Master Sciences, Technologies, Santé Mention Mathématiques - spécialité Enseignement des mathématiques

Algorithmique et graphes, thèmes du second degré

Éléments de Théorie des Graphes

Introduction, définitions Les graphes : un outil de modélisation Représentation des graphes

Éric SOPENA, eric.sopena@labri.fr

ENSM - Éléments de Théorie des Graphes

Première partie

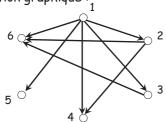
Introduction, définitions

ENSM - Éléments de Théorie des Graphes

Graphe d'une relation (petite école...)

Soit la relation R sur $\{1, 2, 3, 4, 5, 6\}$ définie par : x R y si et seulement si x | y (x divise y)

Représentation graphique :

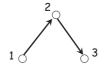


ENSM - Éléments de Théorie des Graphes

Graphe orienté (définition)

Un graphe orienté G est un couple G = (S, A) où

- S est un ensemble fini de sommets
- A est un ensemble de couples de sommets appelés **arcs**



S = { 1, 2, 3 }

 $A = \{ (1,2), (2,3) \}$

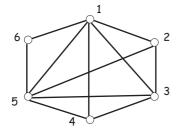
ENSM - Éléments de Théorie des Graphes

Graphe d'une relation symétrique (1)

Soit la relation R sur $\{1, 2, 3, 4, 5, 6\}$ définie par :

x R y ssi x et y sont premiers entre eux

Représentation graphique :



Graphe d'une relation symétrique (2)

En réalité,

est un « raccourci » de dessin pour :

Nous avons un graphe orienté **symétrique**, appelé **graphe non orienté**...

ENSM - Éléments de Théorie des Graphes

0

Graphe non orienté (définition)

Un graphe non orienté G est un couple G = (S, A) où

- S est un ensemble fini de sommets
- A est un ensemble de « paires » de sommets appelées arêtes

$$A = \{ \{1,2\}, \{2,3\} \}$$

équivalent à A = { (1,2), (2,1), (2,3), (3,2) }

ENSM - Éléments de Théorie des Graphes

Boucles, graphes simples, multigraphes

Une boucle:

On parle de **multigraphe** (orienté ou non orienté) si on autorise plusieurs arêtes (ou arcs) entre deux sommets (arêtes multiples).

On appelle **graphe simple** un graphe sans arêtes (ou arcs) multiples.

ENSM - Éléments de Théorie des Graphes

__

Degré d'un sommet, voisinages (1)

Cas non orienté

Si $\{u,v\}$ est une arête, u et v sont voisins.

Le **degré** d'un sommet u, noté d(u), est le nombre de voisins de u (attention : les boucles comptent double...).

On note $\Delta(G)$ le degré maximum de G, et $\delta(G)$ le degré minimum de G.

Cas orienté

Si (u,v) est un arc, u est un **prédécesseur** de v et v est un **successeur** de u, u et v sont **voisins**.

Le nombre de prédécesseurs de u est le **degré entrant** de u, noté $d^-(u)$, le nombre de successeurs de u est le **degré sortant** de u, noté $d^+(u)$, le nombre de voisins de u est le **degré** de u, noté d(u): $d(u) = d^-(u) + d^+(u)$.

ENSM - Éléments de Théorie des Graphes

Degré d'un sommet, voisinages (2)

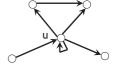
Exemples:

d(u) = 5

 $\Delta(G) = 5$ $\delta(G) = 2$

d-(u) = 2

d+(u) = 4 d(u) = 6



ENSM - Éléments de Théorie des Graphes

10

Degré d'un sommet, voisinages (3)

Pour tout graphe G, la somme des degrés des sommets de G est égale à deux fois le nombre d'arêtes de G (lemme des poignées de mains).

Pour tout graphe orienté G, la somme des degrés entrants des sommets de G est égale à la somme des degrés sortants des sommets de G et au nombre d'arcs de G (lemme des coups de pieds).

Récurrence sur nombre d'arcs ou d'arêtes... Chemins, cycles et circuits (1)

Un **chemin de longueur k** dans un graphe non orienté est une suite de k+1 sommets $u_1,\,u_2,\,...,\,u_{k+1}$, telle que pour tout i, $1 \le i \le k,\,u_iu_{i+1}$ est une arête (longueur = nombre d'arêtes). Si tous les sommets sont distincts, le chemin est **élémentaire**.

Si $u_1 = u_{k+1}$, le chemin est un **cycle**.

12232412 est un chemin 123 est un chemin élémentaire 12243241 est un cycle 2342 est un cycle élémentaire

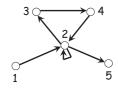
Chemins, cycles et circuits (2)

Une chaîne de longueur k dans un graphe orienté est une suite de k+1 sommets $u_1,\,u_2,\,...,\,u_{k+1},$ telle que pour tout i, $1 \leq i$ \leq k, u_iu_{i+1} ou $u_{i+1}u_i$ est un arc (longueur = nombre d'arcs).

Chemin de longueur $k: u_i u_{i+1}$ est un arc pour tout i.

Élémentaire : idem.

Circuit: chemin tel que $u_1 = u_{k+1}$.



322524 est une chaîne 1243 est une chaîne élémentaire 125 est un chemin élémentaire 34223 est un circuit 2342 est un circuit élémentaire

ENSM - Éléments de Théorie des Graphes

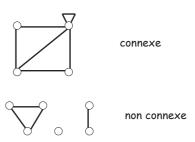
13

15

17

Connexité (1)

Un graphe non orienté est connexe si pour tous sommets u et v il existe un chemin allant de u à v.

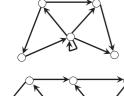


ENSM - Éléments de Théorie des Graphes

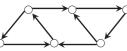
14

Connexité (2)

Un graphe orienté est connexe (resp. fortement connexe) si pour tous sommets u et v il existe une chaîne (resp. un chemin) allant de u à v.



connexe mais pas fortement connexe



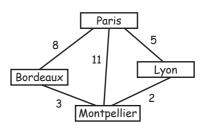
fortement connexe

ENSM - Éléments de Théorie des Graphes

Graphes valués, graphes étiquetés

Un graphe est valué si on associe des valeurs à ses arcs (ou

Un graphe est étiqueté si on associe des étiquettes à ses sommets.



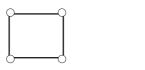
ENSM - Éléments de Théorie des Graphes

16

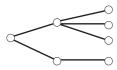
Types particuliers de graphes (1)

Un chemin:

Un cycle:



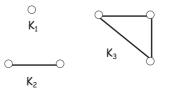
Un arbre:



ENSM - Éléments de Théorie des Graphes

Types particuliers de graphes (2)

Un graphe est complet si tous ses sommets sont reliés deux à deux.



On note K_n le graphe complet à n sommets.

ENSM - Éléments de Théorie des Graphes

etc.

Types particuliers de graphes (3)

Un graphe complet orienté (antisymétrique) est un tournoi.

ENSM - Éléments de Théorie des Graphes

19

Types particuliers de graphes (4)

Un graphe est **planaire** s'il peut être dessiné (sur le plan ou la sphère) sans que ses arêtes se croisent.

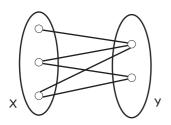
Exemple:

ENSM - Éléments de Théorie des Graphes

20

Types particuliers de graphes (5)

Un graphe est **biparti** s'il existe une partition de l'ensemble de ses sommets, $S = X \cup Y$, telle que toutes les arêtes relient un sommet de X à un sommet de Y.



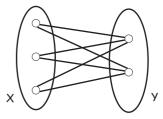
ENSM - Éléments de Théorie des Graphes

21

Types particuliers de graphes (6)

Un graphe est **biparti complet** s'il est biparti et si toutes les arêtes possibles entre X et Y sont présentes.

Le graphe K_{3,2}



On note $K_{n,m}$ le graphe biparti complet avec |X| = n et |Y| = m.

ENSM - Éléments de Théorie des Graphes

22

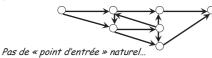
Listes, arbres et... graphes!

Ce sont des généralisations successives :

liste :



graphe orienté:

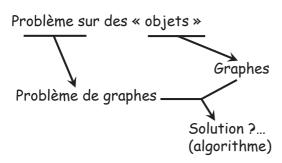


ENSM - Éléments de Théorie des Graphes

Deuxième partie

Les graphes : un outil de modélisation

Modélisation et résolution de problèmes



ENSM - Éléments de Théorie des Graphes

25

Quelques exemples généraux

Théorie des jeux

 \checkmark sommets : positions de jeux,

√arcs: mouvements de jeux,

√ problème : atteindre une position gagnante

Transport routier (ferroviaire, aérien)

✓ graphe : réseau routier (orienté ou non)

√ problèmes : recherche / optimisation de trajet

Réseaux numériques

√ graphe : réseau (orienté ou non)

 \checkmark problèmes : routage d'information, optimisation de

débi[.]

Etc.

ENSM - Éléments de Théorie des Graphes

26

Un problème de plus court chemin (1)

Question:

On souhaite prélever 4 litres de liquide dans un tonneau. Pour cela, on dispose de deux jarres, l'une de 5 litres, l'autre de 3 litres.

Modélisation:

sommets: couples (contenu J5, contenu J3)

arcs : opérations autorisées

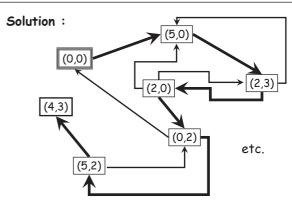
Exemples : $(4,1) \to (2,3)$ ou encore $(4,1) \to (0,1)$

Problème :

Trouver un plus court chemin reliant (0,0) à (4,x).

ENSM - Éléments de Théorie des Graphes

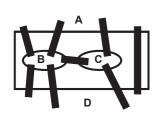
Un problème de plus court chemin (2)

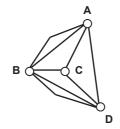


ENSM - Éléments de Théorie des Graphes

28

Les ponts de Koenigsberg (1)

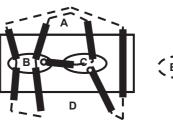


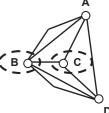


Problème :

Trouver un cycle (chemin) passant une et une seule fois par chaque arête.

Les ponts de Koenigsberg (2)





Il existe un cycle « eulérien » si et seulement si tous les sommets sont de degré pair...

Il existe un chemin « eulérien » si et seulement si 0 ou 2 sommets sont de degré impair...

ENSM - Éléments de Théorie des Graphes

30

Un problème similaire (petite école)

Problème :

Peut-on tracer les figures suivantes sans lever le crayon?



ENSM - Éléments de Théorie des Graphes

31

Troisième partie

Représentation des graphes (structure de données)

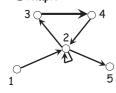
ENSM - Éléments de Théorie des Graphes

Matrices d'adjacence - Cas orienté

Définition. Soit G = (S,A) un graphe (orienté ou non) avec $S = \{1, 2, ..., n\}$; la **matrice d'adjacence** de G, notée M = M(G), est la matrice $n \times n$ à valeurs dans $\{0,1\}$ définie par :

M[i,j] = 1 ssi (i,j) est un arc (arête) de G

Exemple:

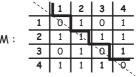


		1	2	3	4	5
ĺ					0	
					0	
					1	
ĺ					0	
,	5	0	0	0	0	0

ENSM - Éléments de Théorie des Graphes

Matrices d'adjacence - Cas non orienté

Remarque : dans le cas d'un graphe non orienté, la matrice d'adjacence est symétrique.



Représentation compacte :

M[i,j] = T[i(i-1)/2 + j] (i > j), ainsi M[3,4]=M[4,3]=T[9]

T:	0	1	1	0	1	0	1	1	1	0
	1	2	2		3		4			

ENSM - Éléments de Théorie des Graphes

34

Matrices d'adjacence - Complexité

n = nombre de sommets

Complexité en espace : $O(n^2)$

quel que soit le nombre d'arcs, donc coûteux pour les graphes peu denses...

Complexité en temps de quelques opérations :

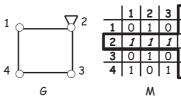
tester la présence d'un arc de i vers j:O(1) parcourir les voisins d'un sommet :O(n) parcourir tous les arcs $:O(n^2)$

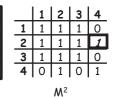
Matrices d'adjacence - Remarque (1)

Considérons les opérations (booléennes) suivantes :

+	0	1	×	0	1
0	0	1	0	0	0
1	1	1	1	0	1

Proposition
Mk[i,j] = 1 ssi il existe
un chemin de longueur k
allant de i à j





Matrices d'adjacence - Remarque (2)

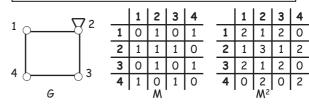
Preuve par récurrence sur k. 1. k = 1. M¹ = M, donc vrai par définition (arc = longueur 1) 2. Supposons vrai jusqu'au rang k-1. On a M¹ = M x M¹⁻¹, et donc pour tout couple (i,j): M¹[i,j] = M[i,1] x M²⁻¹[1,j] + ...+ M[i,s] x M¹⁻¹[s,j] + ... + M[i,n] x M¹⁻¹[n,j] Ainsi, M¹[i,j] = 1 ssi il existe s tel que M[i,s] x M¹⁻¹[s,j] = 1 i.e. ssi il existe un sommet s tel que - M[i,s] = 1, i.e. l'arc (i,s) existe - M¹⁻¹[s,j] = 1, i.e. il existe un chemin de longueur k-1 de s à j. i.e. il existe un chemin de longueur k de i à j. CQFD.

ENSM - Éléments de Théorie des Graphes

Matrices d'adjacence - Remarque (3)

En utilisant les opérations + et x usuelles, nous avons :

Proposition. $M^k[i,j] = p$ ssi il existe p chemins de longueur k allant de i à j



Exercice. Prouvez ce résultat.

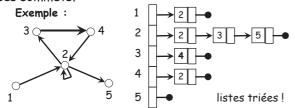
ENSM - Éléments de Théorie des Graphes

38

Listes d'adjacence - Cas orienté

Définition. La liste d'adjacence d'un sommet u est la liste des successeurs de u (ou des voisins de u dans le cas non orienté).

Un graphe peut alors être représenté par l'ensemble (tableau, liste) des listes d'adjacence de ses sommets.



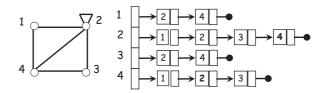
ENSM - Éléments de Théorie des Graphes

39

37

Listes d'adjacence - Cas non orienté

Remarque. Dans le cas des graphes non orientés, chaque arête apparaît dans 2 listes.



On utilise plutôt des listes de listes si le graphe peut évoluer par ajout ou suppression de sommets.

ENSM - Éléments de Théorie des Graphes

Listes d'adjacence - Complexité

n = nombre de sommets, m = nombre d'arcs

Complexité en espace : O(n + m)

optimal...

Complexité en temps de quelques opérations :

tester la présence d'un arc de i vers j : O(n) parcourir les voisins d'un sommet : O(n)

parcourir tous les arcs : O(n + m)

ENSM - Éléments de Théorie des Graphes

41