

1

On Runtime Systems
for Task-based Programming
on Heterogeneous Platforms

Samuel Thibault
SATANAS/STORM

2

High-Performance Computing

Simulation complements theory and experimentation

3

High-Performance Computing

Simulated wing From Airbus

Simulation complements theory and experimentation, e.g. A350

4

High-Performance Computing

Wind tunnel from ONERA

Simulation complements theory and experimentation, e.g. A350

5

High-Performance Computing

From ORNL

Simulation complements theory and experimentation

But requires huge computational power

6

High-Performance Computing

Summit supercomputer

● #1 on LINPACK benchmark

● 143PF

● 4608 nodes
– 2 IBM Power9 CPUs

– 6 NVIDIA V100 GPUs

– 512 GB DDR + 96 GB HBM2 mem

● IB 100G network

● 13MW

From ORNL

7

High-Performance Computing

Classical parallel programming

● threads

M.M.

CPU

CPU

CPU

CPU

M.M.

CPU

CPU

CPU

CPU

8

High-Performance Computing

Classical parallel programming

● threads

● MPI+threads

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

N.N.

9

High-Performance Computing

Classical parallel programming

● threads

● MPI+threads

● MPI+threads+CUDA

Managing interaction
between the three?

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

M.M.

CPU

CPU

CPU

CPU

N.N.

M.M.

CPU

CPU

CPU

CPU

M.GPU

M.GPU

M.GPU

M.GPU

10

Task graphs

● Well-studied for scheduling parallelism (since ‘60s!)

● Runtimes existing for a long time
– e.g. Cilk, Athapascan-1 (end ‘90s)

● Until recently, not really actually used for scientific
computation

– Heterogeneous architectures pushed for them

11

*PACK story

12

*PACK story

● LINPACK: vector computers (end ‘70s, ‘80s)

13

*PACK story

● LINPACK: vector computers (end ‘70s, ‘80s)

● LAPACK: cache-aware (‘90s), blocked operation

14

*PACK story

● LINPACK: vector computers (end ‘70s, ‘80s)

● LAPACK: cache-aware (‘90s), blocked operation

● ScaLAPACK: distributed (‘90s)
– 2D block-cyclic distribution 0

0 0

2

2 2

1

3

3 3

15

*PACK story

● LINPACK: vector computers (end ‘70s, ‘80s)

● LAPACK: cache-aware (‘90s), blocked operation

● ScaLAPACK: distributed (‘90s)
– 2D block-cyclic distribution

● PLASMA: task graph (~’08)

+ StarPU runtime
+ MAGMA GPU kernels

16

What happened?

● Application writers wanted to keep control
– Know their hardware

– Strict ordering

– Bulk Synchronous Parallelism

– Hand-tuned pipelining

● Is that maintainable?
– New hardware, rewrite?

● GPUs pushed to task graphs
– MPI+threads+CUDA…

17

Runtime emerged naturally

● From static control… HPC Applications

CPUs GPUs NIC

18

Runtime emerged naturally

● From static control…

● To some dynamic control…

HPC Applications

CPUs GPUs NIC

Runtime

19

Runtime emerged naturally

● From static control…

● To some dynamic control…

● To giving it all to the runtime…

HPC Applications

CPUs GPUs NIC

Runtime

20

Runtime emerged naturally

● From static control…

● To some dynamic control…

● To giving it all to the runtime…

● Or even an external runtime

HPC Applications

CPUs GPUs NIC

Runtime

21

Runtime emerged naturally

● From static control…

● To some dynamic control…

● To giving it all to the runtime…

● Or even an external runtime

● Possibly through intermediate
layers

● Many projects leaned to this

HPC Applications

CPUs GPUs NIC

Runtime

Parallel
Compilers

Parallel
Libraries

22

Runtime emerged naturally

● From static control…

● To some dynamic control…

● To giving it all to the runtime…

● Or even an external runtime

● Possibly through intermediate
layers

● Many projects leaned to this

● StarPU from the start (2008) external
– [AugonnetPhD11]

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel
Libraries

23

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

24

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

25

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

26

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

27

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

28

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

29

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

30

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

31

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

32

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

33

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

34

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

35

Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA

36

Expressing task graphs?

Sequential Task Flow (STF)

● Sequential-looking source code
– Just expresses the algorithm

● Can debug sequential version

● Runtime will handle parallel execution

37

Task graphs as central notion

Task graphs as a bridge between various expertise

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel
Libraries

Numerical collaboration

Compilation collaboration

Visualization collaboration

Correctness collaboration

Statistics collaboration

Simulation collaborationScheduling collaboration

Network collaboration

38

Task graphs as central notion

Task graphs as a bridge between various expertise

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel
Libraries

Numerical collaboration

Compilation collaboration

Visualization collaboration

Correctness collaboration

Statistics collaboration

Simulation collaborationScheduling collaboration

Network collaboration

MORSE

ANR SOLHAR

IPL HAC-SPECIS

ANR SONGS

ADT Gordon

IPL HAC-SPECISANR SONGS

ANR MEDIAGPU

ANR-JST FP3C

IPL HPC-BigData

EU PEPPHER

EU EXA2PRO

Rapid Hi-BOX
ANR ProHMPT

39

Today’s agenda

● Task graph scheduling
– What is a runtime scheduler?

– Beyond classical HEFT

– Involving theoreticians

● Dividable tasks

● Distributed execution

40

Today’s agenda

● Task graph scheduling
– What is a runtime scheduler?

– Beyond classical HEFT

– Involving theoreticians

● Dividable tasks

● Distributed execution

41

Task graph scheduling

Target: completion time, usually (could also be energy)

● Care of critical path
– Task priorities

● Care of leveraging accelerators
– Task duration

● Care of data transfers
– Transfer penalty

42

What is a runtime scheduler?

43

What is a runtime scheduler?

● Ready tasks

Scheduler

Push

Pop Pop

CPU
workers

GPU
workers

44

What is a runtime scheduler?

● Ready tasks

● Single eager list

Pop

Push

CPU
workers

GPU
workers

45

What is a runtime scheduler?

● Ready tasks

● Single eager list

● Early decision
?

CPU
workers

GPU
workers

Push

46

What is a runtime scheduler?

● Ready tasks

● Single eager list

● Early decision

● But not too early ?

CPU
workers

GPU
workers

Push

47

What is a runtime scheduler?

● Ready tasks

● Single eager list

● Early decision

● But not too early

Move to component-based

● [Archipoff13, SergentPhD16]

● Tasks pushed/pulled

CPU
workers

GPU
workers

P P P P P P

Push

?

48

What is a runtime scheduler?

● Ready tasks

● Single eager list

● Early decision

● But not too early

Move to component-based

● [Archipoff13, SergentPhD16]

● Tasks pushed/pulled

CPU
workers

GPU
workers

P P

Push

?
P

49

What is a runtime scheduler?

● Ready tasks

● Single eager list

● Early decision

● But not too early

Move to component-based

● [Archipoff13, SergentPhD16]

● Tasks pushed/pulled

● Would welcome correctness model
CPU
workers

P P P

Push

?

GPU
workers

50

Typical obtained performance

● With classical HEFT-like scheduling heuristic (dmdas)
– e.g. QR factorization

+12 CPUs
~200GFlops

vs measured
~150Gflops !

Thanks to
heterogeneity

51

Scheduling beyond state of the art

● HEFT-like heuristic dmdas is strong
– But can do better

● [KumarPhD17], co-advised with
– Theoreticians O. Beaumont, L. Eyraud-Dubois

– Numerical analyst E. Agullo

– Runtime really acted as a bridge between us

● Focused on Cholesky factorization
– Findings applicable to dense linear algebra in general

● Improved performance bounds

● Injected static knowledge of the application
into runtime scheduler

52

Scheduling beyond state of the art

● Dense Cholesky factorization
GEMM bound

53

Scheduling beyond state of the art

● Dense Cholesky beyond memory size (out-of-core)

54

Scheduling beyond state of the art

Hi-BOX project with Airbus

● H-matrices
– Hierarchically compressed blocks

– Growing data

● e.g. 1 600 GB result on 256 GB system

● Spends half the time exchanging data with disk

Still need to find proper compromise between
– critical path,

– acceleration,

– and data transfer

55

Getting theoreticians in?

● Component-based schedulers should help

● Running actual application + runtime remains a pain
– Getting access to target platforms

– Installing software
● And dependencies!

→ Simulation

56

Simulation with SimGrid

With A. Legrand
and L. Stanisic

57

Simulation with SimGrid

Execute real application in simulation mode

● Way faster execution time

● Reproducible experiments

● No need to run on target system

● Can change system architecture

But still requires to build real application

58

Beyond Simulation with SimGrid

● Record application task graph

● Replay it with just starpu_replay

tasks.rec
perfmodel

Application

starpu_replay

performance

simulated performance

59

Beyond Simulation with SimGrid

● Record application task graph

● Replay it, possibly with offline scheduling

tasks.rec
perfmodel

off-line
scheduler

sched.rec

Application

starpu_replay

simulated performance

performance

60

A task graph market?

● Record application task graph
– Varying application algorithms, dwarves, sizes

– As many testcases for theoreticians

● Several levels of scheduling research
– Just offline scheduling with tasks.rec

● With high-level languages

– Implement a real StarPU component
● Run with starpu_replay

– Care more about realworld conditions
● Scheduler speed, still with starpu_replay

– Run real applications in simulation

– Run for real

61

Today’s agenda

● Task graph scheduling
– What is a runtime scheduler?

– Beyond classical HEFT

– Involving theoreticians

● Dividable tasks

● Distributed execution

62

How big should a task be?

Smaller task granularity

● Exposing parallelism

● Fine-grain load balancing

Large task granularity

● Needed by GPUs for efficiency

Making a compromise?

● Not very conclusive

→ Adaptative task size?

63

Gathering tasks

[RossignonPhD15]: Taggre

● Fine-grain task graph

● Gathering recipies

● Before submission to runtime

Allows to tinker with granularity
without modifying application

1

11 12

2123 22 24

31 3533 37 32 36 34 38

23

13 14

4 5

15 16

2527 26 28

67

17 18

8 1-2

11-12

21-22 23-24

31-32 35-36 33-34 37-38

3-4

13-14

5-6

15-16

25-26 27-28

7-8

17-18

F(4)

0

1 2

34 8

6 95

7

10

11

0-3

4-7 8-11

D(4)

64

Dividing tasks

Recursive expression of graph

● Dividable tasks

● Dynamically adapt
granularity

– both big tasks for GPUs

– and small tasks for numerous CPUs

● Similar to thread bubbles
– Called so in current StarPU implementation

● Apply complex scheduling at coarse grain
– For O(n²) / O(n³) algorithms...

From PaRSEC

65

Dividing tasks

Synchronization concerns

● Fork-join parallelism

● Hindered by synchronization induced
by task graph

POTRF

SYRK

SYRKTRSM

GEMMPOTRF

66

Dividing tasks

Synchronization concerns

● Fork-join parallelism

● Hindered by synchronization induced
by task graph

Multi-level data coherency

● Synchronization pseudo-tasks
– Only when needed

● Result is exactly as appropriate

P P

P

U

POTRF GEMM

TRSM SYRK

SYRK

POTRF

67

Dividing tasks

No extra synchronization

→ Can consider task graph subdivision as a tree

SYRK

POTRF

POTRF TRSM SYRK POTRF

POTRF TRSM POTRF TRSM TRSM TRSMGEMM TRSMGEMM

68

Dividing tasks

No extra synchronization

→ Can consider task graph subdivision as a tree

→ Decide at will where and when to stop recursing

Actually Airbus’ hmat approach

How to nicely express it?

POTRF

69

Today’s agenda

● Task graph scheduling
– What is a runtime scheduler?

– Beyond classical HEFT

– Involving theoreticians

● Dividable tasks

● Distributed execution

70

Distributed execution

Try to keep STF principle

● Master-slave mode
– Master unrolls whole task graph

– Master schedules tasks between slaves
● Just like scheduling between CPUs and GPUs

– Limited scaling

71

Distributed execution

Try to keep STF principle

● Master-slave mode

● Completely distributed mode
– Application provides data mapping

– Task mapping according to data mapping
● Task run on node which owns data written to

– All nodes unroll the whole task graph

– Only keep tasks they have to execute

– Automatically generate communications

72

Distributed execution

Fully distributed with STF

For (k = 0 .. tiles – 1) {

 POTRF(A[k,k])

 for (m = k+1 .. tiles – 1)

 TRSM(A[k,k], A[m,k])

 for (m = k+1 .. tiles – 1) {

 SYRK(A[m,k], A[m,m])

 for (n = m+1 .. tiles – 1)

 GEMM(A[m,k], A[n,k], A[n,m])

 }

}

73

Distributed execution

Fully distributed with STF
int get_rank(int m, int n) { return ((m%p)*q + n%q); }

For (m = 0 .. tiles – 1)

 For (n = m .. tiles – 1)

 set_rank(A[m,n], get_rank(m,n));

For (k = 0 .. tiles – 1) {

 POTRF(A[k,k])

 for (m = k+1 .. tiles – 1)

 TRSM(A[k,k], A[m,k])

 for (m = k+1 .. tiles – 1) {

 SYRK(A[m,k], A[m,m])

 for (n = m+1 .. tiles – 1)

 GEMM(A[m,k], A[n,k], A[n,m])

 }

}

node1 node2 node3node0

74

Distributed execution

Fully distributed with STF

Node 0 execution Node 1 execution

75

Distributed execution

[SergentPhD16]

● Making it to scale
– Caching values

– Pruning task graph

● Require less memory
– Throttling submission

76

Distributed execution

Result competitive with state of the art, over 144 nodes
(1152 CPU cores, 288 GPUs)

77

Scaling at large

Could leverage dividable tasks

● ClusterSs from BSC
– Master unrolls higher recursion levels, schedules result

– Slaves unroll the rest

– Master still contention point
Master

Slave 0 Slave 1
Slave 2 Slave 3

78

Scaling at large

Could leverage dividable tasks

● DuctTeip from University of Uppsala
– All nodes unroll higher recursion levels, determine task mapping

– Nodes unroll their own remaining recursion

– Network communications
quite coarse

→ spurious synchronizations

All

Node 0 Node 1
Node 2 Node 3

79

Scaling at large

Could leverage dividable tasks

● Ideally?
– All nodes unroll higher recursion levels, plus some margin

– Nodes unroll their own remaining recursion

– Network communications
at finer grain

– Fine-grain enough
vs overhead?

All

Node 0 Node 1
Node 2 Node 3

80

Conclusion

Heterogeneous applications on heterogeneous platforms

● Expressed with sequential-looking code (STF)

● Interesting scheduling problem

● Built bridge between scheduling theory and applications

● Dividable tasks to better address heterogeneity

● Fully distributed execution competitive

81

Conclusion

A lot of expertise gathered around StarPU

● Thanks to task graph

● Expressed with STF

● StarPU as a bridge
between theory
and applications

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel
Libraries

Numerical collaboration

Compilation collaboration

Visualization collaboration

Correctness collaboration

Statistics collaboration

Simulation collaborationScheduling collaboration

Network collaboration

82

Perspectives

● Programming interface (OpenMP?, dividable tasks, BigData)

● Scheduling
– Tasks

– Memory ([ArrasPhD15])

– Moldable tasks

● Composition (runtimes, programming paradigms)

● Leveraging compilers

● Visualization

● Model checking

● Fault tolerance of distributed execution
– Checkpoint / restart + distributed load balancing [LionPhD]

83

Thanks!

[AugonnetPhD11] [ArrasPhD15] [RossignonPhD15]
[SergentPhD16] [KumarPhD17] [LionPhD]

● ANR ProHMPT’09, MEDIAGPU’10, FP3C’10, SONGS’12,
SOLHAR’13

● IPL HAC-SPECIS’16, HPC-BigData’18

● EU PEPPHER’10, EXA2PRO’18

● Rapid Hi-BOX’13

● MORSE associate-team

● Used by AL4SAN, Chameleon, ExaGeoStat, FLUSEPA,
HiCMA, hmat, KSVD, MAGMA, MaPHyS, MOAO, PaStiX,
QDWH, qr_mumps, ScalFMM, SCHNAPS, SignalPU,
SkePU, STARS-H

84

How big should a task be?

Lower bound due to runtime overhead

● Proposed by Martin Tillenius

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Number of cores

linear
4096
2048
1024
512
256
128
64
32
16
8
4

85

Issues with MPI implementations

● Classical MPI implementations not used to
irregular communications

● Collaborating with A. Denis

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50000 100000 150000 200000 250000 300000 350000

G
Fl

o
p/

s

Matrix size

time_spotrf_tile - inti-sandy/n196

MadMPI/NewMadeleine
OpenMPI 1.8
OpenMPI 3.0

MPICH 3.2
old MadMPI/NewMadeleine

86

Scaling at large

All nodes unrolling all loops expensive

● Task graph pruning

#define GEMM(A, B, C) \
if (get_rank(A) == self || get_rank(B) == self || get_rank(C) == self) \

GEMM(A, B, C);

For (k = 0 .. tiles – 1) {

 POTRF(A[k,k])

 for (m = k+1 .. tiles – 1)

 TRSM(A[k,k], A[m,k])

 for (m = k+1 .. tiles – 1) {

 SYRK(A[m,k], A[m,m])

 for (n = m+1 .. tiles – 1)

 GEMM(A[m,k], A[n,k], A[n,m])

 }

}

87

Scaling at large

All nodes unrolling all loops expensive

● Could use source-to-source compilation to rework loop nest
– Polyhedral analysis, to get

For (k = 0 .. tiles – 1) {

 POTRF(A[k,k])

 for (m = k+1 .. tiles – 1)

 TRSM(A[k,k], A[m,k])

 for (m = k+1 .. tiles – 1) {

 SYRK(A[m,k], A[m,m])

 for (n = m+1+xxx .. tiles – 1 step Q)

 GEMM(A[m,k], A[n,k], A[n,m])

 }

}

● Reduce complexity from O(n³) to O(n³/Q)

88

Dynamic data remapping

submission

submission

data remapping

execution

data remapping

time

89

Checkpoint / restart

0 1 32

0

0

0

0

1

1

1

1

2

2

3

3

3

3

3

3

3

1

1

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89

