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1 Introduction

The so-called “equivalence problem for deterministic plestin automata” is the fol-
lowing decision problem:

INSTANCE : two dpda A, B; QUESTION : L(4) = L(B)?

i.e. do the given automata recognize gamelanguage? This problem was shown to
be decidable in ([Sén97],[Sén01a, sections 1-Beside crude decidability, the in-
trinsic complexity of this problem is far from being undemstl. A progress in this
direction has been achieved in [Sti02] by showing that threega problem igrimitive
recursivewhile subclasses with complexity in P (resp. co-NP) havenlubgcovered in
[BCFR06,BG11,BGJ13](resp.[SEN03]). Any further pragren this direction is likely
to have some impact on other areas of computer science, asus1by the numer-
ous applications that were found even before proving déditaof the problem (see
[Sén01b] for a survey and [MOWO05,CCD13] for more recentr@miions).

The contribution presented here consists in showing thatptactically feasable
to solve the equivalence problem for general dpda on neratexamples (see section
5). We have implemented, and to some extent refined, the mieasiof [Sén01a]. For
every pair(A, B) the program returns, either a prooflofA) = L(B) (see section 4
for a precise notion of proof) or a terminal word witnessing fact thalL(A) # L(B).

The sources of our (Python) program, as well as as additiof@aimation, can be
uploaded fronhttp://dept-info.labri.u-bordeaux.fr/ ~ges.

2 Automata, grammars

We introduce here the notions of automata and grammars thahanipulated by the
program.

! a similar method is exposed within the framework of term si@triting in [Jan12]



2.1 Deterministic matricial fa

A finite automatotis, as usual, atupled =< X, Q, Q—_, Q@+, > whereX is the input
alphabet() is the set of state§)  C @ is the set of initial states), C Q is the set of
terminal states) € Q x X x @ is the set of transitions, and all of these five sets are
finite.

The main object that our program handles isatrix of languages which is defined by
some finite automaton with one set of initial states for eaahdnd one set of terminal
states for each column.

Let us recall that a language C X* is aprefix languagéff, Yu,v € L,u < v =

u = v. The line-vectors of the matrices we are interested inpaeéix vectordn the
following sense:

Definition 1. Avector(L1,...,L;,...,L,) € P(X*)™is said to beprefixiff it fulfills:
Vi,j € [l,n),i#j= L,NL; =0and{J;_, L; is a prefix language.

We thus consider the following variant of the notion of d.fich recognizes prefix
matrix of languages i.e. where each row-vector is prefix.

Definition 2 (complete deterministic matricial f.a.). A finite complete deterministic
matricial finite automatois a tuple, A =< X, Q,Q1,—,...,Qn,—, Q1,45 - - s Qm,+,0 >
whereX is the input alphabet) is the set of stateg); _ C @ is the set of initial states
of thei-th line, Q; + C @ is the set of final states of ttjeth column,

Vi € [1,n], Card(Q;,—) =1

Vike[l,m],j#k=Qj+NQr+ =0

0:(Q x X) — @ is atotal map, which is called the transition map.

Vi e [l,m],Yq € Qj+,Vx € X, d(q, x) is not co-accessible fromi<x<m Qk,+-

All the items of this tuple are assumed to be finite sets.

Such an automaton defines a prefiatrix of language$.(A) := (Li ;). j)e[1,n] x[1,m]
whereL; j ;= {ue X* | 3¢ € Q;,—,0*(q,u) € Qj+}

The usual theory of recognizable languages, completerdatistic automata and resid-
uals can be adapted to (prefix) matrices of languages, cdanfa' residuals of matrices.

ImplementationOur modulefautomata deals with f.automata and their analogues.
The clasgdr-matrix ~ implements the notion of cdmfa. The program stores every ra-
tional prefix matrix under the form of@anonicaldcmfai.e. a minimal dcmfa, in which
the states are integers that are completely determinedrbg septh-first traversal of
the minimal automaton. The equality of two rational (prefixatrices is implemented
as an isomorphism-test for the corresponding canonicafalcm

2.2 Pushdown automata and context-free grammars

The notions opushdown automatcemdcontext-free grammaare well-known. A pda
is saiddeterministidf, informally, on every triple (state, stack-contentqeacontents),
at most onéransition is applicable. It is callestrict if it recognizes by empty stack and
a finite set of final sates amrmalif every e-transition ispopping



Definition 3. ([Har78, Definition 11.4.1 p.347]) Le& =< X,V, P > be a context-
free grammar( is saidstrict-deterministidff there exists an equivalence relatien
overV fulfilling the following conditions:

1- X isaclass (mod —)

2- foreveryv,v' € V,a, 8,8 € (XUV)* ifv —p a-fandv —p - 5 and
v — ', then either:

2.1-bothg, p’ # eandg[1] — B'[1]

22-orf =3 =ecandv ="v'.

(In the above definition, for every worg, v[1] denotes the first letter of the worg.
Any equivalence— satisfying the above condition is said to bstect equivalencdor
the grammar=. It is known that, given a strict dpd&1, one can construct, in polyno-
mial time, an associated gramn@@y, =< X, Vi, Py > Which is strict-deterministic
and generates the language recognized by

ImplementationOur modulegrammars deals with dpda and dcf grammars. The trans-
lation of a dpda into a dcf grammar is realized by thgotogram(A)  function;
some routine functions around these notions are implerddtest for determinism of

a cf grammar, elimination of non-productive non-termiraisl reduction in Greibach
normal-form, for grammars translating a normal strict dpdee Figure 1.

<q2-A-g4>::=a<q4-A-q4><q4-A-q4>
<Qg2-A-g4>::=x<q2-A-q4><q4-A-q4>
<q2-A-gb>::=b
<g2-A-gb>::=x<q2-A-gb>
<q2-0-g3>::=#<q2-A-q4><q4-0-q3>
<g2-0-q3>::=#<q2-A-gb>

Non-terminal symbols :

[<92-A-q4> <q2-A-gb> ][<q4-O-g3> ][<q1-0-¢3> ]
[<g2-0-g3> ][<q3p-O-93> ][<g4-A-q4> ][<q3-O-q3> ]
[<g3-A-g3> ][<gl-A-g3> <ql-A-g5> ][<q3b-O-q3> ]

Terminal symbols : # a b x

rermi s <g3-A-g3>::=a
S(\;vlnAngSr;jEZ <g3-0-g3>::=a<q3p-0-q3>
-A-q3>::= <q3b-0-g3>::=a
<gl-A-q3>::=x<ql-A-03><q3-A-q3> <33p-0»83>:::a<q3b—0—q3>
<gl-A-g5>:=b <g4-A-g4>:=a
<ql-A-gq5>:=x<ql-A-q5> <g4-0-g3>::=a

<q1-0-g3>::=#<q1-A-q3><(3-0-¢3>

<q1-0-q3>.:=#<ql-A-q5> Axiom: <q1-0-g3>

Fig. 1. A dcf grammar G2 (obtained from some dpda)

3 Algebraic framework

We recall here the algebraic framework which is the base opoagram (see [Sén01a,
sections 2,3] for more details).

3.1 Semi-rings and right-actions

Semi-ringB{{ W )) Let (B,+,-,0,1) whereB = {0,1} denote the semi-ring of
“pooleans”. LetW be some alphabet. B§B({ W )),+, -, 0, ¢), we denote the semi-
ring of boolean serieover W (which is, up to isomorphism, nothing else than the
semi-ring of subsets oV *: (P(W*),U, -, 0, {€}).



Right-actions ovei3({ W )) We recall the following classical right-actionof the
monoidW* over the semi-rin@(( W )) : forall 5,5 e B{(W )),u € W*

Seu=25 oVYweW* (5, = Suw)

(i.e. S e u is theresidualof S by u ). Let (V,—) be the structured alphabet associated
with a strict-deterministic grammar (see paragrgpl2). We define the right-actiop
over non-terminal words by:

cor=0. (v-Box=(Y hex) B,

(v,h)eP

The action is then extended to arbitrary boolean seriesleridft) and to arbitrary
terminal words (on the right) by:

(Z Sy - w) ©x = Z Splw@z), SEe:=S5, SOwr:=(SO0w)Ox
wew* wew*

3.2 Deterministic matrices

We recall here the notion afeterministicseries and, more generally, deterministic ma-
trices? 3. Letus consider a pafi#¥, —) wherel¥ is an alphabet and- is an equivalence
relation oveV. We call(W, —) astructuredalphabet.

Let us denote b, ., ({ W )) the set of(n, m)-matrices with entries in the semi-ring
B(( W )) (the index(m, n) will continue to mean “of dimensiofm, n)” for all subse-
quent subsets of matrices).

Definition 4. Letm € IN,S € By, (( W )): S = (S1,--+,Sn). S is said left-
deterministiaff eitherVi € [1,m], S; = 0 or
Jip € [1,m], Si, = e andVi # i, S; = 0 or
Vw,w' € W*Vi,j € [1,m],(S:), = (Sj),, = 1 = FAA € Ww,wy €

w

V¥A— A w=A wandw = A" - wi].
Both right-actions, ©® onB({ W )) are extended componentwiseRg ., (( W )).

Definition 5. A row-vectorS € By ., (( W)) is saiddeterministidff for everyu € W™,
S e u is left-deterministic.
A matrix S € B, ., (( W )) is said deterministiciff for everyi € [1,n], S;. is a
deterministic row-vector.

The classical definition aftionality of series inB(( W )) is extended componentwise
to matrices. Givem € B, ,,(( W )) and1 < jo < m, we define the vectdv’;, (A) :=
A by:

if A=(a1,...,a5,...,am) thend" := (ay,...,d},...,a;,) Wwhere

/

ajzzajo-ajifj;éjo, a;zglfj:jg

2 these series play, for dcf grammars the role twatfigurationsplay for a dpda.
3 it extends the notion of (finitedet of associatedefined in [HHY79, definition 3.2 p. 188].



Note that every deterministic matrix is prefix; it followsathevery deterministic ratio-
nal matrix is recognized by some cdmfa. We use the acroiyBis,, (( W )) (resp.
DRB,, ., ({ W ))) for the sets oDeterministic(resp.Deterministic Rationgimatrices.
The main closure properties of deterministic rational ima# are summarized below.

Proposition 1. LetS € DRB,, ,,,(( W )), T € DRB,,, s(( W )), w € W*, u € X*,
Then

S-T € DRB,, ((W)),Sewec DRB(({W )),S ®uec DRB({ W ))
Ifn=1,1<jo <m,thenV; (S) € DRBy,,(( W )).

These closure properties are effective.

Terminal matrices versus non-terminal matricest us denote by. : DB{({ V' )) —
DB(( X )) the map sending every deterministic sei$esn the languagg(S) := {u €
X | S©®u = €} (i.e. the set of terminal words generated from all non-teahivords
of S via the derivation w.r.t. the rules &f). For every integera, m > 1, L is extended
componentwise as a m&aB,, ., (( V' )) — DB, » (( X )).

)

Lemma 1. For everyS € DB,, ,,,(( V' )),T € DB,,, s({ V' )),u € X*,
L(e)=¢, L(S-T)=L(S)-L(T), L(S®u)=L(S) euw.

ImplementationThe moduldautomata implements the matricial produc{prod ),
the right-actions (bullet ), ®(odot ) and the operatioV; (nablastar ).

3.3 Linear combinations

Let us calllinear combinatiorof the seriesSy, ..., S;, ..., Sy, any series of the form
Zl<j<m ajo- Sj wherea € DRB17m<< 1% >> LetSl, ey Sj, ey Sm € DRB<< 1% >>
We calldependencgf order0 between theS;’s, an equality of the form:

Sio= > S, (1)

1<j<m

wherejy € [1,m],v" € DRBy,,(( V' )) andvj = 0. Analogously, we caltiepen-
dencyof order1 between the5;’s, an equality of the form (1), but where the symbol
“="is replaced by the symbol=£". It is clear that the homomorphism L maps every
dependency of order between theS;’'s onto a dependency of ordérbetween the
L(S;).

Canonical coordinated et S, 71, T», ..., T, € DB{{ V }). We assume that+# j =
T; # Tj. For everyi € [1,n], we define

o ={ueV*|Seu="T,andVe < u,Vj € [l,n],Sev #T;}and

ant1 :={u eS|V <u,Vje[l,n],Seu #T;}.

4 This terminology originates in [Mei89].



Lemma 2. The vectoix of canonical coordinates fullfils:

1-a € DBy g1 ((V)), S =30 i T + o

2- S is a linear combination of th&;, with a vector of coefficients iBB, ,,(( V' )) iff
Qp41 = @

Unifiers The following notion was implicit in [Sén01la, section 5]daaxplicited in
[Sén05, section 11]. Itturns out to be central in our impdatation. Letx, 3 € DB, ,(( X )).
A unifierof (a, 8) is any matrixU € DB, ,(( X )) such thata- U =3 - U.

U is aMost GeneralUnifier iff every unifier of («, 3) has the formlJ - T' for some

T € DB, 4. This notion is lifted to, 3 € DRB, ,(( V' )) via the mapL.

Theorem 1. 1- Every paira, 8 € DB, ((( V' )) has a MGU (up to=)

2- This MGU isunique up to= and up to some right-product by a permutation matrix.
3- For pairsa, B8 € DRBy 4(( V )), the MGU has some representative which belongs
to DRB, ,(( V' )) and is computable frora, 3.

In other words, the MGU of two algebraic row-vectors defingdibt. rational vectors
over a s.d. grammdf¥ is itself algebraic and definable by a det. rational-matvierdhe
grammarG. The MGU ofer, 3 € DRB; ,(( V' )) can be computed along the following
algorithm scheme:

M < 1dg4; cost <0

while (nota- M = 3 - M) do
findj € [1,¢],w € X*, prefix-minimal, such that:
(- M)ow=¢))iff (B-M)©w # ef)
v + (- M) ©w (if different frome) or v < (8- M) ® w (otherwise)
v+ Vi)
D + 1dg; Dj « < v {D is the dependency matrix associatedytand }
M + M - D; cost < cost + |w|

end while

return [M, cost]

(See on Figure 2 an example of mgu computation, whetet).
The integercost is useful for a proper use d¥f leading to an equivalence proof (i.e.
for ensuring property (3) df4.5).

ImplementationThe moduldautomata implements the functiocoords that com-
putes the canonical coordinates of a d.r. series over a famtdy of d.r. series.

The moduleequations  defines a functionahgu(f-equiv,f-op,vecl,vec?) :
it computes the MGU of two row-vectors by the above algorithheref-equiv ~ is
used for testing the equivalence (or returning a witnessyofrow-vectors and-op

is the right-action used for computing the dependefcirhe MGU’ s of order0 or
approximated MGU'’ s of order1 are obtained by application of this functional.

5 i.e. up to some length for the terminal words



vl1: list of states [0,1,2,3]
sets of init states [[0]]

sets of fin states [[1],[3],[.0]
list of (non-sink) transitions:
( 0 <q1-A-g3> )--> 1

( 0 <ql1-A-g5> )--> 3

mgu list of states [0,1,2,3,4]
sets of init states [[0],[4],[3].[4]]
sets of fin states [[],[1,[3],[4]]
list of (non-sink) transitions:

( 0 <g4-A-g4> )--> 2

v2: list of states [0,1,2,3] ( 2 <ga-A-q> )--> 3

sets of init states [[0]]

sets of fin states [[],[].[2].[3]]
list of (non-sink) transitions: cost_mgu 2

( 0 <g2-A-g4> )--> 2
( 0 <g2-A-gb> )--> 3

Fig. 2. A mgu w.r.t. grammar G2

4 Logics

4.1 The deduction relation

We denote by4 the setDRB({ V' }) x DRB(( V' )). An element(S,T) € A is called
an equation while a triplép, S, T') wherep € IN is called aweightedequation. The
divergenceof (S, T), denoted byDiv(S,T), is defined by:

Div(S,T) :=inf{lu| |[ue X", (SOu=¢)= (TOu#e)}

The mapDiv is extended to sets of equations Bjiv(P) := inf{Div(p) | p € P}. Let
C be the set of meta-rules described in Figure 3.8 bk the set of meta-rules obtained

(WO) 0 H—— (0 T, T)

(Wo') {(p,S,7)} = (p+1,5,T)

W1) {(p,7,7")} I— (va' T)

(WQ) {( 7T7T/),(p7T/,TN)} H__ ( TN)

(WS) {( 7SlvT1)7(p7327T2)} H__ (p7SI+SQ7T1 +T2)
(W4) {(p,7,7")} = (p,T-UT"-U)
(Ws5) {(p,T,7")} = (U-T,U-T)
We6){(p,Ur-T+U,T)}  [F= (p,UI-U2,T)

Fig. 3. SystenC

by forgetting the first componept(an integer) in every weighted equatign S, T') of
every meta-rule of . We define the binary relatioft-— 5 C P(A) x A, as the set of all
the instances of meta-rules®iwhereS, T, 7', 7", U € DB{(V')), (51, S2), (T1,T2), (U1, Us) €
DB 2(( V )),U1 # e. The binary relation|-— 5 overP(A) is defined by¥VP,Q €
P(A)

PL—5Q < (Vge @ — P3P’ C P, such thatt’ |} 5q).

4 *
The relation}—  (for p € IN) and |-— ; are then deduced frorr— 5 as usual (and
p *
likewise the binary relation$f-— ¢, —c, F— ¢, F—¢)-



Lemma 3. : ForeveryP,Q € P(A), P |—*— 5 @ = Div(P) < Div(Q).

4.2 Self-provable sets

A subsetP C A is saidself-provablé iff

WS, T)eP(S=c)& (T=¢) and Ve e X,P — 4 PO
Lemma 4. If P is self-provable theny(S,T) e P, S=T.

This follows easily from Lemma 3.

4.3 Comparison-forest

A comparison-foregs, informally speaking, a set of oriented trees labeled bighted
equations such that:

- a distinguished root, th&tarting-nodehas a label of the forr0, S, T"), whereS, T' €
DRB(( V)

- all other roots, thenifier-nodeshave labels of the forrf0, u.M, v. M) whereu, v are
det. rat. row-vectors of dimensidf, d) andM is a det. rat. matrix of dimensiqu@, d)

- non-root nodes have labels of the fo(m U, U’) whereU, U’ € DRB{{ V )).

Every node can have the status “open” or “closed”. In casedtdased, property (3) of
§4.5 is satisfied. Open nodes are leaves.

4.4 Tactics and strategies

The program maintains, at each step of the computation, @adson-forest.
The program starts from the comparison-forest consistijgsb one node, labeled by
(0,5,T). Then it iteratively modifies this c.f. by either:
1- closing an open node and adding new sons (the number ofareswranges from
to the maximum cardinality of some class (modH9; at this stage, the sons are open.
2- discovering that an open node is obviously false (g,g, .S) whereS # ¢); a wit-
nessu € X* of non-equivalence is thus propagated to the raaibove this node

2-aif r is a unifier-node, this unifier is improved and all nodes offtrest that are
below some node “using” the unifier are destroyed.

2-b if r is the starting-node, the witnesss thus awitness of falsityfor the initial
equation(.S, T'). The algorithm stops and returns the witness.
3- discovering that the forest has no open node. The set atieaqs of the forest is thus
aself-provable sefThe algorithm stops and returns the self-provable set.

The precise sequence of actions of the program will be déteadrby astrategy
in turn, the strategy will caltacticsthat are able to perform, given an open node of the
current comparison-forest, one of the above kind of actions

Tactics The main tactics already implemented are summarized ineTabThe four
last tactics lean on the notions exposed in Section 3. NeteltdM implements the
“triangulation process” described in [Sén01a, section 5]

8 translation into our framework of the notion of “self-pragi set of pairs” from [Cou83, p.162]



Trep |argument-node:n, open, labeled byp, S, T')
contextn’, closed, labeled byp’, S, T') wherep’ < p.
action: n is closed, “leaning on#’.
Teq |argument-node:n, open, labeled byp, T, T')
action: n is closed.
TA  |argument-node:n, open, labeled byp, S, T')
action: n is closed “leaning on his hew song”ard(X') sons are created,
z-ith sonis labeled byp +1,S © z,T © z)
TD |argument-node:n, open, labeled byp, Z}izl Aj S0 Ay - Ty),
whereA; are—-equivalent non-terminals.
action: n is closed, “leaning on his new song/’sons are created,
j-ith son is labeled byp + 1, S;, T})
TCM |argument-node:n, open
context no, n1,...,ne is a path withn, = n, n; is labeled byE; = (a5, 8:5)
with aweightm- Whereai, ﬁz S DRBLd(( Vv >>, S e DRBdJ(( 1% >>,
action: a subsequencey, ni,, . . . , 14, iS selected and seriesS; are eliminated
as follows (w.l.0.g. we assume the eliminated indiceslare. , r)
Ey©wy = (S1,71-5), Esy D1 ©wz = (S2,v2-S),..., Ei,_,D1---Dyr_1 ©@wr = (Sp,¥r - 5)
eachD; is the dependency matrix associated to lired vectory;
Successive indices are chosen in such a waysithat m;_1 + |w;| + 1.
the sub-tree strictly beneath,. is destroyedM := D1 Ds - -- D,.,
n- is givend new open sons; labeled by:(m;, , (as, - M);, (Bs, - M);).
TCJ |argument-node:n, open
context idem as forl’C' M.
In addition,Vi < £, Ju; € X*, (Oli ® ui,,Bi ® ul) = (ai+1,,8,'+1).
action: a candidate mgu/ for the vectorsxo, B is computed together with its cost
The smallest index such thatr; > w9 + ¢ + 1 is selected. The subtree strict. beneattis destroyed
n; is givend new open sons/; labeled by:(m;, (o - M);, (B: - M);)
TCR |argument-node:n, open, labeled byp, S, T')
context: idem as forT’C'J.
action: M, cost, i are computed and subtree is destroyed aBG1.
A new rootn’ is created, it is closed ,
n’ is givend new open sons’; labeled by(0, (ao - M);, (Bo - M);).
TSUN|argument-node:n, open, labeled byp, a.S, 85),

wherea, 8 € DRB1 4(( V )),S € DRBg,1{( V )).

and all components ak, 3 are null or have length one.

action: n is closed. A candidate mgl/ for the vectors, 3 is computed
The noden is givend new open sons, labeled bip + 1, S;, (M - S);).

Table 1.




Error tactics The tacticsTerror is responsible for detecting that an open node is
labeled by some trivially false equation. Then it returreslitfre”.

The tacticsTerror-dyn  also detects that an open node is false and then performs
action 2-a or 2-b of subsection 4.4

Strategies Two kinds of strategies have been developed. They all coasisombi-
nations of the above tactics (or variants). Htatic strategies make only one guess of
MGU (for each call to a computation of MGU) and either sucdeecbnfirm this guess

by terminating the proof, or discover an error and returiidfa” as the global result.
Thedynamic strategiestart each computation of mgu by a guess which might be im-
proved by successive discoveries of errors by tadi@sor-dyn . Finally they return
either a proof of the proposed equivalence or a withess ofetuivalence.

Implementation The moduleproofs defines a clasproof that implements the
notion of comparison-forest. The functions in charge of atgang the equations and
MGU's are defined there. The moduéetics  implements the above defined tactics.
In general we first defined abstract tactics that depend aftiiomnal arguments. Con-
crete tactics are obtained by instanciating these argunigrspecific functions which
compute MGU’s. The modulstrategies defines a functional
make-strategy(maxsteps,error-tactics, xtactics)  which, in turn, produces
concrete strategies.

4.5 Soundness

Our (meta)-proof that the programssundi.e. that its positive outputs are really self-
provable sets, leans on the auxiliary systeifsee Figure 3). Let us use the following
notation: for everyr,n € IN, S, S’ € DRB{({ V' )),

[7.8,8" n] = {(r +|ul,S Ou, 8" ©u) | ue X"}, )

All the above tacticg” enjoy the following fundamental property: (fr, S, S’) is the
weighted equation labelling a closed node of the fotest which tactics” has been
applied, then, for every terminal lettere X

.U, Un] | (0,U,U) € im(t),p+n < 7} b {(r+ 1,5 02,8 ©a)} (3)

A comparison-forest is saitlosedwhen all its nodes are closed.

Theorem 2. Lett be the closed forest computed by some strategy using ortigdties
Trep, Teq, TA, TD, TCM, TCJ, TCR, TSUN. Then the set of equations labellings
a self-provableset.

Sketch of proof. Let us noteP the set of weighted equations labellihgnd let us con-
p
sider the following propert@(w,n,p): VS, 8" € DRB((V )),P }—, (7, S,5") =

P, [n, 5,5 n].

Following the lines of the induction of [Sén01a, subsec218q (136)], one can prove
by lexicographicinduction oveétr+n, n, p) the statement/(w, n, p) € IN?, Q(7, n, p).

|



5 Experiments

Out of 17 strategies already experimented, let us show thavieur of 5 typical ones
over 7 positive examples and 5 negative examples. The edlsttategies are charac-
terized by 3 parameters: their algebraic tactics [T@hNaGgulation) or TCJ ump) or
TSUN (quasi division)], the connectednegsroperty for the forests they producand
their static(versusdynamig character (see section 4). Tsigeis the sum of the lengths

of the rhs of the grammar. The tests have been run on a compuedéR) Xeon(R)

CPU X5675 @ 3.07GHz In each positive example we show the number of nodes of
the final proof, the number of tactic calls and the CPU-timenfber of seconds or “oot”

if >= 3600).

pos example” ex0 | exl | ex2 | ex3 |
stze 36 51 34 86
trg,c, stat |44/44/0.88|75/121/10 99/145/11| oot
Jp,c, dyn 44/44/0.79| 75/117/4 | 67/123/8 100/1206/88|
jp,nc,dyn || 44/44/0.8160/102/3.5|61/117/7| 64/1104/83
qdiv, ne, stat||51/51/0.87| 54/54/1 | 54/84/4 | 25/25/15
qdiv,nc,dyn| 51/60/1 | 54/70/1 |60/140/7 | 25/39/0.23
pos example” exd | exh | ex6 |
stze 179 253 525
trg, c, stat oot oot oot
ip, ¢, dyn 707/1067/476| oot oot
jp,ne,dyn || 251/467/117 732/4220/1245| oot
qdiv,nc, stat|| 134/134/180| 149/149/80 502/502/977|
qdiv,ne,dyn| 132/177/3 149/191/9 | 489/747/66 |

In each negative example, we show the length of the witnessiginamic strategi€y
and the CPU-time (in s.); we mention the behavior of an exthausearch, for compar-

ison.
neg emample” ex2n | exdn |ex4nn|ex4nnn| exbn |

size 34 168 | 175 171 525
trg, c, stat —/2 |—/2.7|=/52| —/17 | oot
ip, ¢, dyn 4/2.918/3.1|13/69| 13/20 |19/1609
jp,ne,dyn || 4/2.818/3.2|11/60| 13/20 {19/2062
qdiv, nc, stat||—/1.3|—/0.6| —/61| —/2.8 | —/128
gdiv,nc,dyn|| 4/4 | 7/15|13/35| 13/29 |23/170
ex —srch  [|4/0.024/0.08| 7/2 | 7/1.3 | oot

6 Conclusion and perspectives

The present program is a prototype where the low-level fanstare far from being op-
timized. Its performance on grammar examples of 20 to 1Gr{énd size in [30,500])

" depending on the fact that they launch a new tree for each rgawvammputation or not
8 recall that the ” failure” message sent by static strateigiesiconclusive



seems to show that the equivalence problem for dpda (andthpwtation of algebraic
mgu’s) is not out of reach from a practical point of view.

Among our perspectives of development we plan: to improeectire of the program
by using rewriting techniques; to devise an example-geioeramnodule; to add modules
implementing the reductions described in [Sén01b].

The program is open-source and we hope other authors wié tiv@ir own complemen-
tary modules (e.g. the authors of [CCD13] are already implaimg their reduction).

Aknowledgement®/e thank |. Durand for her continuous advices concerningfanm-
ming, X. Blanc for his lecture on program-testing and the AptRject “ 2010 BLAN
0202 02 FREC" for financial support.
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