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Traiter les deux parties sur des feuilles d’examen séparées.

Partie Graphes et Coloration

Exercice 1

1. Appliquer l'algorithme LexBFS au graphe G de la Figure 1 a partir du sommet a. En cas de
choix dans la sélection d’un sommet, on choisira le premier dans 1’ordre alphabétique. Pour
chaque itération, donner le sommet sélectionné et les modifications apportées aux étiquettes des
sommets.

2. Le graphe G est-il triangulé ? Justifier votre réponse.

3. G est-il un graphe d’intervalle ? Pourquoi? Si oui, donner sa représentation sous forme d’inter-
valles.

FIGURE 1 — Graphe G

Exercice 2
On considére un graphe G pondéré par une fonction de poids w associant & chaque sommet une valeur

entiére positive. Le poids d’un sous-ensemble de sommets S C V(@) est défini par

w(S) => w(v)
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Une coloration par intervalles d’un graphe pondéré (G;w) associe a chaque sommet = un intervalle
ouvert I, de longueur w(x) de telle fagon que deux sommets voisins soient associés & des intervalles
disjoints. En d’autre terme, zy € E(G) = I, N I, = (.
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Le nombre de couleurs d’une coloration par intervalles d’'un graphe pondéré (G;w) est la longueur
totale des intervalles utilisés, soit | Uyey(q) fz|- Le nombre chromatique d’intervalle x(G;w) d'un
graphe pondéré (G;w) est le nombre de couleurs minimum pour colorier (G;w) par intervalles.

Par exemple, le graphe pondéré (G1;w) de la figure 2 est 5-intervalle coloriable avec les intervalles
suivant : I, =|3..5[, [, =|0..3[, I, =]3..4].
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FIGURE 2 — Graphe pondéré (Gy;w)

1. Pour quelle fonction de poids w le nombre chromatique d’intervalles x(G;w) est-il égal au nombre
chromatique usuel x(G)?

2. Montrer que le graphe pondéré (G, w) de la figure 3 posséde une coloration par intervalles avec
10 couleurs.

3. Montrer que x(G2;w) = 10.
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FIGURE 3 — Graphe pondéré (Gy;w)

4. On considére l'orientation d’un graphe pondéré (G; w) obtenu a partir d’une intervalle coloration
ol une aréte xy est orienté de = vers y si et seulement si I, < I, (la borne supérieure de I, est
inférieure ou égale a la borne inférieure de I,). Montrer que cette orientation est acyclique (ne
contient pas de circuit).

5. Montrer que pour tout graphe pondéré (G;w),
. — mi P
\(G:w) = min fmx(w(P))]

ou F' est une orientation acyclique de G et P un chemin de F. Pour cela, on utilisera deux
fonctions hmin et hmax sur les sommets définies comme suit :

— hmin(z) = 0 si x n’a pas de successeur et hmin(x) = max{hmaz(y),y successeur de x}
sinon.

— hmax(z) = hmin(x) + w(x)
Soit (G;w) un graphe pondéré. On note w(G;w) la valeur
w(G;w) = max{w(K), Kclique de G}

6. Montrer par induction sur le nombre de sommets que toute clique orienté posséde un chemin
élémentaire passant par tous ses sommets. En déduire que pour tout graphe pondéré (G;w), on
a x(G;w) > w(G;w).

Un graphe G sera dit super-parfait si pour toute valuation w non négative sur ses sommets, on

a w(G;w) = x(G;w).



7. Montrer que tout sous-graphe induit d’un graphe super-parfait est super-parfait et que tout
graphe super-parfait est parfait.

8. Soit F' une orientation transitive d'un graphe G. On rappelle que F' est une orientation transitive
si et seulement si pour tout triplet de sommets z,y, 2, xy € E(F) et yz € E(F) = xz € E(F).
Montrer que tout chemin de F' est inclus dans une clique de G.

9. En déduire que tout graphe de comparabilité est super-parfait.



