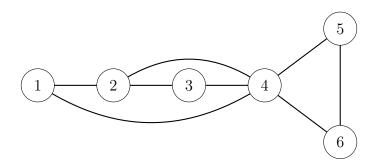
Dans cet exercice nous souhaitons utiliser l'algorithme PP du parcours en profondeur pour déterminer les points d'articulation d'un graphe non-orienté. Un *point d'articulation* est un sommet dont la suppression augmente le nombre de composantes connexes du graphe.

1. Déterminer les points d'articulation du graphe G suivant :



Le graphe G possède un seul point d'articulation qui est le sommet s_4 .

2. Modifier PP(G) en NB_CC(G) afin de compter le nombre de composantes connexes du graphe G. En utilisant NB_CC(G) écrire un algorithme calculant les points d'articulation du graphe G. Calculer sa complexité.

Voici maintenant un algorithme pour calculer le nombre de composantes connexes :

```
NB_CC(G)
  nb_composantes_connexes <- 0</pre>
  pour chaque sommet u de G
3
       faire couleur[u] <- BLANC
4
             pere[u] <- nil
  temps <- 0
5
6
   pour chaque sommet u de G
7
       faire si couleur[u] = BLANC
8
           alors nb_composantes_connexes++
                  Visiter_PP(u)
10 return nb_composantes_connexes
```

Voici l'algorithme qui permet de calculer les points d'articulation d'un graphe :

```
ENSEMBLE_PA(G)
1 ens_pa <- ensemble_vide
2 nb_cc_reference <- NB_CC(G)
3 pour chaque sommet u de G faire
4 si NB_CC(G \ {u}) > nb_cc_reference
5 alors ens_pa <- ens_pa U {u}
6 return ens_pa</pre>
```

La complexité de NB_CC(G) est la même que celle de PP(G) soit $\mathcal{O}(n+m)$. La complexité de ENSEMBLE_PA(G) est donc $\mathcal{O}(n(n+m))$.

Dans la suite, nous allons mettre en place un algorithme plus efficace de calcul des points d'articulation. Pour cela, on fixe un sommet \mathbf{r} et on considère l'arborescence de liaison $T(\mathbf{r})$ définie par le parcours en profondeur de G à partir de \mathbf{r} . Les arcs de *liaisons* sont les arcs (\mathbf{u}, \mathbf{v})

de G où u = pere(v) c'est-à-dire les arcs de T(r), tandis que les arcs de retour sont les arcs (u,v) de G qui ne sont pas de liaison et où v est un ancêtre de u dans T(r). On peut montrer que dans un PP sur un graphe non-orienté, les arcs sont soit de liaison soit de retour.

Pour tout sommet v, on définit l[v] comme la plus petite valeur de d[u] où u est soit égal à v, soit l'extrémité d'un arc retour (w,u) avec w descendant de v (w=v) possible).

En d'autres termes, 1[v] est la plus petite valeur de d[u] atteignable en utilisant au plus un arc de retour.

3. Calculer l'arbre T(r) pour G en prennant r=1. Distinguer les arcs de retour, et calculer l[u] pour tous les sommets u de G.

L'arbre T(1) de G est représenté dans le graphe de la Figure 1 ci-dessous, les arcs de liaisons étant en noir et ceux de retour en gris.

Les valeurs de d, f et l sont données par le tableau suivant :

v	1	2	3	4	5	6
d[v]	1	2	3	4	5	6
f[v]	12	11	10	9	8	7
l[v]	1	1	1	1	4	4



FIGURE 1 - PP(G)

4. Modifier l'algorithme PP pour calculer 1[v] pour tout sommet v d'un graphe G. Propriétés de 1[] : on remarque que 1[u] est le minimum des trois valeurs suivantes : d[u], le minimum du 1[] de ses fils, d[v] si u possède un arc de retour (u, v).

On rappelle qu'au cours de l'exécution de l'algorithme, un arc de retour (u, v) est arc vers un voisin GRIS v qui n'est pas le père de u.

Pour calculer la table 1[], on conserve PP(G) mais on modifie comme suit Visiter_PP(u).

```
Visiter_PP(u)
     couleur[u] <- GRIS</pre>
     l[u] \leftarrow d[u] \leftarrow temps \leftarrow temps + 1
     pour chaque v de Adj[u] faire
             si couleur[v] = BLANC alors
  4
  5
                    pere[v] <- u
  6
                    Visiter_PP(v)
                    si l[v] < l[u] alors
* 7
                           1[u] <- 1[v]
* 8
             sinon si d[v] < l[u] et pere[u] <> v alors // arc retour
* 9
                           1[u] <- d[v]
*10
 11
     couleur[u] <- NOIR
 12
     f[u] \leftarrow temps \leftarrow temps+1
```

- 5. Établir que v est un point d'articulation si et seulement si :
 - (a) soit v = r et v a au moins deux fils dans T(r),
 - (b) soit $v \neq r$ et v a au moins un fils w dans T(r) tel que $l[w] \geq d[v]$.

Preuve du théorème de la Question 5 :

Cas 1: v = r est un p.a. $\Leftrightarrow v$ a au moins deux fils dans T(r),

 $Cas \ 1.1 : v = r$ est un p.a. $\Rightarrow v$ a au moins deux fils dans T(r)

Si v est un p.a. alors $G \setminus \{v\}$ possède au moins deux composantes. Il est clair que tout arbre couvrant G enraciné en r possède deux fils au moins, en particulier T(r).

Cas 1.2: v = r a au moins deux fils dans $T(r) \Rightarrow v$ est un p.a.

Si r a deux fils, disons f_1 et f_2 , et r n'est pas un p.a., alors il existe une arête (x,y) de $E[G] \setminus E[T(r)]$ avec x descendant de f_1 et y descendant de f_2 . Une telle arête ne peut exister, puisque si $d[f_1] < d[f_2]$, alors y aurait été visité par x (qui aurait été BLANC puisque visité après f_2). Alors y aurait été un descendant de f_1 : contradiction. Donc r est un p.a.

Cas 2: $v \neq r$ est un p.a. $\Leftrightarrow v$ a au moins un fils w dans T(r) tel que $l[w] \geq d[v]$

Cas $2.1: v \neq r$ est un p.a. $\Rightarrow v$ a au moins un fils w dans T(r) tel que $1[w] \geq d[v]$ Si v est un p.a. alors $G \setminus \{v\}$ possède au moins deux composantes, disons G_1 et G_2 . Supposons $r \in G_1$. Tous les sommets u de G_2 ont une date de visite d[u] > d[v]. Sans perte de généralité, on suppose que la composante G_2 est choisie de sorte que les sommets sont visités juste après ceux de G_1 . Soit $w \in G_2$ le premier sommet visité après v, donc avec d[w] = d[v] + 1. Notons que w est un fils de v. Si l[w] < d[v] alors il existe un arc de retour entre un sommet de G_2 (descendant d'un des fils de v dans G_2) et un sommet visité avant v (donc dans G_1): contradiction car v est un p.a., donc il n'y a pas de tel arc de retour. Donc $l[w] \geq d[v]$.

- Cas 2.2: $v \neq r$ a au moins un fils w dans T(r) tel que $1[w] \geq d[v] \Rightarrow v$ est un p.a. Supposons que v a un fils w avec $l[w] \geq d[v]$. Soit G_w le sous-graphe de G induit par w et ses descendants dans T(r), et soit $G_0 = G \setminus (G_w \cup \{v\})$. On observe que $w \in G_w$ et que $pere[v] \in G_0$ donc G_w et G_0 sont deux sous-graphes non vides. Comme $l[w] \geq d[v]$, il n'y a pas d'arc retour (et donc d'arête de G) entre G_w et G_0 . Donc V est un p.a.
- 6. Modifier l'algorithme PP pour calculer, pour tout sommet v d'un graphe, pa[v] qui vaut vrai si et seulement si v est un point d'articulation. Comparer la complexité de cet algorithme avec celle de l'algorithme de la question 2.

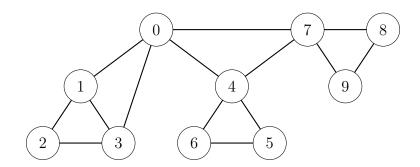
Pour calculer la table pa[] on modifie uniquement Visiter_PP de la manière suivante :

```
Visiter_PP(u)
    couleur[u] <- GRIS</pre>
    l[u] \leftarrow d[u] \leftarrow temps \leftarrow temps + 1
    pour tout v de Adj[u] faire
        si couleur[v] = BLANC alors
 5
             pere[v] <- u
             si pere[u] = nil et temps > d[u] alors //condition 1
 6
 7
                 pa[u] <- vrai
             Visiter_PP(v)
 8
             si l[v] < l[u] alors
 9
10
                  1[u] <- 1[v]
             sinon si l[v] >= d[u] et pere[u] \iff nil alors //condition 2
11
12
                 pa[u] <- vrai
13
        sinon si couleur[v] = Gris et v <> pere[u] et d[v] < l[u] alors
                 1[u] <- d[v]
14
    couleur[u] <- Noir</pre>
15
    f[u] <- temps <- temps+1
16
```

La complexité de cet algorithme est la même que celle de PP(G) c'est-à-dire $\mathcal{O}(n+m)$, ce qui est meilleur que $\mathcal{O}(n(n+m))$.

7. Tester l'algorithme modifié sur le graphe G ci-dessus et sur le graphe obtenu en ajoutant à G l'arête $\{6,3\}$.

Sur le graphe G, on obtient bien pa[4] = true car 1[5] = 4 = d[4]. Si on rajoute l'arête (6,3), les valeurs de 1[5] et 1[6] changent pour passer à 3, ce qui est strictement inférieur à d[4] et donc il n'y a plus de point d'articulation. 8. Tester l'algorithme sur le graphe H ci-dessous, en partant du sommet r=0 et en suivant l'ordre croissant des sommets.



L'arbre du parcours en profondeur est donné par la Figure 2 et les valeurs de d[], f[], 1[] et pa[] par le tableau ci-dessous.

v	0	1	2	3	4	5	6	7	8	9
d[v]	1	2	3	4	8	9	10	13	14	15
f[v]	20	7	6	5	19	12	11	18	17	16
l	1	1	1	1	1	8	8	1	13	13
pa	true	false	false	false	true	false	false	true	false	false

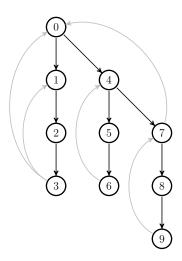


FIGURE 2 - PP(H)