilisant le Design by
Contract), il est possible d’automatiser le test bôıte noire, l’outil automatique ayant un a
priori sur le fonctionnement de l’unité.

1.10.3 Le test de non-régression

Ce test consiste à vérifier si la nouvelle version de l’unité a été corrigée et si la modification
n’a pas généré d’effets de bords. Le principe consiste à tester la nouvelle version de l’unité
avec le jeu de test précédent.

1.10.4 Outils automatiques

Toutefois, mettre ces techniques en œuvre peut s’avérer difficile voire même impossible
dans un projet. Heureusement, il existe des outils ayant la capacité d’automatiser une grande
partie du test unitaire. Ces outils créent l’environnement de test et les bouchons nécessaires
au test des modules. De plus, ils génèrent et appliquent automatiquement des cas de tests
structurels, simplifient le test fonctionnel et automatisent le test de non-régression. Pour C,

1.10.5 Conclusion

Peu importe le type de processus de développement que vous utilisez. Le fait de tester le
plus tôt possible va permettre de prévenir, de trouver et de corriger les bugs de manière efficace
et économique. L’utilisation d’outils automatiques intégrés dans la châıne de développement
vous permettra de réduire les efforts nécessaires à la mise en œuvre des tests, les coûts et les
temps de développement avec, en plus, un code de meilleure qualité.

Les tests unitaires conduisent à une méthode de développement TTD : Test Driven De-
velopment (développement dirigé par les tests). L’objectif du TDD est de produire du ”code
propre qui fonctionne”. Pour cela, deux principes sont mis en oeuvre :

– un développeur écrit du code nouveau seulement lorsqu’un test automatisé a échoué,
– toute duplication de code (ou plus généralement d’information, ou de connaissances)

doit être éliminée. L’acronyme anglais DRY (Do not Repeat Yourself) peut être utilisé
comme moyen mnémotechnique pour cette phase très importante.

22

Ces deux principes doivent être strictement respectés, même s’ils paraissent difficiles ou bi-
zarres dans un premier temps.

1.10.6 Concrètement

On veut tester le module somme que l’on vient d’écrire, comme le module ne rend qu’un
seul service, il suffit de tester la fonction somme.

Les test unitaires portent sur le test d’un module, on peut :
– Tester les fonctions 1 à 1 ;
– Tester des suites d’appel de fonction.
Le test du module somme : le module testSomme

Il faut écrire l’interface testSomme.h et l’implémentation testSomme.c :

#ifndef _Test_Somme_h_

#include <stdbool.h>

#include "Somme.h"

#define _Test_Somme_h_

extern bool testSomme(int);

#endif

On peut déjà remarquer la dépendance entre le module testSomme et le module stdbool.
On écrit maintenant l’implémentation du module testSomme à savoir le fichier testSomme.c :

#include "testSomme.h"

#include "somme.h"

#include <stdlib.h>

#include <stdio.h>

static int jeuDeTest [] = {1, 4, 9, 13, 35};

bool testSomme(int valATester)

{

int resultatTheorique = valATester*(valATester+1)/2;

return resultatTheorique == somme(valATester);

}

int main(int argc, char **argv)

{

printf("debut du Test");

int tailleJeuDeTest = sizeof(jeuDeTest)/sizeof(int)- 1;

for(int i=0; i <= tailleJeuDeTest; i++)

{

23

printf("Test de la valeur %d \n", jeuDeTest[i]);

if(!testSomme(jeuDeTest[i]))

{

printf("Code Faux pour la valeur %d \n", jeuDeTest[i]);

return EXIT_FAILURE;

}

}

printf("Test Reussi \n");

return EXIT_SUCCESS;

}

Attention, il faut regarder plus précisement le jeu de tests. Qu’est ce qui se passe avec la
valeur -2 ? ? Qu’est ce qui se passe avec la valuer 1000000000000 ?

