
LALBLC
a program testing the equivalence of dpda’s

P. Henry and G. Sénizergues

LaBRI and Université de Bordeaux, Talence, France{Patrick.Henry,ges }@labri.fr

Abstract. We describe the programLALBLCwhich tests whether two determin-
istic pushdown automata recognize the same language.

keywords: Deterministic pushdown automata ; deterministic context-free grammars ;
equivalence problem.

1 Introduction

The so-called “equivalence problem for deterministic pushdown automata” is the fol-
lowing decision problem:

INSTANCE : two dpda A,B; QUESTION : L(A) = L(B)?

i.e. do the given automata recognize thesamelanguage? This problem was shown to
be decidable in ([Sén97],[Sén01a, sections 1-9])1. Beside crude decidability, the in-
trinsic complexity of this problem is far from being understood. A progress in this
direction has been achieved in [Sti02] by showing that the general problem isprimitive
recursivewhile subclasses with complexity in P (resp. co-NP) have been discovered in
[BCFR06,BG11,BGJ13](resp.[Sén03]). Any further progress in this direction is likely
to have some impact on other areas of computer science, as is shown by the numer-
ous applications that were found even before proving decidability of the problem (see
[Sén01b] for a survey and [MOW05,CCD13] for more recent connections).

The contribution presented here consists in showing that itis practically feasable
to solve the equivalence problem for general dpda on non-trivial examples (see section
5). We have implemented, and to some extent refined, the main ideas of [Sén01a]. For
every pair(A,B) the program returns, either a proof ofL(A) = L(B) (see section 4
for a precise notion of proof) or a terminal word witnessing the fact thatL(A) 6= L(B).

The sources of our (Python) program, as well as as additionalinformation, can be
uploaded fromhttp://dept-info.labri.u-bordeaux.fr/ ˜ ges .

2 Automata, grammars

We introduce here the notions of automata and grammars that are manipulated by the
program.

1 a similar method is exposed within the framework of term root-rewriting in [Jan12]

2.1 Deterministic matricial fa

A finite automatonis, as usual, a tuple,A =< X,Q,Q−, Q+, δ > whereX is the input
alphabet,Q is the set of states,Q− ⊂ Q is the set of initial states,Q+ ⊂ Q is the set of
terminal states,δ ⊂ Q ×X × Q is the set of transitions, and all of these five sets are
finite.
The main object that our program handles is amatrix of languages which is defined by
some finite automaton with one set of initial states for each line and one set of terminal
states for each column.
Let us recall that a languageL ⊂ X∗ is a prefix languageiff, ∀u, v ∈ L, u � v ⇒
u = v. The line-vectors of the matrices we are interested in areprefix vectorsin the
following sense:

Definition 1. A vector(L1, . . . , Li, . . . , Ln) ∈ P(X∗)n is said to beprefix iff it fulfills:
∀i, j ∈ [1, n], i 6= j ⇒ Li ∩ Lj = ∅ and

⋃n

i=1 Li is a prefix language.

We thus consider the following variant of the notion of d.f.a. which recognizes aprefix
matrix of languages i.e. where each row-vector is prefix.

Definition 2 (complete deterministic matricial f.a.). A finitecomplete deterministic
matricial finite automatonis a tuple,A =< X,Q,Q1,−, . . . , Qn,−, Q1,+, . . . , Qm,+, δ >
whereX is the input alphabet,Q is the set of states,Qi,− ⊆ Q is the set of initial states
of thei-th line,Qj,+ ⊆ Q is the set of final states of thej-th column,
∀i ∈ [1, n],Card(Qi,−) = 1
∀j, k ∈ [1,m], j 6= k ⇒ Qj,+ ∩Qk,+ = ∅
δ : (Q ×X)→ Q is a total map, which is called the transition map.
∀j ∈ [1,m], ∀q ∈ Qj,+, ∀x ∈ X, δ(q, x) is not co-accessible from∪1≤k≤m Qk,+.
All the items of this tuple are assumed to be finite sets.

Such an automaton defines a prefixmatrix of languagesL(A) := (Li,j)(i,j)∈[1,n]×[1,m]

whereLi,j := {u ∈ X∗ | ∃q ∈ Qi,−, δ
∗(q, u) ∈ Qj,+}.

The usual theory of recognizable languages, complete deterministic automata and resid-
uals can be adapted to (prefix) matrices of languages, cdmfa’s and residuals of matrices.

ImplementationOur modulefautomata deals with f.automata and their analogues.
The classdr-matrix implements the notion of cdmfa. The program stores every ra-
tional prefix matrix under the form of acanonicaldcmfa i.e. a minimal dcmfa, in which
the states are integers that are completely determined by some depth-first traversal of
the minimal automaton. The equality of two rational (prefix)matrices is implemented
as an isomorphism-test for the corresponding canonical dcmfa.

2.2 Pushdown automata and context-free grammars

The notions ofpushdown automatonandcontext-free grammarare well-known. A pda
is saiddeterministicif, informally, on every triple (state, stack-contents, tape-contents),
at most onetransition is applicable. It is calledstrict if it recognizes by empty stack and
a finite set of final sates andnormal if everyǫ-transition ispopping.

Definition 3. ([Har78, Definition 11.4.1 p.347]) LetG =< X, V, P > be a context-
free grammar.G is saidstrict-deterministiciff there exists an equivalence relation⌣
overV fulfilling the following conditions:
1-X is a class (mod ⌣)
2- for everyv, v′ ∈ V, α, β, β′ ∈ (X ∪ V)∗, if v −→P α · β andv′ −→P α · β′ and
v ⌣ v′, then either:
2.1- bothβ, β′ 6= ǫ andβ[1] ⌣ β′[1]
2.2- orβ = β′ = ǫ andv = v′.

(In the above definition, for every wordγ, γ[1] denotes the first letter of the wordγ).
Any equivalence⌣ satisfying the above condition is said to be astrict equivalencefor
the grammarG. It is known that, given a strict dpdaM, one can construct, in polyno-
mial time, an associated grammarGM =< X, VM, PM > which is strict-deterministic
and generates the language recognized byM.

ImplementationOur modulegrammars deals with dpda and dcf grammars. The trans-
lation of a dpda into a dcf grammar is realized by theautotogram(A) function;
some routine functions around these notions are implemented (test for determinism of
a cf grammar, elimination of non-productive non-terminalsand reduction in Greibach
normal-form, for grammars translating a normal strict dpda), see Figure 1.

Non-terminal symbols :
[<q2-A-q4> <q2-A-qb>][<q4-O-q3>][<q1-O-q3>]
[<q2-O-q3>][<q3p-O-q3>][<q4-A-q4>][<q3-O-q3>]
[<q3-A-q3>][<q1-A-q3> <q1-A-q5>][<q3b-O-q3>]

Terminal symbols : # a b x
Rewriting rules:

<q1-A-q3>::=a
<q1-A-q3>::=x<q1-A-q3><q3-A-q3>
<q1-A-q5>::=b
<q1-A-q5>::=x<q1-A-q5>
<q1-O-q3>::=#<q1-A-q3><q3-O-q3>
<q1-O-q3>::=#<q1-A-q5>

<q2-A-q4>::=a<q4-A-q4><q4-A-q4>
<q2-A-q4>::=x<q2-A-q4><q4-A-q4>
<q2-A-qb>::=b
<q2-A-qb>::=x<q2-A-qb>
<q2-O-q3>::=#<q2-A-q4><q4-O-q3>
<q2-O-q3>::=#<q2-A-qb>
<q3-A-q3>::=a
<q3-O-q3>::=a<q3p-O-q3>
<q3b-O-q3>::=a
<q3p-O-q3>::=a<q3b-O-q3>
<q4-A-q4>::=a
<q4-O-q3>::=a

Axiom: <q1-O-q3>

Fig. 1. A dcf grammar G2 (obtained from some dpda)

3 Algebraic framework

We recall here the algebraic framework which is the base of our program (see [Sén01a,
sections 2,3] for more details).

3.1 Semi-rings and right-actions

Semi-ringB〈〈 W 〉〉 Let (B,+, ·, 0, 1) whereB = {0, 1} denote the semi-ring of
“booleans”. LetW be some alphabet. By(B〈〈 W 〉〉,+, ·, ∅, ǫ), we denote the semi-
ring of boolean seriesover W (which is, up to isomorphism, nothing else than the
semi-ring of subsets ofW ∗: (P(W ∗),∪, ·, ∅, {ǫ}).

Right-actions overB〈〈 W 〉〉 We recall the following classical right-action• of the
monoidW ∗ over the semi-ringB〈〈W 〉〉 : for all S, S′ ∈ B〈〈W 〉〉, u ∈W ∗

S • u = S′ ⇔ ∀w ∈W ∗, (S′
w = Su·w),

(i.e.S • u is theresidualof S by u). Let (V,⌣) be the structured alphabet associated
with a strict-deterministic grammar (see paragraph§2.2). We define the right-action⊙
over non-terminal words by:

ǫ ⊙ x = ∅. (v · β)⊙ x = (
∑

(v,h)∈P

h • x) · β,

The action is then extended to arbitrary boolean series (on the left) and to arbitrary
terminal words (on the right) by:

(
∑

w∈W∗

Sw · w)⊙ x :=
∑

w∈W∗

Sw(w ⊙ x), S ⊙ ε := S, S ⊙ wx := (S ⊙ w)⊙ x

3.2 Deterministic matrices

We recall here the notion ofdeterministicseries and, more generally, deterministic ma-
trices2 3. Let us consider a pair(W,⌣)whereW is an alphabet and⌣ is an equivalence
relation overW . We call(W,⌣) a structuredalphabet.
Let us denote byBn,m〈〈 W 〉〉 the set of(n,m)-matrices with entries in the semi-ring
B〈〈W 〉〉 (the index(m,n) will continue to mean “of dimension(m,n)” for all subse-
quent subsets of matrices).

Definition 4. Let m ∈ IN, S ∈ B1,m〈〈 W 〉〉: S = (S1, · · · , Sm). S is said left-
deterministiciff either∀i ∈ [1,m], Si = ∅ or
∃i0 ∈ [1,m], Si0 = ǫ and∀i 6= i0, Si = ∅ or
∀w,w′ ∈ W ∗, ∀i, j ∈ [1,m], (Si)w = (Sj)w′ = 1 ⇒ [∃A,A′ ∈ W,w1, w

′
1 ∈

V ∗, A ⌣ A′, w = A · w1 andw′ = A′ · w′
1].

Both right-actions•,⊙ onB〈〈W 〉〉 are extended componentwise toBn,m〈〈W 〉〉.

Definition 5. A row-vectorS ∈ B1,m〈〈W 〉〉 is saiddeterministiciff for everyu ∈W ∗,
S • u is left-deterministic.
A matrix S ∈ Bn,m〈〈 W 〉〉 is said deterministiciff for every i ∈ [1, n], Si,∗ is a
deterministic row-vector.

The classical definition ofrationality of series inB〈〈W 〉〉 is extended componentwise
to matrices. GivenA ∈ B1,m〈〈W 〉〉 and1 ≤ j0 ≤ m, we define the vector∇∗

j0
(A) :=

A by:
if A = (a1, . . . , aj , . . . , am) thenA′ := (a′1, . . . , a

′
j , . . . , a

′
m) where

a′j := a∗j0 · aj if j 6= j0 , a′j := ∅ if j = j0.

2 these series play, for dcf grammars the role thatconfigurationsplay for a dpda.
3 it extends the notion of (finite)set of associatesdefined in [HHY79, definition 3.2 p. 188].

Note that every deterministic matrix is prefix; it follows that every deterministic ratio-
nal matrix is recognized by some cdmfa. We use the acronymsDBn,m〈〈 W 〉〉 (resp.
DRBn,m〈〈W 〉〉) for the sets ofDeterministic(resp.Deterministic Rational) matrices.
The main closure properties of deterministic rational matrices are summarized below.

Proposition 1. Let S ∈ DRBn,m〈〈 W 〉〉, T ∈ DRBm,s〈〈 W 〉〉, w ∈ W ∗, u ∈ X∗,
Then
S · T ∈ DRBn,s〈〈W 〉〉, S • w ∈ DRB〈〈W 〉〉, S ⊙ u ∈ DRB〈〈W 〉〉
If n = 1, 1 ≤ j0 ≤ m, then∇∗

j0
(S) ∈ DRB1,m〈〈W 〉〉.

These closure properties are effective.

Terminal matrices versus non-terminal matricesLet us denote byL : DB〈〈 V 〉〉 →
DB〈〈X 〉〉 the map sending every deterministic seriesS on the languageL(S) := {u ∈
X | S ⊙ u = ε} (i.e. the set of terminal words generated from all non-terminal words
of S via the derivation w.r.t. the rules ofG). For every integersn,m ≥ 1, L is extended
componentwise as a mapDBn,m〈〈 V 〉〉 → DBn,m〈〈 X 〉〉.

Lemma 1. For everyS ∈ DBn,m〈〈 V 〉〉, T ∈ DBm,s〈〈 V 〉〉, u ∈ X∗,
L(ε) = ε, L(S · T) = L(S) · L(T), L(S ⊙ u) = L(S) • u.

ImplementationThe modulefautomata implements the matricial product· (prod),
the right-actions• (bullet),⊙(odot) and the operation∇∗

j0
(nablastar).

3.3 Linear combinations

Let us calllinear combinationof the seriesS1, . . . , Sj, . . . , Sm any series of the form∑
1≤j≤m αj · Sj whereα ∈ DRB1,m〈〈 V 〉〉. LetS1, . . . , Sj , . . . , Sm ∈ DRB〈〈 V 〉〉.

We calldependencyof order0 between theSj ’s, an equality of the form:

Sj0 =
∑

1≤j≤m

γ′
j · Sj, (1)

wherej0 ∈ [1,m], γ ′ ∈ DRB1,m〈〈 V 〉〉 andγ′
j0

= ∅. 4 Analogously, we calldepen-
dencyof order1 between theSj ’s, an equality of the form (1), but where the symbol
“=” is replaced by the symbol “≡”. It is clear that the homomorphism L maps every
dependency of order1 between theSj ’s onto a dependency of order0 between the
L(Sj).

Canonical coordinatesLet S, T1, T2, . . . , Tn ∈ DB〈〈 V 〉〉. We assume thati 6= j ⇒
Ti 6= Tj. For everyi ∈ [1, n], we define
αi := {u ∈ V ∗ | S • u = Ti and∀u′ ≺ u, ∀j ∈ [1, n], S • u′ 6= Tj} and
αn+1 := {u ∈ S | ∀u′ � u, ∀j ∈ [1, n], S • u′ 6= Tj}.

4 This terminology originates in [Mei89].

Lemma 2. The vectorα of canonical coordinates fullfils:
1-α ∈ DB1,n+1〈〈 V 〉〉, S =

∑n

i=1 αi · Ti + αn+1

2- S is a linear combination of theTi, with a vector of coefficients inDB1,n〈〈 V 〉〉 iff
αn+1 = ∅.

Unifiers The following notion was implicit in [Sén01a, section 5] and explicited in
[Sén05, section 11]. It turns out to be central in our implementation. Letα,β ∈ DB1,q〈〈X 〉〉.
A unifierof (α,β) is any matrixU ∈ DBq,q〈〈 X 〉〉 such that:α · U = β · U.
U is a Most GeneralUnifier iff every unifier of(α,β) has the formU · T for some
T ∈ DBq,q. This notion is lifted toα,β ∈ DRB1,q〈〈 V 〉〉 via the mapL.

Theorem 1. 1- Every pairα,β ∈ DB1,q〈〈 V 〉〉 has a MGU (up to≡)
2- This MGU isunique, up to≡ and up to some right-product by a permutation matrix.
3- For pairsα,β ∈ DRB1,q〈〈 V 〉〉, the MGU has some representative which belongs
toDRBq,q〈〈 V 〉〉 and is computable fromα,β.

In other words, the MGU of two algebraic row-vectors defined by det. rational vectors
over a s.d. grammarG is itself algebraic and definable by a det. rational-matrix over the
grammarG. The MGU ofα,β ∈ DRB1,q〈〈 V 〉〉 can be computed along the following
algorithm scheme:

M ← Idq; cost← 0
while (notα ·M ≡ β ·M) do

find j ∈ [1, q], w ∈ X∗, prefix-minimal, such that:
((α ·M)⊙ w = εqj) iff ((β ·M)⊙ w 6= εqj)
γ ← (α ·M)⊙ w (if different fromεqj) or γ ← (β ·M)⊙ w (otherwise)
γ ← ∇∗

j (γ))
D ← Idq; Dj,∗ ← γ {D is the dependency matrix associated toγ andj}
M ←M ·D; cost← cost+ |w|

end while
return [M , cost]

(See on Figure 2 an example of mgu computation, whereq = 4).
The integercost is useful for a proper use ofM leading to an equivalence proof (i.e.
for ensuring property (3) of§4.5).

ImplementationThe modulefautomata implements the functioncoords that com-
putes the canonical coordinates of a d.r. series over a finitefamily of d.r. series.
The moduleequations defines a functionalmgu(f-equiv,f-op,vec1,vec2) :
it computes the MGU of two row-vectors by the above algorithmwheref-equiv is
used for testing the equivalence (or returning a witness) oftwo row-vectors andf-op
is the right-action used for computing the dependencyγ. The MGU’ s of order0 or
approximated5 MGU’ s of order1 are obtained by application of this functional.

5 i.e. up to some length for the terminal words

v1: list of states [0,1,2,3]
sets of init states [[0]]
sets of fin states [[1],[3],[],[]]
list of (non-sink) transitions:
(0 <q1-A-q3>)--> 1
(0 <q1-A-q5>)--> 3

v2: list of states [0,1,2,3]
sets of init states [[0]]
sets of fin states [[],[],[2],[3]]
list of (non-sink) transitions:
(0 <q2-A-q4>)--> 2
(0 <q2-A-qb>)--> 3

mgu list of states [0,1,2,3,4]
sets of init states [[0],[4],[3],[4]]
sets of fin states [[],[],[3],[4]]
list of (non-sink) transitions:
(0 <q4-A-q4>)--> 2
(2 <q4-A-q4>)--> 3

cost_mgu 2

Fig. 2. A mgu w.r.t. grammar G2

4 Logics

4.1 The deduction relation

We denote byA the setDRB〈〈 V 〉〉 × DRB〈〈 V 〉〉. An element(S, T) ∈ A is called
an equation while a triple(p, S, T) wherep ∈ IN is called aweightedequation. The
divergenceof (S, T), denoted byDiv(S, T), is defined by:

Div(S, T) := inf{|u| | u ∈ X∗, (S ⊙ u = ε)⇔ (T ⊙ u 6= ε)}

The mapDiv is extended to sets of equations by:Div(P) := inf{Div(p) | p ∈ P}. Let
C be the set of meta-rules described in Figure 3. LetB be the set of meta-rules obtained

(W 0) ∅ ||−− (0, T, T)
(W 0′) {(p, S, T)} ||−− (p+ 1, S, T)
(W 1) {(p, T, T ′)} ||−− (p, T ′, T)
(W 2) {(p, T, T ′), (p, T ′, T ′′)} ||−− (p, T, T ′′)
(W 3) {(p, S1, T1), (p, S2, T2)} ||−− (p, S1 + S2, T1 + T2)
(W 4) {(p, T, T ′)} ||−− (p, T · U, T ′ · U)
(W 5) {(p, T, T ′)} ||−− (p, U · T, U · T ′)
(W 6) {(p, U1 · T + U2, T)} ||−− (p, U∗

1 · U2, T)

Fig. 3. SystemC

by forgetting the first componentp (an integer) in every weighted equation(p, S, T) of
every meta-rule ofC. We define the binary relation||−− B ⊆ P(A)×A, as the set of all
the instances of meta-rules ofB whereS, T, T ′, T ′′, U ∈ DB〈〈 V 〉〉, (S1, S2), (T1, T2), (U1, U2) ∈
DB1,2〈〈 V 〉〉, U1 6= ǫ. The binary relation|−− B overP(A) is defined by:∀P,Q ∈
P(A)

P |−− BQ⇔ (∀q ∈ Q− P, ∃P ′ ⊆ P, such thatP ′ ||−− Bq).

The relation
p

|−− B (for p ∈ IN) and
∗

|−− B are then deduced from|−− B as usual (and

likewise the binary relations||−− C , |−− C ,
p

|−− C ,
∗

|−− C).

Lemma 3. : For everyP,Q ∈ P(A), P
∗

|−− B Q⇒ Div(P) ≤ Div(Q).

4.2 Self-provable sets

A subsetP ⊆ A is saidself-provable6 iff

∀(S, T) ∈ P, (S = ε)⇔ (T = ε) and ∀x ∈ X,P
∗

|−− B P ⊙ x.

Lemma 4. If P is self-provable then,∀(S, T) ∈ P, S ≡ T .

This follows easily from Lemma 3.

4.3 Comparison-forest

A comparison-forestis, informally speaking, a set of oriented trees labeled by weighted
equations such that:
- a distinguished root, thestarting-node, has a label of the form(0, S, T), whereS, T ∈
DRB〈〈 V 〉〉
- all other roots, theunifier-nodeshave labels of the form(0, u.M, v.M) whereu, v are
det. rat. row-vectors of dimension(1, d) andM is a det. rat. matrix of dimension(d, d)
- non-root nodes have labels of the form(p, U, U ′) whereU,U ′ ∈ DRB〈〈 V 〉〉.
Every node can have the status “open” or “closed”. In case it is closed, property (3) of
§4.5 is satisfied. Open nodes are leaves.

4.4 Tactics and strategies

The program maintains, at each step of the computation, a comparison-forest.
The program starts from the comparison-forest consisting of just one node, labeled by
(0, S, T). Then it iteratively modifies this c.f. by either:
1- closing an open node and adding new sons (the number of new sons ranges from0
to the maximum cardinality of some class (modulo⌣); at this stage, the sons are open.
2- discovering that an open node is obviously false (e.g(p, ε, S) whereS 6= ε); a wit-
nessu ∈ X∗ of non-equivalence is thus propagated to the rootr above this node

2-a if r is a unifier-node, this unifier is improved and all nodes of theforest that are
below some node “using” the unifier are destroyed.

2-b if r is the starting-node, the witnessu is thus awitness of falsityfor the initial
equation(S, T). The algorithm stops and returns the witness.
3- discovering that the forest has no open node. The set of equations of the forest is thus
a self-provable set. The algorithm stops and returns the self-provable set.

The precise sequence of actions of the program will be determined by astrategy;
in turn, the strategy will calltacticsthat are able to perform, given an open node of the
current comparison-forest, one of the above kind of actions.

Tactics The main tactics already implemented are summarized in Table 1. The four
last tactics lean on the notions exposed in Section 3. Note thatTCM implements the
“triangulation process” described in [Sén01a, section 5].

6 translation into our framework of the notion of “self-proving set of pairs” from [Cou83, p.162]

Trep argument-node:n, open, labeled by(p, S, T)
context:n′, closed, labeled by(p′, S, T) wherep′ ≤ p.
action: n is closed, “leaning on”n′.

Teq argument-node:n, open, labeled by(p, T, T)
action: n is closed.

TA argument-node:n, open, labeled by(p, S, T)
action: n is closed “leaning on his new sons”.Card(X) sons are created,
x-ith son is labeled by(p+ 1, S ⊙ x, T ⊙ x)

TD argument-node:n, open, labeled by(p,
∑d

j=1
Aj · Sj ,

∑n

j=1
Aj · Tj),

whereAj are⌣-equivalent non-terminals.
action: n is closed, “leaning on his new sons”.d sons are created,
j-ith son is labeled by(p+ 1, Sj , Tj)

TCM argument-node:n, open
context: n0, n1, . . . , nℓ is a path withnℓ = n, ni is labeled byEi = (αiS,βiS)
with a weightπi whereαi, βi ∈ DRB1,d〈〈 V 〉〉, S ∈ DRBd,1〈〈 V 〉〉,
action: a subsequencen0, ni1 , . . . , nir is selected andr seriesSj are eliminated
as follows (w.l.o.g. we assume the eliminated indices are1, . . . , r)
E0 ⊙ w1 = (S1,γ1 · S), Ei1D1 ⊙ w2 = (S2,γ2 · S), . . . , Ei

r−1
D1 · · ·Dr−1 ⊙ wr = (Sr,γr · S)

eachDi is the dependency matrix associated to linei and vectorγi

Successive indices are chosen in such a way thatπj ≥ πj−1 + |wj |+ 1.
the sub-tree strictly beneathnir is destroyed.M := D1D2 · · ·Dr,
nr is givend new open sonsn′

j labeled by:(πir , (αir ·M)j , (βir ·M)j).

TCJ argument-node:n, open
context: idem as forTCM .
In addition,∀i < ℓ,∃ui ∈ X∗, (αi ⊙ ui,βi ⊙ ui) = (αi+1,βi+1).
action: a candidate mguM for the vectorsα0,β0 is computed together with its costc.
The smallest indexi such thatπi ≥ π0 + c+ 1 is selected. The subtree strict. beneathni is destroyed.
ni is givend new open sonsn′

j labeled by:(πi, (αi ·M)j , (βi ·M)j)

TCR argument-node:n, open, labeled by(p, S, T)
context : idem as forTCJ .
action: M , cost, i are computed and subtree is destroyed as inTCJ.
A new rootn′ is created, it is closed ,
n′ is givend new open sonsn′

j labeled by(0, (α0 ·M)j , (β0 ·M)j).

TSUN argument-node:n, open, labeled by(p,αS,βS),
whereα, β ∈ DRB1,d〈〈 V 〉〉, S ∈ DRBd,1〈〈 V 〉〉.
and all components ofα,β are null or have length one.
action: n is closed. A candidate mguM for the vectorsα,β is computed
The noden is givend new open sons, labeled by:(p+ 1, Sj , (M · S)j).

Table 1.

Error tactics The tacticsTerror is responsible for detecting that an open node is
labeled by some trivially false equation. Then it returns “failure”.
The tacticsTerror-dyn also detects that an open node is false and then performs
action 2-a or 2-b of subsection 4.4

Strategies Two kinds of strategies have been developed. They all consist of combi-
nations of the above tactics (or variants).Thestatic strategies make only one guess of
MGU (for each call to a computation of MGU) and either succeedto confirm this guess
by terminating the proof, or discover an error and return “failure” as the global result.
Thedynamic strategiesstart each computation of mgu by a guess which might be im-
proved by successive discoveries of errors by tacticsTerror-dyn . Finally they return
either a proof of the proposed equivalence or a witness of non-equivalence.

Implementation The moduleproofs defines a classproof that implements the
notion of comparison-forest. The functions in charge of managing the equations and
MGU’s are defined there. The moduletactics implements the above defined tactics.
In general we first defined abstract tactics that depend of functionnal arguments. Con-
crete tactics are obtained by instanciating these arguments by specific functions which
compute MGU’s. The modulestrategies defines a functional
make-strategy(maxsteps,error-tactics, * tactics) which, in turn, produces
concrete strategies.

4.5 Soundness

Our (meta)-proof that the program issoundi.e. that its positive outputs are really self-
provable sets, leans on the auxiliary systemC (see Figure 3). Let us use the following
notation: for everyπ, n ∈ IN, S, S′ ∈ DRB〈〈 V 〉〉,

[π, S, S′, n] = {(π + |u|, S ⊙ u, S′ ⊙ u) | u ∈ X≤n}. (2)

All the above tacticsT enjoy the following fundamental property: if(π, S, S′) is the
weighted equation labelling a closed node of the forestt on which tacticsT has been
applied, then, for every terminal letterx ∈ X

⋃
{[p, U, U, n] | (p, U, U) ∈ im(t), p+ n ≤ π}

∗

|−− C {(π + 1, S ⊙ x, S′ ⊙ x)} (3)

A comparison-forest is saidclosedwhen all its nodes are closed.

Theorem 2. Let t be the closed forest computed by some strategy using only thetactics
Trep,Teq,TA,TD,TCM,TCJ,TCR,TSUN. Then the set of equations labellingt is
a self-provableset.

Sketch of proof: Let us noteP the set of weighted equations labellingt and let us con-

sider the following propertyQ(π, n, p): ∀S, S′ ∈ DRB〈〈 V 〉〉, P
p

|−− C (π, S, S′) ⇒

P
∗

|−− C [π, S, S′, n].
Following the lines of the induction of [Sén01a, subsec. 10.2, eq (136)], one can prove
by lexicographic induction over(π+n, n, p) the statement:∀(π, n, p) ∈ IN3,Q(π, n, p).
✷

5 Experiments

Out of 17 strategies already experimented, let us show the behaviour of 5 typical ones
over 7 positive examples and 5 negative examples. The selected strategies are charac-
terized by 3 parameters: their algebraic tactics [TCM (triangulation) or TCJ (jump) or
TSUN (quasi division)], the connectednessproperty for the forests they produce7 and
theirstatic(versusdynamic) character (see section 4). Thesizeis the sum of the lengths
of the rhs of the grammar. The tests have been run on a computerIntel(R) Xeon(R)

CPU X5675 @ 3.07GHz. In each positive example we show the number of nodes of
the final proof, the number of tactic calls and the CPU-time (number of seconds or “oot”
if >= 3600).

pos example ex0 ex1 ex2 ex3

size 36 51 34 86
trg, c, stat 44/44/0.88 75/121/10 99/145/11 oot
jp, c, dyn 44/44/0.79 75/117/4 67/123/8 100/1206/88
jp, nc, dyn 44/44/0.8 60/102/3.5 61/117/7 64/1104/83
qdiv, nc, stat 51/51/0.87 54/54/1 54/84/4 25/25/15
qdiv, nc, dyn 51/60/1 54/70/1 60/140/7 25/39/0.23

pos example ex4 ex5 ex6

size 179 253 525
trg, c, stat oot oot oot
jp, c, dyn 707/1067/476 oot oot
jp, nc, dyn 251/467/117 732/4220/1245 oot
qdiv, nc, stat 134/134/180 149/149/80 502/502/977
qdiv, nc, dyn 132/177/3 149/191/9 489/747/66

In each negative example, we show the length of the witness (for dynamic strategies8)
and the CPU-time (in s.); we mention the behavior of an exhaustive search, for compar-
ison.

neg example ex2n ex4n ex4nn ex4nnn ex6n

size 34 168 175 171 525
trg, c, stat −/2 −/2.7 −/52 −/17 oot
jp, c, dyn 4/2.9 8/3.1 13/69 13/20 19/1609
jp, nc, dyn 4/2.8 8/3.2 11/60 13/20 19/2062
qdiv, nc, stat −/1.3 −/0.6 −/61 −/2.8 −/128
qdiv, nc, dyn 4/4 7/15 13/35 13/29 23/170
ex− srch 4/0.02 4/0.08 7/2 7/1.3 oot

6 Conclusion and perspectives

The present program is a prototype where the low-level functions are far from being op-
timized. Its performance on grammar examples of 20 to 100 rules (and size in [30,500])

7 depending on the fact that they launch a new tree for each new mgu-computation or not
8 recall that the ” failure” message sent by static strategiesis unconclusive

seems to show that the equivalence problem for dpda (and the computation of algebraic
mgu’s) is not out of reach from a practical point of view.
Among our perspectives of development we plan: to improve the core of the program
by using rewriting techniques; to devise an example-generation module; to add modules
implementing the reductions described in [Sén01b].
The program is open-source and we hope other authors will write their own complemen-
tary modules (e.g. the authors of [CCD13] are already implementing their reduction).

AknowledgementsWe thank I. Durand for her continuous advices concerning program-
ming, X. Blanc for his lecture on program-testing and the ANRproject “ 2010 BLAN
0202 02 FREC” for financial support.

References

[BCFR06] Cédric Bastien, Jurek Czyzowicz, Wojciech Fraczak, and Wojciech Rytter. Prime
normal form and equivalence of simple grammars.TCS, 363(2):124–134, 2006.

[BG11] Stanislav Böhm and Stefan Göller. Language equivalence of deterministic real-time
one-counter automata is NL-complete. InMFCS, volume 6907 ofLNCS, pages 194–
205. Springer, Heidelberg, 2011.

[BGJ13] Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-
counter automata is NL-complete.CoRR, abs/1301.2181, 2013.

[CCD13] R. Chrétien, V. Cortier, and S. Delaune. From security protocols to pushdown au-
tomata.manuscript, submitted to ICALP 13, 2013.

[Cou83] B. Courcelle. Fundamental properties of infinite trees.Theoretical Computer Science
25, pages 95–169, 1983.

[Har78] M.A. Harrison.Introduction to Formal Language Theory. Addison-Wesley, Reading,
Mass., 1978.

[HHY79] M.A. Harrison, I.M. Havel, and A. Yehudai. On equivalence of grammars through
transformation trees.TCS 9, pages 173–205, 1979.

[Jan12] Petr Jancar. Decidability of dpda language equivalence via first-order grammars. In
LICS, pages 415–424, 2012.

[Mei89] Y.V. Meitus. The equivalence problem for real-timestrict deterministic pushdown
automata.Kibernetika 5 (in russian, english translation in Cybernetics and Systems
analysis), pages 14–25, 1989.

[MOW05] A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground
recursion, and DPDA equivalence. InICALP 05, volume 3580 ofLNCS, pages 917–
929. Springer, 2005.

[Sén97] G. Sénizergues. The Equivalence Problem for Deterministic Pushdown Automata is
Decidable. InProceedings ICALP 97, pages 671–681. Springer, LNCS 1256, 1997.

[Sén01a] G. Sénizergues. L(A) = L(B) ? decidability results from complete formal systems.
Theoretical Computer Science, 251:1–166, 2001.

[Sén01b] G. Sénizergues. Some applications of the decidability of dpda’s equivalence. InPro-
ceedings MCU’01, volume 2055 ofLNCS, pages 114–132. Springer-Verlag, 2001.

[Sén03] G. Sénizergues. The equivalence problem for t-turn dpda is co-NP. InProceedings
ICALP’03, volume 2719 ofLNCS, pages 478–489. Springer-Verlag, 2003.

[Sén05] G. Sénizergues. The bisimulation problem for equational graphs of finite out-degree.
SIAM J. Comput., 34(5):1025–1106 (electronic), 2005.

[Sti02] C. Stirling. Deciding DPDA Equivalence is Primitive Recursive. InProceedings
ICALP 02, pages 821–832. Springer, LNCS 2380, 2002.

