
 1

Virtualization,
micro-kernel-based OS

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

 2

Goals

● One physical machine
– Host

● Several services
– Guests

● Lowering cost
● Management flexibility
● Isolation

– More security?
● Some people have given up trying to fix syscall security

host

guest guest guest

 3

Nothing new

● S/370 was emulating several S/360 in parallel
● Unix process
● Filesystem with permissions

The question is the interface
● A PC
● A simplified PC
● hypercalls
● system calls

 4

Tons of solutions

● Virtualbox
● KVM/qemu
● Xen
● VMWare
● chroot
● LXC
● Parallels
● OpenVZ
● UML
● ...

 5

Contradictory qualities

Unmodified guest

Isolation

Execution speed

Flexibility

 6

Unmodified guest?

Modifying the kernel to adapt to virtual interface
● Xen: Executing in ring 1 instead of ring 0

– No privileged instruction
– Make hypercalls to manage page table etc.

● UML: Executing in a process
– Make system call to manage memory etc.

Special drivers for acceleration
● Virtio
● Hyper-V

Nowadays, integrated in standard distributions

 7

Flexibility?

Memory
● Tuning : automatic / static / on the fly
● Avoid duplicate memory pages

Disk
● Tuning : automatic / static / on the fly
● Adding disk on the flys

Network
● On the fly

Exchanging data
● Mount shared filesystem

Accounting, quotas

 8

Isolation

Do guests
● see files of other guests?
● see each other?
● are on the same Ethernet network?
● use the same kernel?

– beware of rogue modules and crashes

 9

Execution speed

CPU speed not really a problem
● Unless using total virtualization without hardware acceleration

Memory management
● Creating many processes
● Switching between processes

Disk, network
● Bandwidth
● Latency

 10

3 main classes

 11

3 main classes

Total virtualization
● KVM/qemu, Xen HVM, VirtualBox, VMware, ...

Para-virtualization
● Xen PV, Xen PV-HVM, Hyper-V, VMware drivers, virtio

Containers
● Process, chroot, cgroups, openVZ, LXC, ...

 12

Total virtualization

KVM/qemu, Xen HVM, VirtualBox, VMware
● Simulate a complete PC

– BIOS, floppy, ...
– Or not : qboot

● Complex simulation
– Many CVEs

● Accelerated by hardware support
– Intel (vmx, VT-x, VT-i), AMD (svm), NPT

● A must for Windows etc.

Wake-up, neo...
● Blue pill...

WSL2 (Windows Subsystem for Linux)
● Runs a real Linux kernel, thus perfect compatibility

host

simulator

guest kernel

process

 13

Total virtualization summary

KVM/qemu, Xen HVM, VirtualBox, VMware
● Guest is not modified
● Not really flexible

– Removing RAM banks?
● Very isolated

– But beware of simulation bugs
● Use stubdom-dm

● Reasonable speed
– Thanks to hardware acceleration host

simulator

guest kernel

process

 14

Non-stubdom simulation

KVM/qemu, Xen HVM, VirtualBox, VMware
● Simulation of hardware is running inside

the host
● Often with root privileges!

● Better isolate that

host

simulator

guest kernel

process

 15

Stubdom simulation

Xen HVM with stubdom
● Running hardware simulator in a separate

guest
– Limit what it can do
– Isolate just like the VM is supposed to be

host

simulatorguest kernel

process

 16

Para-Virtualization

VMware drivers, virtio
● « VMware drivers »
● Often based on shared memory

– packet exchange protocol
– frontend/backend

● Speed, flexibility
● But then security concerns on the

shared-memory protocol
– e.g. virtio tries to factorize it
– POSIX syscall interface did get proposed...

host

simulator

guest kern

process

driver

 17

Para-Virtualization

Xen PV, Xen PV-HVM
● PV kernel

– Really knows that it is virtualized
● « Hypercalls »

– Essentially to replace privileged instructions
● CPU control, virtual memory, ...

● PV drivers

host

g. kernel

process

syscall

hypercall

 18

Para-Virtualization
Real Xen picture

Virtualization type 1
● A hypervisor boots before the host

– Much smaller than a full-featured kernel

host (dom0)

Hypervisor

guest (domU)

driver PVbackend PV

 19

Para-Virtualization
Real Xen picture

Virtualization type 1
● A hypervisor boots before the host

– Much smaller than a full-featured kernel
● Or even disaggregated

host (dom0)

Hypervisor

guest (domU)

driver PV

domD

backend PV

 20

Para-Virtualization summary

Xen PV, Xen PV-HVM, VMware drivers, virtio, UML
● Guest is modified

– Largely (PV), or drivers
● Very flexible

– Dynamic resizes
● Very isolated

– Separate kernels
– Interface is hypercalls

● Meant exactly for this usage

● Excellent speed
– That’s meant for it !

host

simulator

g. kernel

process

 21

Containers

Process, chroot, cgroups/NS, openVZ, LXC
● Process++

Varying isolation
● Filesystem space

– « private / »
● pid space
● network space
● ...
● What did we forget ?

WSL1
● Emulates the Linux system call interface

host

g. process

 22

Containers summary

Process, chroot, cgroups/NS, openVZ, LXC
● Unmodified guest

– As in : it’s just a normal process
● Very flexible
● More or less isolated

– Depending on the support
– Same kernel, incompatibility concerns (udev, systemd)

● Perfect speed
– Identical to a process

host

g. process

 23

Flexibility?

 24

Memory flexibility

Adding memory
● Not « that » hard

Removing memory
● Ew...
● Ballooning

host

guest

driver

 25

Disk flexibility

Online resize
● Containers : ~= quotas
● Others :

– Use lvm’s lvresize on the host
– Use resize2fs inside the guest
– Seamless!

 26

Network flexibility

Virtual plugging
● Bridge ~= network switch
● Usual host management (bridge, VLAN, ...)

– Or openvswitch

 host

guest

eth0

br0

vif0

guest

eth0

vif1

guest

eth0

 br1
vif2

eth0 eth1.20

 27

Hardware flexibility

● PCI passthrough
● USB passthrough
● ! Security ! (DMA, ...)

– VT-d support (IOMMU)

guestguest

host

netboard video board

 28

Virtualization conclusion

All solutions try to optimize for the 4 qualities
● More or less successful
● Keep evolving

– Don’t trust what people say
● Check what you really want

 29

Micro-kernel-based OS

 30

Micro-kernel-based OS

● Micro kernel containing only the few required features
– Task switching
– Memory management
– Inter-Process communication (IPC, RPC)

● Rather than a big kernel containing all system calls

Minix, LynxOS, L4, GNU/Hurd

Will here discuss GNU/Hurd

 31

Micro-kernel layering

pfinet
proc

auth
ext2fs

root user

sh

cp

Kernel Tasks, memory, IPC

 32

Micro-kernel layering

read() is not a system call
● RPC to whatever server backs the opened file

Ditto for all POSIX functions
● Underlying RPC calls

→ Natively isolated

● Server crash? Not a problem
– « computer bought the farm » is just an error, not something-of-the-

death
● Driver isolated in its own process

– Overflows limited to itself
● Driver hung? Just kill it and let it restart
● Easier to debug/tune

– Just run gdb, gprof, ...
● Can virtualize at a very fine grain

 33

Neighbour Hurds

pfinet
proc

auth
ext2fs

root

cpshuser

pfinet
proc

auth
ext2fs

root

cpshuser

Kernel

 34

Neighbour Hurds, shared pfinet

cpsh cpsh

pfinet

Kernel

user user

proc

auth
ext2fs

root
proc

auth
ext2fs

root

 35

Sub-Hurd

pfinet
proc

auth
ext2fs

root

sh

cp

Kernel

user
pfinet

proc

auth
ext2fs

user/root

 36

Micro-kernel-based systems

Strong isolation
● By default

→ No risk of forgetting something

Didn’t expand in the industry
● But virtualization/containerization looks more and more like it

 37

