Futexes Are Tricky

Ulrich Drepper

Red Hat, Inc.
drepper@redhat.com

June 27, 2004

Abstract

Starting with early version of the 2.5 series, the Linux kernel contains a light-weight method
for process synchronization. It is used in the modern thread library implementation but is also
useful when used directly. This article introduces the concept and user level code to use them.

1 Preface of the application. No value has a specific meaffjng.

The base reference for futexes has been “Fuss, Futexédly memory address in regular memory (excluding some-
and Furwocks: Fast User Level Locking in Linux” writ- thing like DMA areas etc) can be used for the futex. The
ten by Franke, Russell, and Kirkwood, released in theonly requirement is that the variable is aligned at a mul-
proceedings of the 2002 OLS [1]. This document is still tiple of sizeof(int)

mostly valid. But the kernel functionality got extended

and generally improved. The biggest weakness, thougHt is not obvious from the prototype, but the kernel han-
is the lack of instruction on how to use futexes correctly.dles the actual physical addresses of the futexes. l.e., if
Rusty Russell distributes a package containing user levdWo processes reference a futex in a memory region they
code ((ftp://ftp.kernel.org/publlinux/kernel/people/rusty/) share, they will reference the same futex object. This al-
but unfortunately this code is not very well documented!ows the implementation of inter-process synchronization
and worse, as of this writing the code is actually incor-Primitives.

rect.
The various actions which can be performed on a futex

This exemplifies that using futexes is really tricky since ¢an be selected with thep parameter which can have
they provide problems even to their inventors. This docuthe following values:
ment will hopefully provide correct and detailed instruc-

tions on how to use futexes. First an understanding of the- ;rex\wAIT This operation causes the thread to be sus-

kernel interface and its semantic is needed. pended in the kernel until notified. The system call
)) N) returns with the value zero in this case. Before the
The following text assumes the reader is familiar with the thread is suspended the value of the futex variable
purpose and semantics of synchronization primitives like is checked. If it does not have the same value as
mutex and barriers. Any book on threads will provide the thevall parameter the system call immediately
necessary knowledge. returns with the erroEWOULDBLOCK
In case thetimeout parameter is noNULL, the
2 The Kernel Interface thread is suspended only for a limited time. The
struct timespec value specifies the number of
The kernel interface consists mainly of one multiplexing seconds the calling thread is suspended. If the time
system call: runs out without a naotification being sent, the sys-

tem call returns with the err&TIMEDOUT

. : Finally the system call can return if the thread re-
long sys_futex (void *addrl, int op, ived a si L In thi th EISTR
int vall, struct timespec *timeout, ceived a signal. In this case the erro)

void *addr2, int val3) The addr2 parameter is not used for this opera-

tion and no specific values have to be passed to the
kernel.

This prototype is actually a bit misleading, as we will -

later see, but it is sufficient for now. The futex itself is FUTEXWAKETo0 wake up one or more threads waiting on

a variable of typeint at the user level, pointed to by a futex this operation can be used. Only &ider1

addrl . It has a size of 4 byt_es On.a” platforms, 32-bitand 1ith the exception of the futex used for notification of thread ter-

64-bit. The value of the variable is fully under the control mination. This is not discussed here.

No disrespect for Rusty et.al. intended, I got it wrong the first time as well.

mailto:drepper@redhat.com
ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/

E]

op, andvall parameters are used. The value of the
vall parameter is the number of threads the caller
wants to wake. The type ist , so to wake up all
waiting threads it is best to paB¢T _MAX

Usually the only values which are used are 1 and

The return value of the system call specifies how

many threads have been woken or queued at the
second futex’s wait queue. The caller can deter-

mine wheter any thread has been requeued; this is
the case only if the value is greater thal .

INT _MAX Everything else makes little sense given FyTEXREQUEUEThis operation is the now obsolete pre-

that the list of waiters will depend on the relative
execution time each thread gets and therefore can-
not be foreseen in general. This means it cannot be
determined from user level which threads get wo-
ken. And even if it would be possible for one situ-
ation, this is an implementation detail which might
change.. Values smaller or equal to zero are in-
valid.

decessor oFUTEXCMPREQUEUEIt proved to be
broken and unusable. No new code should use this
operation, it is only kept for compatibility reasons.
The difference is thaFEUTEXREQUEURIoes not
support theval3 parameter and therefore changes
to the futex corresponding to the destination wait
queue are not detected. This can lead to deadlocks.

FUTEXFD The semantics of this operation is different

The kernel doesot look through the list of wait-
ers to find the highest priority thread. The normal
futexes are not realtime-safe. There might be ex-
tensions in future which are, though.

Whether the woken thread gets executed right away
or the thread waking up the others continues to run
is an implementation detail and cannot be relied
on. Especially on multi-processor systems a woken
thread might return to user level before the waking
thread. This is something we will investigate later
a bit more.

The return value of the system call is the number
of threads which have been queued and have been
woken up.

FUTEXCMPREQUEUEThis operation implements a su-

perset of theFUTEXWAKEoperation. It allows to
wake up a given number of waiters. The additional
functionality is that if there are more threads wait-
ing than woken, they are removed from the wait
queue of the futex pointer to kaddrl and added

to the wait queue of the futex pointed to &ydr2 .

The number of threads treated this way can also

from the others. No operation is performed on the
futex. Instead, the kernel generates a file descrip-
tor which can then be used to refer to the futex.
In addition it is possible to request asynchronous
notification.

This operation requires only theldrl andvall
parameter to be passed to the kernel. Ifihia
parameter is zero, the system call return value is
a new file descriptor, created for the futaodrl .
This file descriptor then can be usedsslect ,
poll , or epoll calls. Whenever the thread got
woken or signalled thaelect /poll /epoll op-
eration can return. Theevents field for the file
descriptor is filled withPOLLIN|POLLRDNORMf
some woke waiters of the futex. The wakeup is
edge-triggered.

In case thevall parameter is not zero it must be
the value for a valid signal. The kernel associates
this signal with the returned file descriptor so that
it is sent in case the thread is woken while waiting
on the futex.

be capped: thémeout parameter is misused for From these descriptions it is apparent that a fundamental
that. The numeric value of the pointer argument isdetail of the futex is the wait queue in the kernel which
converted to arnt and used. We call this value is associated with it. Waiters are enqueued, wakers de-
hereval2 . The whole operation is only started if queue threads. These operations have to be performed
val3 is still the value of the futex pointed to by atomically and more, the test of the futex value in the
addr1 . If this is not the case anymore the system FUTEXWAIT calls must be atomic, too. This means that

call returns with the erroEAGAIN

The threads moved to the second futex’s wait queue
can then be handled just like any other threads wait:
ing on that futex. They can be woken individually
or in batches. When the requeued thread return

the operation to wait on a futex is composed of getting
the lock for the futex, checking the current value, if nec-
essary adding the thread to the wait queue, and releasing
the lock. Waking threads get the lock, then wake or re-
gueue threads, before releasing the lock. It is important
at the steps are executed in this order to guarantee that

there is no indication whatsoever that this requeug,

. reads which go to sleep because the futex value is un-
operation happened.

changed are going to be woken if once the futex value
Useful values for theall parameter for this op- is changed and threads are woken. The internal locks of
eration are zero and ondNT _MAXis not useful the futex implementation guarantee this atomicity. The
since this would mean this operation behaves jusfollowing sections show how all this together allows im-
like FUTEXWAKE Theval2 value is usually ei- plementing synchronization primitives.

ther one ofNT _MAX Using Zero makes no sense

since, again, this operation would degenerate tdn the remainder of the text we use the interfaces listed
FUTEXWAIT. in appendi¥ A. The implementation of these interfaces

Version 1.1 Futexes Are Tricky

The FUTEX_REQUEUE was introduced late in the 2.5 development cycle, long after the rest of the futex operations. It was developed by Ingo Molnar and myself after benchmarking NPTL applications. Later we found it to be broken-by-design. We needed the additional test FUTEX_CMP_REQUEUE implements. This new version was written by Jakub Jelinek and introduced in the 2.6.7 kernel.

is architecture dependent. None of the interfaces is paffutex _wait call. This is where the thread is suspended.
of the standard runtime. Programs wishing to use thenThe value ofval passed down is still the current value

probably have to provide their own implementation. and therefore there is no need to return VlEtiOULDBLOCK
The third thread also reads the value, but is then inter-
3 Why Do Futexes Work? rupted. The value is stored in a register or in some tem-

porary memory.

As an introduction we are going to examine one of theNOW thread 1 callev sianal to wake up all waiters
simplest possible uses of futexes. It is not really a syn_First it increments ths;alg and then calls iﬁto the kernél
chronization primitive but still can be perceived as us—to wake the waiter (all of them since the parameter with
able. We build an object that allows a thread to be no_the count igNT _MAX At the same time as trF:read 1 makes
tified of the arrival of a new event. The implementation - :
could look like this. the system call thread 3_a|§o_ enters the kernel, to wait.
After thefutex _wake callis finished both thread 2 and 3

can resume. It is noteworthy, though, that the reason why

class event both threads continue is different.
{
public: Thread 2 returns since it is woken by thread 1. The re-
event () : val (0) { } turn value of the system call is zero. Thread 3 on the

void ev_signal ()
{ ++val;
futex_wake (&val, INT_MAX); }
void ev_wait ()
{ futex_wait (&val, val); }

other hand did not even go to sleep. The valueaif

passed to the kernel in the third parameter is different
from the valueval has when the kernel processes the fu-
tex system call in thread 3: in the meantime thread 1 in-

private: crementedial . Therefore thread 3 returns immediately
int val; with EWOULDBLOCHKndependent of thread 1's wakeup
h call.

. . . . The experienced programmer of parallel programs will
Objects of this type can be used to synchronize arbitrar; ertainly have noticed a problem in the code. The use of

ily many threads inside a process. All threads intereste +val inamulti-threaded program is not safe. This does

in synchronizing with each other need to use the same, i 3 antee that all threads see consistent values. In

0?1].6(:' Thlt(ajre”can be mUIt'PI? opjects |n5|fle T‘ ptrocesf is first example there is no real problem since the events
which would allow synchronizing in separate clusters of .o nent ‘wake’, and ‘wait' are so weakly ordered,

threads. that using an atomic increment instruction or not does
not make much of a difference.
Thread 1 Thread 2 Thread 3
The second simplest operation is probably mutual exclu-
sion. The mutex implementation is essential for almost
read val . . .
) all the other mechanisms we will look into. It also ex-
futex_wait plains the nuances of the futex system call we have not
I touched yet so we will devote some time and lines to ex-
read val
plaining the mechanism is detalil.
++val
) 4 Mutex, Take 1
futex_wake f .
utex_wait
Be warned ahead of time that the implementation we de-
return from return from . . C. o
:) velop in this section is not 100% kosher. We will discuss
futex_wait futex_wait

the shortfalls at the end of this section and show a pos-
sible solution in the next. This two-step process helps to
t t t further exemplify the use of futexes. Readers can try to
spot the problem before it is explained.

This diagram represents the execution of a program with o

three threads. Each thread’s execution is represented by 2" & MUtex, itis critical that at most one thread at any
vertical line, progressing with time downward. The blue iMe ¢an own the mutex and that, if the mutex is free, ei-
parts are those at which the thread actually has a CPU. ff1ér one or more threads are trying to lock the mutex, or
two or more blue lines overlap vertically the threads aret€ list of waiters for the mutex is empty. These require-
executed concurrently. ments add quite a bit more complexity to the code. One

possible implementation can look like this:

In this specific example thread 2 calg _wait which
reads the value ofal and passes it to the kernel in the class mutex

Ulrich Drepper Version 1.1 3

{ Now that we understand how the code works it is neces-

public: sary to verify that the requirements on the mutex func-
mutex () : val (0) {} tionality are fulfilled. It is guaranteed that at most one
void lock () { thread can hold the mutex. If this would not be the case

int c;
while ((c = atomic_inc (val)) != 0)
futex_wait (&val, ¢ + 1); }
void unlock () {

theatomic _inc function must return zero for more than
one thread. This in turn is only possible when between
the two atomic _inc callsval has been reset to zero,

val = 0; futex_wake (&val, 1); } which finally means the mutex has been unlocked. There-
private: fore this requirement is fulfilled.
int val;
k The second requirement is that either the wait queue is

empty, the mutex is locked, or at least one thread tries

)]] to lock the mutex. The wait queue is maintained by the
To understand the implementation we first look at theyemel as part of the futex implementation. It cannot be
value the memberal can have. Its initial value is zero, gjrectly observed, we have to deduce the status from the
which means the mutex is not taken; all other valuesyperations which have been performed. If the mutex is
mean the mutex is taken. In theck member func- |ocKed the wait queue does not matter, so we can ignore
tion we see a call tatomic _inc which atomically in- his case. This means we have to show it is not possi-
crements the membeal and then returns theld value. pe that if the mutex is unlocked, the wait queue is not
If the old value is zero the function returns. If the old empty, and no thread tries to lock the mutex. The at-
value is not zero the functiontex _wait is called. Two tempts to lock the mutex happen in the loop in ke
things are important about this: first, the call happens iNpemper function. Any thread that ever tried to lock the
aloop. We cannot guarantee that if faeex _wait call ex either returned frofack successfully (and since
returns the thread will get the mutex. Instead the threaghe mutex is unlocked. later calleaiock) or is still in
has to try locking the mutex again. Second, the valugpe |gop. Therefore what remains to be shown is that even
passed as the current value of the futex is the value though a mutex got unlocked after one or more threads

val before theatomic _inc plus one. The “plus one” 5 nd it locked, at least one thread left the wait queue
part is important since otherwise the call would probably afier theunlock call is finished.

return right away with aEWOULDBLOG#ror value.

Unlike in the last example code this time we did use an Thread 1 Thread 2 Thread 3
atomic instruction. If we would have used a simple incre-
ment like++val instead of the call tatomic _inc and atomic_inc
two threads would execute tihek member function at

the same time on different processors of one system, then
both threads might get zero as the old value back. This
can happen if the memory access is not synchronized be-
tween the CPUs and the result would be a violation of
the mutex definition: more than one thread successfully val =0
calledlock before either one calleghlock and there- futex_wake futex wait
fore two threads entered the critical region. -

futex_wait

I atomic_inc

return from return from

The unlock function is very simple. It first stores the futex_wait futex_wait

value representing an unlock mutex. The new value must

be stored atomically. We do not use a special instruc- ¢ t t

tion since simple load and store instructions are usually

atomic. The call tdutex _wake wakes one thread. This

is different from how we used this function before when The preceding diagram shows the cases we have to con-
we woke up all waiters. This would be possible here assider. Thread 1 holds initially the mutex. Thread 2 tries
well, but it would be a waste of resources. Imagine a mu-+o lock it, theatomic _inc call returns a value other than
tex with 100 waiters, perhaps on a multi-processor mazero, and the thread goes to sleep. There could be al-
chine. Even if we would wake up all threads only one ready other threads waiting. But once thread 1 has stored
thread can lock the mutex. That means 99 threads woulthe zero value irval and calledfutex _wake, one of
probably go back to sleep right away. And what is worse:the threads on the wait queue is woken and will return
since the 100 threads are distributed over all processoit® compete for the mutex. The requirement is fulfilled.
and all threads have to access the saatemember, the The only other possibility for a thread entering the loop
cache line containing this value is passed from on CPUs that it behaves like thread 3. Thgomic _inc call

to the other and back. This isv@ryexpensive operation. returned a nonzero value, but before the thread can be
Therefore callindutex _wake with one as the second pa- added to the wait queue thread 1 resets to zero. This
rameter is a significant optimization. means thread 3 will return right away with error value

4 Version 1.1 Futexes Are Tricky

EWOULDBLOCK both thread 2 and 3 are executed as in- Thread 1 Thread 2
dicated in this diagram it means that they both will com-

pete for the mutex when they return from thex _wait atomic_inc

call. So in theory it would not have been necessary for Iatomic_inc
thread 1 to wake thread 2 with a callfteex _wait since

with thread 3 never being added to the wait queue the mu- futex wait

tex requirements would still have been met. But the code
inunlock is not clever enough to avoid unnecessary calls
and in this specific case it would not be possible to avoid atomic_inc futex wait
the wakeup since whether thread 3 is added to the wait B
gueue or not depends on the race between thread 1 reset-

tingval and thread 3 being added to the wait queue. The atomic_inc
result need not always be the same and every time when futex_wait

writing synchronization primitives one must plan for the

worst case. ¢ ¢

As mentioned at the beginning of this section, the sim-
ple mutex code shown above has problems. One perfor-
mance problem, and even two correctness problem.

It might seem that such a behavior is rare and could
be discounted. But this is not the case. First, the
futex implementation in the kernel is serializing
uses of a specific futex. Since in our example the
threads all use the same futex this means all the
futex calls are serialized. On single processor sys-
tems the possibility that a thread gets interrupted
right after theatomic _inc call is pretty low, but

it is still possible. On multi processor system the
threads running on other processors can make the
critical atomic _inc calls anytime. The more pro-
cessors are involved trying to lock the same mu-

e Imagine the mutex is uncontested at all times. The
unlock member function will still in the end al-
ways callfutex _wake which in turn will make a
system call. This can be quite costly and is in this
case avoidable.

The problem stems from the fact that the state the tex the higher the possibility, especially if locking
mutex code keeps is very coarse grainedvalf the mutex is a big part of the work. In one case a
is zero, the mutex is unlocked. Otherwise it is real world application running on a four processor
locked. What we would need to do is to recog- machine got sped up eight to ten times by fixing
nize one more state: locked and no waiters. If this problem. The extremely expensive cache line
unlock is called with the futex in this state the call transfer necessary for the atomic accesses make
to futex _wake could be skipped. this bug very costly.

e The second bug has to do with the nature of record-
ing waiters. New waiters unconditionally incre-
ment theval . But this variable has a finite size.
On all the interesting systems this means affér
increments we are back to zero and magically the
variable is free. This is not as esoteric as it seems
since it does not requirg*? threads. Every time
thefutex _wait call returns but the mutex has not
been unlocked the variable is incremented. l.e., it
is in theory possible for one single thread to over-
flow the counter. The remaining question is: when
canfutex _wait return erroneously? One exam-
ple is the first bug above. But there is also a way
which cannot be avoided. In the introduction it was
explained that thEUTEXWAIT operation is inter-
rupted if the thread received a signal. This cer-
tainly can happen in any program and it can happen
a lot.

e The first bug is quite serious in some situations
but very hard to spc@. The loop inlock has the
problem that between the memory read (part of the
atomic _inc call) and the thread being added to
the wait queue after the value was found to be still
valid there is a sufficiently large window for caus-
ing problems.

Consider the following diagram. After thread 1 in-
crementedial it tries to put itself to sleep. But at
the same time thread 2 tries to do the same, also
incrementingval . Thefutex _wait call thread 1
does now fails wittEwWOULDBLOCKVhen the sys-
tem call returnsal is incremented again. If now
thread 2 call§utex _wait it is in the same situa-
tion: it returns withEWOULDBLOGd increments

val . This process can be continued ad infinitum. _ o _
For this reason itis in most cases necessary to avoid

boundless increments. This usually comes at a price
2This bug was present in some form for many months in the NPTL so one might want to examine whether this bug is

[2] implementation. It showed mainly up as mysterious slowdowns and for real in the .given specific situation one wants to
occasional bursts of CPU usage. use the futex in or not.

Ulrich Drepper Version 1.1 5

5 Mutex, Take 2 This code is certainly all but obvious at first sight. We
will dissect it in a minute. First let us take a look at the

A generally usable mutex implementation must at |easpe.rforr_nance._ The fast path used if no threqd.contennon
fix the two bugs identified in the last section. Ideally it €XiStS IS very important and needs to be optimized for.

should also address the first point of critique. To summa-

rize. mutex | mutex2
ock atomic op 1 1
e the livelocks caused by the unconditional change futex_syscall 0 0
of the futex variable must be avoided; unlock 2tomic op 0 1
futex syscall 1 0

e the futex value must not overflow;

e in case it is known no threads wait on the mutex We can see that there is no difference kark which
thefutex _wake call should be avoided. needs in any case one atomic operation. It might be, that
this still translates to a slowdown since the atomic incre-
ment operation is sometimes faster than a compare-and-
To represent the states we need at least three distinct va#xchange operation. This depends on the CPU details.
ues and since we don’t want to overflow the variable weThe important case here is the cost for tineock func-

keep it at that. The following code uses therefore the fol-tion. We traded one system call for an atomic operation.
lowing convention: This is almost always a good choice, especially here since

the futex system call needs atomic instructions itself. The
benefits of this change is substantial. What about the cost
0 unlocked for the contended case?
1 locked, no waiters

2 locked, one or more waiters
mutex mutex2

atomic op 141 319

Restricting the mutex variable to three values while still lock futex syscall| 1+ 1 1+1
supporting multi processor machines means we cannot atomic op 0 1
use theatomic _inc function anymore. Instead we use a unlock o iay syscall 1 1

function which is available on many platforms with one

single instruction: a compare-and-exchange instruction

cmpxchg (see appendik]A for more details). Architec- These results look worse for the new code and in fact,

tures which do not provide such an instruction can bemutex2 is indeed slower than theutex code for con-

supported by emulating it (e.g., with load lock/store con-tended mutexes. But this is the price we have to pay for

ditional). The resulting code looks like this: correctness. The shortcut in the conditional inside the
loop inlock makes computing the cost a bit more diffi-
cult. If there are already waiters for the mutex the code

class mutex2 avoids the expensivempxchg instruction. In the cost
{) table the two stacked numbers represent these different
public: . costs. In case there are already waiters use the upper
\Tol:ée)l(oc(:{('()V?l © {3 number, otherwise the lower number. ThéV part in
int c: the fiele represents th_e gdditional cost for the function
if (¢ = cmpxchg (val, 0, 1)) = 0) call which has to be paid if thftatex _wait sSystem .caII _
do { returns but the thread cannot get the mutex and is going
if (c == back to sleep.
|| cmpxchg (val, 1, 2) != 0)
futex_wait (&val, 2); We see significantly higher costs for thek function
} while ((c = cmpxchg (val, 0, 2)) and slightly higher costs famlock . We make the same
I=0); number of system calls in all cases,but ldwk function
_ makes 2 to 3 times as many atomic operatiamggck
void unlock () { has one more atomic operation to make. Alllafk 's

if (atomic_dec (val) !'= 1) {
val = 0;
futex_wake (&val, 1);

additional cost are attributed to correcting the bug. The
additionalunlock cost is a consequence of optimizing

} the case of an uncontested mutex. It has been found
} useful to do this since mutexes are also used in single
private: threaded applications and even in multi-threaded appli-
int val; cations many mutex operations find the mutex unlocked.

b If this code is found to be correct the additional cost is

6 Version 1.1 Futexes Are Tricky

The actual value which are used should depend on the architecture and the atomic operations the CPU supports. Sometimes it might be better to use 1, 0, and -1 respectively.

therefore well spent. We will now go into details of the initial description should have become clear. The conse-
code to show how it works and why it is correct. guence is a possible unnecessary caflitex _wake in
unlock .
First we will look atunlock . Not only because it is sim-
pler, also because theck code depends on its imple- Showing that the code is correct more formally is possi-
mentation. When discussing the costs we already merble but a lot of work. We just outline the key points here.
tioned that theatomic _dec call is used to optimize the First, thelock function only ever returns after success-
code path in case the mutex is uncontested, i.e., there afelly locking the mutex. The locking thread itself sets the
no waiters. According to the table with the state valuesfutex value tol. Other threads, while waiting, might set
this state is represented by Therefore the return value it to 2. But only theunlock function resets the value to
of atomic _dec in case there is no waiter is We skip 0. This ensure the actual locking. Waking up possible
thefutex _wake system call in this case which would be lockers is guaranteed by them setting the futex value to
unnecessary since the wait queue for the futex is emptywhich causes thenlock function to wake one caller. All
In case the state value IBswe make the system call to threads which are “in flight”, attempting to lock the mu-
wake a thread if there is any. We wake only one threadtex, when it is unlocked, do not block in the kernel since
as with themutex code there is no need to wake more the futex value is changed tbduring unlock andock
than one since all but one thread probably would have talways passeas the second parameterfagex _wait .
go back to sleep.
But what about the livelock situation mentioned in the
Now on tolock . The intent for the firstmpxchg callis last section? Can this happen here? The answer is no.
to distinguish the uncontested case from the more comK the mutex is locked, there is at most one more change
plicated and slower cases. If the mutex is unlocked (staef the futex value: the first thread callingck changes
tus value0) it is marked as locked with no waiters by it from 1 to 2. All other threads callindock recognize
changing the value tb. This is all done by this one in- that the value is set tdand will not change it. This is the
struction. Success can be tested for by comparing the olanportant difference. Thempxchg operation might be a
value, returned bgmpxchg with 0. In case of a match bit more expensive than theomic _inc but it is neces-
we are done. sary. It might be possible in some situations to avoid the
initial cmpxchg but this is not the case the code should
It gets complicated only if the mutex is already locked. be optimized for.
We have two cases to distinguish: there is no waiter and
thgre is (pe.rha}ps) one or more waiters. The “perhaps’é Mutex, Take 3
might be irritating, it will become clearer later. If there
is no waiter so far we have to indicate that now there i
one. The state value for this2s This means we have to
change the value frorh to 2 which is exactly what the
secondcmpxchg does. We know that this function call

S\Ne are not yet done optimizing the code, at least not for
some architectures. The repeatethxchg operations in
the locking code are necessary to ensure the valise
will do nothing in case we already have waiters which isreally written into the memory IOC"."“.On before the. Sys-
tem call. For many architectures this is as good as it gets.

why we have the shortcut f«zr =2 EI Thenitis time to But the IA-32 and AMDG64/1A-32¢e architectures have one
suspend the thread. There is only one more case to han-

dle: in case the secoruminpxchg failed since the mutex more ace in their sleeves: th_ey have an atoxiy OP-
is freed we should not make the system call. Instead Wéa.ratlo.n (without thesmp). This comes in handy in our
can try to get the mutex right away. In all other cases thesnuatlons.
futex _wait call will suspend the thread. Note that the
expected value for the futex is unconditionally class mutex3

{
Once thdutex _wait call returns or we did not make the public:
call, another attempt to take the mutex has to be made. mutex () : val (0) { }
This is now the most non-obvious operation: we try to Vvoid lock () {
change the state from unlocked (i@).to locked. But we int c;
must use the ‘locked with possible waiters’ statand if ((c = cmpxchg (val, 0, 1)) 1= 0) {

not the simple ‘locked’ staté. Why? The answer is: be- it (c _!: 2))
c = xchg (val, 2);

cause we do not know any better. When we come to this while (c 1= 0) {

point we cannot say with 100% certainty that there is not futex_wait (&val, 2):
already a waiter. Since being wrong in guessing sooner ¢ = xchg (val, 2):
or later means running into a deadlock we have to err on }

the safe side. Here this means we have to mark the mutex }
as possibly locked multiple times. The “perhaps” in the }
void unlock () {

SRemember: th¢| operator in C/C++ will avoid evaluating the if (atomic_dec (val) != 1) {
right-hand side expression if the left-hand size expression is true. val = 0;

Ulrich Drepper Version 1.1 7

futex_wake (&val, 1); object for inter-process synchronization we only have to

} create some shared memory segment and use the place-

}. ment syntax when creating the mutex object.

private:

int val;
I8 int fd = shm_open (“/global-mutex",

O_RDWR, 0);
o L void *p = mmap (NULL, sizeof (mutex2),

From the description in the last section it should be clear PROT_READ|PROT_WRITE,
that the code does exactly the same. Thieck code MAP_SHARED, fd, 0);
is unchanged, and so is the fast path of it func- mutex2 *m = new (p) mutex2 0;

tion. The slow path of théock function is now using

xchg . The twocmpxchg instructions in the old code

were needed because the value of the variable might chah§jis code segment can be used in arbitrarily many pro-

at the same time and we had to make sure we wrote theesses on the same machine and they all will use the same

value2 in the memory location. Now we do it uncondi- mutex; the kernel knows that all the virtual addresses are

tionally. By using the result of thempxchg operation =~ Mmapped to the same physical memory address and futexes

we can save achg call in the first round. This brings us are identified by their physical address. Inter-process mu-

to the following costs for the contended case: texes of this kind are werymuch better synchronization
than filesystem-based approaches like lock files. Lock
files have the advantage, though, that they can synchro-

mutex2 | mutex3 nize on different machines. Pick your poison wisely.
atomicop | 3+5 | 5+1
lock L
futex syscall| 1+1 1+1 8 Optimizing Wakeup
atomic op 1 1
unlock . . .
futex syscall 1 1 One of the most damaging effects of running a multi-

threaded application on a multi-processor machine is re-

. rg)eated transfer of memory cache lines from one proces-
The new code has only advantages and in case of con- : : .
sor to the other (a.k.a. cache line ping-pong). This hap-

tended mutexes it can make a big difference. The differ-

. : . pens when threads running on different processors try to
ence between executing one or two atomic operations o

, . access the same memory address. This is a natural oc-
the same memory location on multiple processors at the

L . - . currence when implementing synchronization primitives;
same time is big. The actual runtime of the application. .
. . . if only one thread would ever try to access the mutex it
might not be directly improved but the system load goes
; would not be needed at all.

down and the memory performance improves.

One particularly bad case with respect to cache line ping-
pong is thepthread _cond _broadcast function of the
POSIX thread library. It has the potential to wake up

The drawback of this new code is that it is not universally
implementable in this form. If the architecture requires

an atomicxchg operation to be implemented in terms large numbers of threads. But the threads cannot right
of cmpxchg the benefits is zero, or less. Many modern .
away return from the calls tpthread _cond wait or

architectures fall into this category. Beside the already

mentioned 1A-32, AMD64, and IA-32e architectures it is pthread cond timedwait . In_stead t.h e APl requires
: o . . that the POSIX mutex associated with the conditional
possible to efficiently implementchg on architectures

: I, variable is locked first. All waiting threads must use
which use load lock/store conditional. .
the same mutex. If we start all threads with a call to
futex _wake and a sufficiently high number as the sec-
7 Inter-Process ond parameter, the threads might be spread out to all
available processors and they hammer on the memory
The POSIX thread interface defines synchronization in-used for the mutelf. This means the cache line(s) used
terfaces not only for the user inside processes. They cafor the representation of the mutex are copied from one
also be used between processes and futexes make thigocessor cache to the other. All this sending of notifi-
possible to implement. cation and copying is very expensive. And usually all
but one thread have to go back to sleep anyway since the
One requirement of an inter-process synchronization prinmutex can belong to only one of the woken threads.
itive is that it is a) position independent and b) has no
references/pointers to any object in any of the virtual ad-The Linux kernel futex implementation provides a spe-
dress space. This means wait queues have to be kepial interface for this situation. Instead of waking all
somewhere else, in the case of futexes this happens ithreads we wake only one. But we cannot leave the other
the kernel. Looking at thenutex2 definition we see that o . .
. . . This is a simplification. In any implementation all threads would
the only state necessary fpr the mutex implementation igrst hammer on the memory of the conditional variable. But the result
the private memberal . This means to use thawautex2 is the same.

8 Version 1.1 Futexes Are Tricky

threads on the wait queue they were on before since thiitex authors had this in mind when they introduced the

would defeat the purpose of waking up all threads. In-FUTEXFD operation.

stead we can move the content (or part of it) of one wait

gueue to another wait queue where the threads then cahuser program would caflitex _fd to get one or more

be woken one by one. file descriptors for futexes. Then this file descriptor, to-
gether with possibly many others representing real files

In the example of thethread _cond _broadcast func- or sockets or the like, gets passedst&tect , poll , or

tion the implementation can move all the threads to thespoll . This seem to help a great deal.

wait queue of the futex belonging to the mutex used with

the conditional variable. Thethread _unlock call the There is one problem with this approach. Tinex _wait

user code has to issue after the return of the function calhterface’s second parameter is used to detect races. If

which caused the thread to be added to the wait queua second thread changes the state of the synchroniza-

of the conditional variable already wakes waiters one bytion object between the time of the last test before the

one. Therefore thethread _cond _broadcast code can futex _wait call and the time the kernel adds the thread

move all woken waiters to the wait queue of the mutex.to the wait queue, this is detected. Toex _wait call

Result: one by one wakeup, no cache line ping-pong, andeturns with the erroEwWOULDBLOCKuUt no such pro-

no more going back to sleep immediately for all but onevision exists for the interface to the futex using the file

thread. descriptor. None of the three interfaceslect , poll
andepoll , supports passing such information down.

The wakeup code in th@hread _cond _broadcast func-

tion would look something like this: This limitation dramatically reduces the usefulness of the
FUTEXFDoperation. No synchronization interface which
depends on exact wakeup can be used with this interface.

futex_requeue (cond_futex, 1, MAX_INT, For instance, thenutex2 code falls into this category.
mutex_futex, cond_val) Only if a wakeup event can safely be misseBUSEXFD
useful.

This call would move all but one of the waiters in the

wait queue of the conditional variable to the wait queuelO Other Synchronization Primitives

of the mutex. Thecond .val parameter helps to detect

whether the conditional variable has changed since th&lost non-trivial programs using threads or multiple pro-
initiation of the requeue operation. In this case nothing iscesses need some more complicated synchronization prim-
done and the caller has to handle the new situation appratives than just mutexes. Those part of the standard POSIX
priately. It is important to ensure th that the implementa-thread library (and therefore deemed generally useful)
tion of pthread _mutex _unlock really triesto wakeupa are:

thread from the waitqueue once the directly woken thread

calls this function. This might be a problem since there]

have been no previoyshread _mutex _lock calls. Im- e barriers

plementing all this requires a lot of tricky code. conditional variables

The FUTEXCMPREQUEUmBperation used to implement e read/write mutexes
futex _requeue is only useful in special cases. Its use-

fulness might not become apparent on uni-processor ma-
chines and maybe even small multi-processor machines.

But as soon as the threads are running on more than fout|| primitives but the simple semaphore have in common
processof$the negative effects of the cache line ping- that they need some internal variables to represent the
pong are so huge that using this operation shows measustate. Modifying the state must happen as part of a critical

e semaphores

able and sometimes dramatic effects. region so each of the synchronization objects also has a
mutex in it. The actual waiting for the barrier/conditional
9 Waiting on Multiple Events variable/RW lock does happen with the help of a different

futex, also part of the synchronization object. In some
cases there can even be more than these two futexes, the

In some situations it is useful to wait on more than one : - o
. system does not impose a limit. When designing such a
event at once. For instance, a thread could perform twg” 7 = = ~"". Lo
olution it is important, though, to keep the limitations

different tasks, both need protection by a mutex, depend?m osed by cache lines in mind
ing on the availability on the mutex. Whichever task’s P Y '
mutex becomes available first is started. There is no sucR : . . .
.) , .._As a simple example consider the barrier. The object
interface in the standard POSIX thread library. So this is . .

eeds an internal counter which keeps track of the num-

a good example for an extension made by the users. T ré
9 P y ' hber of still needed waiters. This state is protected by a fu-

5This is an experience value for 1A-32. tex and those threads, which arrived before the last one,

Ulrich Drepper Version 1.1 9

will need to go to sleep. So the interface for a barrier
could look like this:

class barrier

{
public:
barrier (unsigned int needed)

: mutex (), event (0),
still_needed (needed),
initial_needed (needed) { }

wait () {

lock.lock ();

if (still_needed-- > 1) {
unsigned int ev = event;
lock.unlock ();
do

futex_wait (event, ev);
while (event == ev);

} else {
++event;
still_needed = initial_needed;
futex_wake (event, INT_MAX);
lock.unlock ();

}

}.
private:
mutex2 lock;
unsigned int event;
unsigned int still_needed;
unsigned int initial_needed,;
h

The first member variablieck is the mutex, as defined
before. The second data memlaeent is the second
futex. Its value changes whenever the last waiter arrives
and a new round begins. The other two values are the
current and initial count of waiters needed. The imple-
mentation for this class is straight-forward with the tricky
mutex implementation already in place. Note that we can
simply usefutex _wake to wake all the threads. Even
though this might mean we start many threads and pos-
sibly spread them to many processors, this is different
from the situation discussed in the last section. The cru-
cial difference is that upon return from the system call the
threads danot have to get another lock. This is at least
not the case in the code related to barriers.

Not all code is simple, though. The conditional variable
implementation is very complicated and way beyond the
scope of this little introduction.

In sectior} Y we said that the synchronization object should
not contain any memory references/pointers to make them
usable for inter-process synchronization. This is no hard
requirement for the use of futexes. If it is known that an
object is never used inter-process and the use of point-
ers provides an advantage in the implementation, by all
means, use pointers.

10 Version 1.1

Futexes Are Tricky

A Library Functions

atomic _dec(var) The variablevar will be atomically decremented and the old value is returned.
atomic _inc(var) The variablevar will be atomically incremented and the old value is returned.

cmpxchg(var, old, new) The content of the variablear will be replaced withnew if the current value isld .
Regardless, the current valuevaf after the operation is returned.

futex _fd(futex, signal) Create a file descriptor fdutex which can be used igelect , poll , andepoll
calls. If signal is not zero and the value for a valid signal, the kernel will send this signal in case the thread
gets woken while waiting.

futex _requeue(from, nwake, nrequeue, to, fromval) The call wakes up at mostvake threads from the
wait queue ofrom . If there are more threads left after that, uptequeue threads are moved to the wait queue
of to . An error is returned and no wait queue is modified if thee value of the frdex is notfromval

futex _wait(futex, val) If the value of thent variablefutex is still val , wait until woken by a signal or a call
to futex _wake.

futex _wake(futex, nwake) Wake up at mostwake threads from the wait queue fafiex

B Glossary

Nomenclature

cache line The smallest unit of memory than can be transferred between the main memory and th&€mache.
Hyperdictionary.com,

livelock When two or more processes continuously change their state in response to changes in the other process(es)
without doing any useful work. This is similar to deadlock in that no progress is made but differs in that neither
process is blocked or waiting for anythin§purce: Hyperdictionary.com,

mutex A mutual exclusion object that allows multiple threads to synchronise access to a shared resource. A mutex has
two states: locked and unlocked. Once a mutex has been locked by a thread, other threads attempting to lock
it will block. When the locking thread unlocks (releases) the mutex, one of the blocked threads will acquire
(lock) it and proceedSource: Hyperdictionary.com,

C References

[1] Hubertus Franke, Rusty Russell, and Matthew Kirkwads, Futexes and Furwocks: Fast Userlevel Locking in
Linux, Proceedings of the 2002 Ottawa Linux Summit, 2002.

[2] Ulrich Drepper, Ingo MolnarThe Native POSIX Thread Library for Linux, Red Hat, Inc., 2003.

D Revision History

2003-10-12First draft.
2003-10-17Typos. Version 0.3.

2003-10-29Better English. Patches by Todd Lewégld.lewis@gs.com |and Alexandre Olivaoliva@redhat.com
Version 0.4.

2004-02-22 Add mutex3 description. Version 0.6.
2004-04-21Typo fix. Version 0.7.

2004-06-21More typo fixes. Version 0.8.
2004-06-27DescribeFUTEXCMPREQUEUEVersion 1.0.

Ulrich Drepper Version 1.1 11

mailto:todd.lewis@gs.com
mailto:aoliva@redhat.com

	1 Preface
	2 The Kernel Interface
	3 Why Do Futexes Work?
	4 Mutex, Take 1
	5 Mutex, Take 2
	6 Mutex, Take 3
	7 Inter-Process
	8 Optimizing Wakeup
	9 Waiting on Multiple Events
	10 Other Synchronization Primitives
	A Library Functions
	B Glossary
	C References
	D Revision History

