
TD 5: Virtualization, micro-kernels

In this practice lesson, we will discuss a few questions for the various virtualization technolo-
gies:

Guest modification: does the technology require modifying the source code of the guest?

Isolation: to what extent does the technology isolate guests?

Execution speed: is the guest slowed down by the technology?

1 Environment

• Restart your test VM based on Debian 11. As a reminder, the login/pass is cremi/cremi.

• Install the debootstrap package.

• Run

sudo debootstrap stable /var/tmp/chroot

and let it proceed while you continue the steps below.

• Install the docker.io package.

• Run

sudo addgroup cremi docker

to let your user use docker.

• Run

newgrp docker

to run a shell with the new docker group permission.

• Run wget https://dept-info.labri.fr/~thibault/SecuSys/Dockerfile

• In that shell, run

docker build -t mydocker .

and let it proceed while you continue the steps below. Notice that it is installing packages
etc. while we have seemingly run docker as normal user.

1



• On your host machine, cd to /local/yourlogin (mkdir it if it doesn’t exist yet) and run1

tar xfS ~sathibau/debian-hurd.img.tar.xz

and let it proceed while you continue the steps below.

• Once the commands in your VM are finished, log out and log in again inside the VM (so that
all your shells in your VM have docker group permission without having to care)

2 Unix process

You are used to Unix processes, but possibly never realized that they are actually running inside
a virtualized environment: a virtual addressing space. The program can do whatever it wants
inside it, and does not have any access outside it.

• To what extent is your program source code "modified" compared to if it was running on
bare metal, without the notion of process?

• To what extent is your program running in the process isolated from other processes?

• To what extend is your program running as fast as without this virtualization technique (in
terms of CPU speed, and devices speed).

3 chroots

Chroots is a very simple container technology. Enter and configure the chroot with this:

• Run sudo chroot /var/tmp/chroot

• Run mount none /proc -t proc

• Run mount none /sys -t sysfs

• Run mount udev /dev -t devtmpfs

• Look around in the directories, you will notably see that /home is empty. Try to create a file
somewhere. See in another terminal that the file appears inside /var/tmp/chroot/

chroot indeed means that you are stuck inside the chroot directory, i.e. / is stuck at
/var/tmp/chroot (CHange ROOT).

• Install the pciutils package inside the chroot.

• Run dmesg, ip a ls, lspci, lsmod

• Compare with the same commands in your Debian11 VM (run with sudo)

• In another terminal (thus outside the chroot), run sudo modprobe ledtrig_timer

1That’s coming from http://cdimage.debian.org/cdimage/ports/latest/hurd-i386/debian-hurd.
img.tar.xz

2

http://cdimage.debian.org/cdimage/ports/latest/hurd-i386/debian-hurd.img.tar.xz
http://cdimage.debian.org/cdimage/ports/latest/hurd-i386/debian-hurd.img.tar.xz


• See that inside the chroot the module showed up in lsmod

• Inside the chroot, run rmmod ledtrig_timer

• In another terminal, see that the module disappeared from lsmod

• Run ps axu | grep bash both inside the chroot and in another terminal, compare the
outputs.

So programs running inside the chroot are basically seeing all of their host environment: net-
work configuration, kernel modules, processes, etc. And "root" inside the chroot really has all root
powers... It can for instance open the disk /dev/sda...

Worse, it’s trivial to escape the chroot when running as root:

• Inside the chroot, install gcc

• Create a C program that does the following:

mkdir("tmp", 0755);
chroot("tmp");
chroot("../../../../..");
execl("/bin/sh", "-i", NULL);

• Compile it, run it, run ls /home, you’re back to the host!

Chroots are really not a secure virtualization technique. It was never meant to be, actually.

• Answer again the three "to what extent" questions at the end of the previous section.

(Exit from your chroot)

4 docker

• Run

docker run -t -i mydocker

• In another terminal, run mount | grep docker

• See the overlay directory (/var/lib/docker/...). Try to create a file inside the docker
shell, see it appear in the overlay directory.

• Try the same commands as in the previous section. See that most of them fail out of permis-
sions

• Compare the outputs of ip a ls inside the docker shell and outside. Notice the docker0
interface outside docker, it’s bound to the eth0@if11 interface inside docker so that the
docker shell has network access. Notice their IP addresses.

• Also compare the outputs of ps axu | grep bash

3



• Run df -h . both inside and outside. You will see that the docker root is an overlay be-
tween the host’s filesystem and the docker shell.

• You can check that capabilities you actually have with capsh --print

• Compare the output of that command from inside the docker shell and outside it (but as
root with sudo). The interesting part is the Current line. =ep means all permissions are
permitted and actually effective. (More on the capabilities in man 7 capabilities)

• Notice that there is the cap_mknod capability. That’s supposed to let us create arbitrary
device access...

• Try to mknod /dev/sda b 8 0

• Try to run fdisk -l /dev/sda

• No, that doesn’t work...

• The chroot("../../../../..") trick above won’t work either.

So docker images are much more meant to be secure.
Note that there is a --privileged flag which allows more inside the docker shell, but that’s

way too much and there are various exploits that can subvert it.

• Answer again the three "to what extent" questions.

5 VM

Let’s get back to our Debian11 VM

• You have already played with dmesg, ip, lsmod etc. in that VM, you know very well that
it’s completely unrelated to the real system.

• Just to be sure, run ps axu | grep bash both inside and outside the VM, compare the
outputs.

• Outside the VM, run ps axu | grep Box, notice the VirtualBoxVM process, and see
that it consumed some CPU time. That’s representing the VM in the host.

So this is really emulation: VirtualBox is simulating a complete PC with a virtual processor,
etc. Let’s look more.

• Both inside and outside, run lspci

All of what is showing up inside the VM is actually emulated hardware. This does not seem
obvious because virtualbox is emulating well-known hardware so that the Operating System can
work with its usual device drivers.

• Install the hdparm package

4



• Run hdparm -i /dev/sda

Ok, there we see that the disk model is labelled VBOX, it’s indeed a disk simulated by Virtual-
Box.

• cat /proc/cpuinfo

• Compare the flags part. Notably notice the presence of the sse and avx flags.

• Compare the bugs part.

Since VirtualBox is using hardware CPU acceleration, the available instruction set is basically
the same. There are however some parts which are disabled, to avoid a blue pill escape...

• Notice that inside the VM, the vmx (or svm on AMD64) is not available. This means we
cannot have nested hardware acceleration (called EPT by Intel): if we run virtualbox/KVM
inside that virtualbox VM, it will be very slow.

• If you have a USB device, you can tell virtualbox to perform USB pass-through, i.e. give the
USB device to the VM, and it’s the VM’s driver which will drive it.

• Answer again the three "to what extent" questions.

• Note that it seems that the VirtualBox virtualization technique is considered to be safe, since
it’s allowed in Cremi. docker, however, is not (yet) :)

6 Web navigator Java Virtual Machine (JVM)

Let’s consider a Javascript script, a Java applet or Flash plugin running inside the web navigator.
Answer again the three "to what extent" questions.

7 (if you have time) GNU/Hurd

Let’s now have a look at that debian-hurd image.

• Make sure that VirtualBox is closed (hardware acceleration cannot work with both Virtual-
Box and kvm running at the same time).

• cd /local/yourlogin

• Run kvm -m 1G -snapshot -hda debian-hurd.img

• Note: if at any time you don’t see your mouse cursor any more, see the title of the window:
press ctrl-alt-G to get out of the "grab" mode.

• Log in as demo

• Run ps axu --width=80 | less to see all the userland processes.

5



• Notably see the presence of ext2fs, netdde, pfinet. ext2fs is the filesystem translator,
netdde is running the network driver, and pfinet implements the TCP/IP stack. The disk
driver is still inside the kernel but there are plans to move it out to a userland process.

• Type q to quit less

• Run wget www.gnu.org

• Run sudo killall netdde to kill the network driver.

• Run wget www.gnu.org again, see that some messages appear about an irq handler cleanup:
it’s the netdde driver just starting again, and we can use the network again.

• cd /ftp://ftp.gnu.org/pub/gnu/hurd/

• Notice that the usual shell commands work there.

• Run ps axu | grep ftpfs and see there that an ftpfs process appeared. Why is it run-
ning as nobody rather than as demo?

• Run ls -ld /ftp: and showtrans /ftp:

• This means that it’s a translated directory: its content is served by the hostmux translator
which starts an ftpfs translator.

• Run cd to get back to demo’s home directory

• Run settrans -cap mytest /hurd/ftpfs ftp.gnu.org

• Look in the mytest directory

• See with the ps command above that new ftpfs process appeared under the demo identity.

• Run
settrans -cap ~/myiso /hurd/iso9660fs ~/mytest/old-gnu/gnu-f2/hurd-F2-main.iso

• cd ~/myiso, and see that we transparently access the inside of the ISO image from the ftp
server.

• Reboot the system with sudo reboot

• Notice that these directory are still set up so, it’s recorded in the filesystem!

• Create an empty file with dd < /dev/zero > image bs=1M count=10

• Format it with /sbin/mke2fs -E root_owner image

• Mount it with settrans -cap mydir /hurd/ext2fs image (ignore the warning about
shutdown notification, it just tells you that it risks not getting notified if the system shuts
down)

• Look in the mydir directory, run df . inside it.

6



• Notice with the ps command above that a new ext2fs process appeared, under the demo
identity. See the other processes, that correspond to everything we have started under the
demo identity.

So by putting most of the implementation of the system outside of the kernel, this allowed to
delegate a lot of power to users, notably to implement their own filesystems, in a safe way since
they are running under their identity! That’s just using the available CPU time, memory space,
disk space, network access.

That’s also safe for mounting a USB stick found in the street, at worse it’ll hack only the user
that started ext2fs, not the kernel.

Linux has a similarly-looking support with FUSE, but it’s mostly never enabled on production
systems, as considered not really safe.

• Make a drawing that lays out all the translators you have seen, and their relations

Funny things then become possible:

touch hello
cat hello
settrans hello /hurd/hello
cat hello
settrans -fg hello /hurd/run echo yay
cat hello
settrans -fg hello /hurd/run /usr/games/fortune
cat hello
cat hello
cat hello

So that’s a file whose content changes on each open, and which is simply the output of the
fortune command!

7


	Environment
	Unix process
	chroots
	docker
	VM
	Web navigator Java Virtual Machine (JVM)
	(if you have time) GNU/Hurd

