
Flexichain: An editable sequence and its gap-buffer
implementation

Robert Strandh (LaBRI∗), Matthieu Villeneuve, Tim Moore (LaBRI)

2004-04-05

Abstract

Flexichain is an API for editable sequences. Its primary use is in end-user
applications that edit sequences of objects such as text editors (characters),
word processors (characters, paragraphs, sections, etc), score editors (notes,
clusters, measures, etc), though it can also be used as a stack and a double-
ended queue.

We also describe an efficient implementation of the API in the form of a cir-
cular gap buffer. Circularity avoids a common worst case in most implemen-
tations, makes queue operations efficient, and makes worst-case performance
twice as good as that of ordinary implementations

1 Introduction

Editable sequences are useful, in particular in interactive applications such as text
editors, word processors, score editors, and more. In such applications, it is highly
likely that an editing operation is close to the previous one, measured as the dif-
ference in positions in the sequence. This statistical behavior makes it feasible to
implement the editable sequence as a gap buffer.

The basic idea is to store objects in a vector that is usually longer than the number
of elements stored in it. For a sequence of N elements where editing is required at

∗Laboratoire Bordelais de Recherche en Informatique, Bordeaux, France

1



index i, elements 0 through i are stored at the beginning of the vector, and elements
i + 1 through N − 1 are stored at the end of the vector. When the vector is longer
N , this storage leaves a gap. Editing operations always result in modifications at
the beginning or at the end of the gap.

Occasionally, the gap has to be moved, or rather, some elements have to be moved
so as to leave the gap where the next editing operation is desired. In the worst case,
i.e., that of an alternating sequence of editing operations at the beginning and at
the end of the sequence, every element needs to be moved. While it can be argued
that this case does not happen very frequently, it unfortunately corresponds to op-
erations that might be reasonable in some clients, namely rotation of the elements
or the use of the sequence as a queue.

The kind of worst-case behavior described in the previous paragraph can be avoided
by the use of a doubly-linked list rather than a gap buffer to implement the se-
quence. Unfortunately, the doubly-linked list has unacceptable storage overhead
for small objects such as characters (a factor 8-16 according to the word size of
the machine and the implementation of the memory allocator) or bits (a factor 128-
256).

2 Previous work

We are not the first ones to consider the problem of editable sequences for interac-
tive applications.

Multics Emacs [Gre96] [Gre80] used a doubly-linked list of lines of text. Each line
was a vector of characters. A new vector type was added to Multics Maclisp for
the purpose. The new type used complex instructions of the underlying architecture
that allowed an arbitrary sequence of bytes to be moved with a single instruction.
While this implementation was fine for most text editing, it was painfully slow for
editing files with few newlines, since a considerable number of bytes had to be
moved for each editing operation. Today’s hardware is 1000 times faster than what
Multics ran on, so this implementation might be acceptable today, even though
most processors might not have the specialized instructions required so it would
have to be implemented in software.

GNU Emacs [LLS02] stores the entire buffer as a big gap buffer as described in the
introduction. This implementation avoids bad worst-case behavior for long lines of
text. On the other hand, it introduces a different, potentially more serious, worst-

2



case requiring every single character in the buffer to be moved for the alternating
sequence of editing operations described in the introduction.

Hemlock [CM89] (the Emacs-like editor distributed with CMUCL) uses a se-
quence of lines. Lines can be stored in different places as compact strings, and
one of the lines (the open-line) is represented as a gap buffer. This implementation
largely avoids the worst case of GNU Emacs, at least for ordinary text with lines
of relatively modest length.

Goatee (the Emacs-like editor of McCLIM [SM02]) uses a doubly-linked list of
lines, each line being a gap buffer.

Gsharp [Str02], the interactive editor for music scores, currently uses ordinary
singly-linked Lisp lists, since the score is divided into relatively few smaller units
corresponding to musical phrases. Still, this implementation introduces some seri-
ous worst-case behavior that we would like to avoid.

It is interesting to notice that the sequence of lines used in Goatee (and in Hemlock
and probably elsewhere as well) is just a version of an editable sequence with the
implementation exposed.

3 Flexichain: an API for editable sequences

The Flexichain API grew out of the need for code factoring between different ap-
plications (especially Goatee and Gsharp, but hopefully Hemlock as well), and
sometimes between different parts of one application.

To provide maximum flexibility for potential clients, we decided to divide the API
in two different layers: Flexichain and Cursorchain. The Flexichain layer provides
editing operations based on positions represented as integers, whereas the Cursor-
chain layer introduces the possibility of an arbitrary number of cursors into the
editable sequence.

3.1 The basic layer: Flexichain

The basic layer provides editing operations based on the concept of a position.

For an insert operation, a position is an integer between 0 and N inclusive, where
N is the length of the sequence. In general, a value of i indicates the position

3



before element number i in the sequence, except of course when i = N and there
is no element i. In this case, the position indicates the end of the sequence. For
reasons that will be explained in the next section, we actually provide two insert
operations insert<* and insert>* that are entirely equivalent when only the
basic layer is used.

For a delete operation, a position is an integer between 0 and N − 1 and indicates
the element number of the element to be deleted.

The basic layer also provides operations for accessing and replacing an element at
an arbitrary position in the sequence, as well as operations that treats the sequence
as a stack, a linear double-ended queue, or a circular queue.

Some relatively simple applications can use the basic layer directly. The main
inconvenience of the basic layer is that the position of an element changes as a
result of editing operations at lower positions in the sequence.

3.2 The second layer: Cursorchain

Complex applications such as multi-window text editors need to manage several
positions in the sequence such that these positions refer to the same element inde-
pendently of any editing operations in other places in the sequence.

For that reason, the second layer introduces the concept of a cursor. A cursor is
similar to the point or a mark of Emacs. It is positioned either at the beginning of
the sequence, at the end of the sequence, or between two element of the sequence.

All the operations of the basic layer can be used on instances of cursorchain.

While it is straightforward to determine what happens to a cursor when an element
is deleted, it is not clear what happens when an element is inserted at a position
occupied by one or more cursors. There are actually two possibilities: either the
element is inserted before the cursors (i.e., between the cursors and the element
that precedes them) so that the cursors end up at a position after the newly inserted
element, or the element is inserted after the cursors (i.e., between the cursors and
the element that succeeds them) so that the cursors end up at a position before the
newly inserted element.

Different applications might want different behavior with respect to insertion, and
some applications (this is the case with Gsharp) might want one behavior in one
part of the buffer representation and another behavior in a different part. For that

4



reason, we provide two different insert operations: insert< for the first case and
insert> for the second case. As indicated in the previous section, there are two
insert operations in the basic layer as well, simply because these operations might
be used on a cursorchain and the behavior of potential cursors at the insertion
position must be specified.

Since cursors are never conceptually positioned on a particular element, we provide
two different delete operations to delete elements before and after the cursor, and
two different operations for accessing and replacing an element with respect to the
cursor (before it and after it).

We also provide operations to move the cursor forward and backward by an ar-
bitrary number of positions, to translate between a cursor and its position, and to
determine whether the cursor is at the beginning or at the end of the sequence.

4 Implementation of the API

In order to avoid the worst-case behavior of a buffer implementation of the type
used by GNU Emacs, we use a circular gap buffer. Thus, the first and the last
element of the underlying vector are considered contiguous, and the first element of
the sequence is not necessarily the first element of the underlying vector. We keep
track of the first element by introducing another slot in the class that represents the
Flexichain.

4.1 Implementing the basic layer

There are two main considerations with regard to the implementation of the ba-
sic layer, namely when and how to change the size of the vector that holds the
sequence, and how to move the gap.

4.2 Changing the size of the vector

Whenever and insert operation is issued on a Flexichain that is full (i.e., the size
of the vector holding the sequence has the same length as the sequence itself),
its underlying vector must be extended. In order to maintain linear worst-case
complexity of a sequence of editing operations, we must then multiply the size of

5



a vector by a constant (called the expand factor rather than adding a fixed number
of elements.

Each resize operation requires all the elements to be moved. It is therefore desirable
to avoid resize operations as much as possible. For that reason, it is advantageous
to have a large expand factor. On the other hand, in order to avoid wasted space, it
is desirable to have a small expand factor.

We use a default expand factor of 1.5 with the possibility for client code to alter
it. Applications that manipulate sequences that vary little in length can use a small
expand factor to minimize overhead, while applications that use relatively small
sequences the length of which vary a lot can use a larger expand factor.

The vector has to be expanded as a result of an insert operation on a full Flexichain.
It is particularly easy to move the gap in this case (no elements need to be moved).
For that reason, in this case we first move the gap and then expand the vector.

To avoid too much overhead when the number of elements in the sequence de-
creases, we occasionally have to shrink the vector. In order to avoid having to im-
mediately expand it again in case of more insert operations being issued, we only
shrink the vector when the ratio between the length of the vector and the length of
the sequence is greater than the square of the expand factor.

Shrinking the vector preserves the position of the gap.

4.3 Moving the gap

Perhaps the most complex part of implementing the basic layer is moving the gap
when an editing operation (insert or delete) is issued at a position other than that of
the gap.

There are three different possible configurations of the gap with respect to the data.
Figure 1 shows the case where both the gap and the data are contiguous. Figure 2
shows the case where the data is not contiguous. Finally, figure 3 shows the case
where the gap is not contiguous.

We make sure we always move the minimum number of elements required by
moving the gap in either of the two directions possible.

It turns out that there are five different cases of combinations between the configu-
rations of the gap and the position of the editing operation that need to be taken into
account. Two of the five cases need a single call to the Lisp function replace,

6



Figure 1: Gap and data are both contiguous

Figure 2: Data is not contiguous

two more require two calls, and one case requires three calls.

4.4 Implementing the second layer

The main difficulty in implementing the second layer lies in the way cursors are
managed. It is necessary for the implementation to access all cursors in order to
be able to update their corresponding positions as the sequence is altered. To avoid
memory leaks, we use weak references to store the cursors, so that when client
code no longer refers to a cursor, we can detect that.

Perhaps the most natural implementation of cursors would be to store the corre-
sponding position in the sequence, and update that position whenever an editing
operation with a smaller position is issued. However, such an implementation
would make the complexity of editing operations proportional to the number of
cursors into the sequence which is not desirable.

Instead, we store indexes into the underlying vector. This way, we can split the
cursors into three sets according to whether they are positioned before, at, or after

Figure 3: Gap is not contiguous

7



the gap (although we have not implemented this possibility yet). Only cursors that
are at the gap potentially need to be altered after an editing operation. All other
cursors remain unchanged. Instead, cursors are updated as a result of moving the
gap.

Cursor updates are implemented as :before, :after, and :around, methods
on the generic functions in the basic layer that handle moving the gap and chang-
ing the size of the vector. These operations constitute an internal protocol of the
Flexichain library and is not part of external API.

5 Conclusions and future work

We believe we have a good API and a very implementation of it. We would be
interested in seeing our code used in a variety of existing projects, in particularly
Goatee and Gsharp, but also in similar projects such as Portable Hemlock and
others.

A typical text editor such as Goatee or Hemlock could use Flexichains (or rather
Cursorchains) to implement both the sequence of lines of text and the sequence of
characters within each line.

Gsharp will use Flexichains for all the levels (currently 6) of its buffer protocol,
which will both simplify the code and improve performance considerably.

The Flexichain API and its implementation are both well documented, making it
easier for potential clients to take advantage of it.

References

[CM89] Bill Chiles and Rob MacLachlan. Hemlock Command Implementor’s
Manual. Technical Report CMU-CS-89-134-R1, School of Computer
Science, Carnegie Mellon University, 1989.

[Gre80] Bernard S Greenberg. Prose and CONS: A Commercial Text-Processing
System in Lisp. In Proceedings of the 1980 Lisp Conference, 1980.

[Gre96] Bernard S Greenberg. Multics Emacs: The History, Design and Im-
plementation. Technical report, http://www.multicians.org/mepap.html,
1996.

8



[LLS02] Bil Lewis, Dan LaLiberte, and Richard Stallman. GNU Emacs Lisp Ref-
erence Manual. Free Software Foundation, January 2002.

[SM02] Robert Strandh and Tim Moore. A Free Implementation of CLIM. In
Proceedings of the International Lisp Conference, October 2002.

[Str02] Robert Strandh. Gsharp, an Extensible, Interactive Score Editor. In Pro-
ceedings of the International Lisp Conference, October 2002.

9


