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High-Performance Computing

Simulation complements theory and experimentation
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High-Performance Computing

Wind tunnel from ONERA

Simulation complements theory and experimentation, e.g. A350
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High-Performance Computing

From ORNL

Simulation complements theory and experimentation

But requires huge computational power
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High-Performance Computing

Summit supercomputer

● #1 on LINPACK benchmark

● 143PF

● 4608 nodes
– 2 IBM Power9 CPUs

– 6 NVIDIA V100 GPUs

– 512 GB DDR + 96 GB HBM2 mem

● IB 100G network

● 13MW

From ORNL
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High-Performance Computing

Classical parallel programming

● threads
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High-Performance Computing

Classical parallel programming

● threads

● MPI+threads

● MPI+threads+CUDA

Managing interaction
between the three?
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Task graphs

● Well-studied for scheduling parallelism (since ‘60s!)

● Runtimes existing for a long time
– e.g. Cilk, Athapascan-1 (end ‘90s)

● Until recently, not really actually used for scientific 
computation

– Heterogeneous architectures pushed for them
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*PACK story
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● LINPACK: vector computers (end ‘70s, ‘80s)
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*PACK story

● LINPACK: vector computers (end ‘70s, ‘80s)

● LAPACK: cache-aware (‘90s), blocked operation

● ScaLAPACK: distributed (‘90s)
– 2D block-cyclic distribution

● PLASMA: task graph (~’08)

+ StarPU runtime
+ MAGMA GPU kernels
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What happened?

● Application writers wanted to keep control
– Know their hardware

– Strict ordering

– Bulk Synchronous Parallelism

– Hand-tuned pipelining

● Is that maintainable?
– New hardware, rewrite?

● GPUs pushed to task graphs
– MPI+threads+CUDA…
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Runtime emerged naturally

● From static control… HPC Applications

CPUs GPUs NIC
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● To some dynamic control…

● To giving it all to the runtime…

● Or even an external runtime

● Possibly through intermediate
layers

● Many projects leaned to this
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Runtime emerged naturally

● From static control…

● To some dynamic control…

● To giving it all to the runtime…

● Or even an external runtime

● Possibly through intermediate
layers

● Many projects leaned to this

● StarPU from the start (2008) external
– [AugonnetPhD11]

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel 
Libraries
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Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA
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Expressing task graphs?

Sequential Task Flow (STF)

● Cholesky example from PLASMA
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Expressing task graphs?

Sequential Task Flow (STF)

● Sequential-looking source code
– Just expresses the algorithm

● Can debug sequential version

● Runtime will handle parallel execution
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Task graphs as central notion

Task graphs as a bridge between various expertise
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Task graphs as central notion

Task graphs as a bridge between various expertise

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel 
Libraries

Numerical collaboration

Compilation collaboration

Visualization collaboration

Correctness collaboration

Statistics collaboration

Simulation collaborationScheduling collaboration

Network collaboration

MORSE

ANR SOLHAR
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ANR SONGS

ADT Gordon

IPL HAC-SPECISANR SONGS

ANR MEDIAGPU

ANR-JST FP3C

IPL HPC-BigData
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EU EXA2PRO

Rapid Hi-BOX
ANR ProHMPT
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Today’s agenda
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– What is a runtime scheduler?
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– Involving theoreticians
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● Distributed execution
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Task graph scheduling

Target: completion time, usually (could also be energy)

● Care of critical path
– Task priorities

● Care of leveraging accelerators
– Task duration

● Care of data transfers
– Transfer penalty
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What is a runtime scheduler?
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What is a runtime scheduler?

● Ready tasks

● Single eager list

● Early decision

● But not too early

Move to component-based

● [Archipoff13, SergentPhD16]

● Tasks pushed/pulled

● Would welcome correctness model
CPU
workers

P P P

Push

?

GPU
workers



  
50

Typical obtained performance

● With classical HEFT-like scheduling heuristic (dmdas)
– e.g. QR factorization

+12 CPUs
~200GFlops

vs measured
~150Gflops !

Thanks to
heterogeneity
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Scheduling beyond state of the art

● HEFT-like heuristic dmdas is strong
– But can do better

● [KumarPhD17], co-advised with
– Theoreticians O. Beaumont, L. Eyraud-Dubois

– Numerical analyst E. Agullo

– Runtime really acted as a bridge between us

● Focused on Cholesky factorization
– Findings applicable to dense linear algebra in general

● Improved performance bounds

● Injected static knowledge of the application
into runtime scheduler
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Scheduling beyond state of the art

● Dense Cholesky factorization
GEMM bound
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Scheduling beyond state of the art

● Dense Cholesky beyond memory size (out-of-core)
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Scheduling beyond state of the art

Hi-BOX project with Airbus

● H-matrices
– Hierarchically compressed blocks

– Growing data

● e.g. 1 600 GB result on 256 GB system

● Spends half the time exchanging data with disk

Still need to find proper compromise between
– critical path,

– acceleration,

– and data transfer
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Getting theoreticians in?

● Component-based schedulers should help

● Running actual application + runtime remains a pain
– Getting access to target platforms

– Installing software
● And dependencies!

→  Simulation
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Simulation with SimGrid

With A. Legrand
and L. Stanisic
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Simulation with SimGrid

Execute real application in simulation mode

● Way faster execution time

● Reproducible experiments

● No need to run on target system

● Can change system architecture

But still requires to build real application
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Beyond Simulation with SimGrid

● Record application task graph

● Replay it with just starpu_replay

tasks.rec
perfmodel

Application

starpu_replay

performance

simulated performance
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Beyond Simulation with SimGrid

● Record application task graph

● Replay it, possibly with offline scheduling

tasks.rec
perfmodel

off-line
scheduler

sched.rec

Application

starpu_replay

simulated performance

performance
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A task graph market?

● Record application task graph
– Varying application algorithms, dwarves, sizes

– As many testcases for theoreticians

● Several levels of scheduling research
– Just offline scheduling with tasks.rec

● With high-level languages

– Implement a real StarPU component
● Run with starpu_replay

– Care more about realworld conditions
● Scheduler speed, still with starpu_replay

– Run real applications in simulation

– Run for real
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Today’s agenda

● Task graph scheduling
– What is a runtime scheduler?

– Beyond classical HEFT

– Involving theoreticians

● Dividable tasks

● Distributed execution



  
62

How big should a task be?

Smaller task granularity

● Exposing parallelism

● Fine-grain load balancing

Large task granularity

● Needed by GPUs for efficiency

Making a compromise?

● Not very conclusive

→  Adaptative task size?



  
63

Gathering tasks

[RossignonPhD15]: Taggre

● Fine-grain task graph

● Gathering recipies

● Before submission to runtime

Allows to tinker with granularity
without modifying application
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Dividing tasks

Recursive expression of graph

● Dividable tasks

● Dynamically adapt
granularity

– both big tasks for GPUs

– and small tasks for numerous CPUs

● Similar to thread bubbles
– Called so in current StarPU implementation

● Apply complex scheduling at coarse grain
– For O(n²) / O(n³) algorithms...

From PaRSEC
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Dividing tasks

Synchronization concerns

● Fork-join parallelism

● Hindered by synchronization induced
by task graph

POTRF

SYRK

SYRKTRSM

GEMMPOTRF
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Dividing tasks

Synchronization concerns

● Fork-join parallelism

● Hindered by synchronization induced
by task graph

Multi-level data coherency

● Synchronization pseudo-tasks
– Only when needed

● Result is exactly as appropriate

P P

P

U

POTRF GEMM

TRSM SYRK

SYRK

POTRF
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Dividing tasks

No extra synchronization

→  Can consider task graph subdivision as a tree

SYRK

POTRF

POTRF TRSM SYRK POTRF

POTRF TRSM POTRF TRSM TRSM TRSMGEMM TRSMGEMM
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Dividing tasks

No extra synchronization

→  Can consider task graph subdivision as a tree

→  Decide at will where and when to stop recursing

Actually Airbus’ hmat approach

How to nicely express it?

POTRF
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Today’s agenda

● Task graph scheduling
– What is a runtime scheduler?

– Beyond classical HEFT

– Involving theoreticians

● Dividable tasks

● Distributed execution
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Distributed execution

Try to keep STF principle

● Master-slave mode
– Master unrolls whole task graph

– Master schedules tasks between slaves
● Just like scheduling between CPUs and GPUs

– Limited scaling
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Distributed execution

Try to keep STF principle

● Master-slave mode

● Completely distributed mode
– Application provides data mapping

– Task mapping according to data mapping
● Task run on node which owns data written to

– All nodes unroll the whole task graph

– Only keep tasks they have to execute

– Automatically generate communications
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Distributed execution

Fully distributed with STF
 

 

 

 

For (k = 0 .. tiles – 1) {

    POTRF(A[k,k])

    for (m = k+1 .. tiles – 1)

        TRSM(A[k,k], A[m,k])

    for (m = k+1 .. tiles – 1) {

        SYRK(A[m,k], A[m,m])

        for (n = m+1 .. tiles – 1)

              GEMM(A[m,k], A[n,k], A[n,m])

    }

}



  
73

Distributed execution

Fully distributed with STF
int get_rank(int m, int n) { return ((m%p)*q + n%q); }

For (m = 0 .. tiles – 1)

    For (n = m .. tiles – 1)

        set_rank(A[m,n], get_rank(m,n));

For (k = 0 .. tiles – 1) {

    POTRF(A[k,k])

    for (m = k+1 .. tiles – 1)

        TRSM(A[k,k], A[m,k])

    for (m = k+1 .. tiles – 1) {

        SYRK(A[m,k], A[m,m])

        for (n = m+1 .. tiles – 1)

              GEMM(A[m,k], A[n,k], A[n,m])

    }

}

node1 node2 node3node0
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Distributed execution

Fully distributed with STF

Node 0 execution Node 1 execution
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Distributed execution

[SergentPhD16]

● Making it to scale
– Caching values

– Pruning task graph

● Require less memory
– Throttling submission
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Distributed execution

Result competitive with state of the art, over 144 nodes 
(1152 CPU cores, 288 GPUs)
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Scaling at large

Could leverage dividable tasks

● ClusterSs from BSC
– Master unrolls higher recursion levels, schedules result

– Slaves unroll the rest

– Master still contention point
Master

Slave 0 Slave 1
Slave 2 Slave 3
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Scaling at large

Could leverage dividable tasks

● DuctTeip from University of Uppsala
– All nodes unroll higher recursion levels, determine task mapping

– Nodes unroll their own remaining recursion

– Network communications
quite coarse

→ spurious synchronizations 

All

Node 0 Node 1
Node 2 Node 3
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Scaling at large

Could leverage dividable tasks

● Ideally?
– All nodes unroll higher recursion levels, plus some margin

– Nodes unroll their own remaining recursion

– Network communications
at finer grain

– Fine-grain enough
vs overhead?

All

Node 0 Node 1
Node 2 Node 3
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Conclusion

Heterogeneous applications on heterogeneous platforms

● Expressed with sequential-looking code (STF)

● Interesting scheduling problem

● Built bridge between scheduling theory and applications

● Dividable tasks to better address heterogeneity

● Fully distributed execution competitive
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Conclusion

A lot of expertise gathered around StarPU

● Thanks to task graph

● Expressed with STF

● StarPU as a bridge
between theory
and applications

HPC Applications

CPUs GPUs NIC

StarPU

Parallel
Compilers

Parallel 
Libraries

Numerical collaboration

Compilation collaboration

Visualization collaboration

Correctness collaboration

Statistics collaboration

Simulation collaborationScheduling collaboration

Network collaboration
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Perspectives

● Programming interface (OpenMP?, dividable tasks, BigData)

● Scheduling
– Tasks

– Memory ([ArrasPhD15])

– Moldable tasks

● Composition (runtimes, programming paradigms)

● Leveraging compilers

● Visualization

● Model checking

● Fault tolerance of distributed execution
– Checkpoint / restart + distributed load balancing [LionPhD]
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Thanks!

[AugonnetPhD11] [ArrasPhD15] [RossignonPhD15] 
[SergentPhD16] [KumarPhD17] [LionPhD]

● ANR ProHMPT’09, MEDIAGPU’10, FP3C’10, SONGS’12, 
SOLHAR’13

● IPL HAC-SPECIS’16, HPC-BigData’18

● EU PEPPHER’10, EXA2PRO’18

● Rapid Hi-BOX’13

● MORSE associate-team

● Used by AL4SAN, Chameleon, ExaGeoStat, FLUSEPA, 
HiCMA, hmat, KSVD, MAGMA, MaPHyS, MOAO, PaStiX, 
QDWH, qr_mumps, ScalFMM, SCHNAPS, SignalPU, 
SkePU, STARS-H
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How big should a task be?

Lower bound due to runtime overhead

● Proposed by Martin Tillenius
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Issues with MPI implementations

● Classical MPI implementations not used to
irregular communications

● Collaborating with A. Denis
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Scaling at large

All nodes unrolling all loops expensive

● Task graph pruning

#define GEMM(A, B, C) \
if (get_rank(A) == self || get_rank(B) == self || get_rank(C) == self) \

GEMM(A, B, C);

For (k = 0 .. tiles – 1) {

    POTRF(A[k,k])

    for (m = k+1 .. tiles – 1)

        TRSM(A[k,k], A[m,k])

    for (m = k+1 .. tiles – 1) {

        SYRK(A[m,k], A[m,m])

        for (n = m+1 .. tiles – 1)

             GEMM(A[m,k], A[n,k], A[n,m])

    }

}
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Scaling at large

All nodes unrolling all loops expensive

● Could use source-to-source compilation to rework loop nest
– Polyhedral analysis, to get

For (k = 0 .. tiles – 1) {

    POTRF(A[k,k])

    for (m = k+1 .. tiles – 1)

        TRSM(A[k,k], A[m,k])

    for (m = k+1 .. tiles – 1) {

        SYRK(A[m,k], A[m,m])

        for (n = m+1+xxx .. tiles – 1 step Q)

             GEMM(A[m,k], A[n,k], A[n,m])

    }

}

● Reduce complexity from O(n³) to O(n³/Q)
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Dynamic data remapping

submission

submission

data remapping

execution

data remapping

time
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Checkpoint / restart
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