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Goals

● One physical machine
– Host

● Several services
– Guests

● Lowering cost
● Management flexibility
● Isolation

– More security?
● Some people have given up trying to fix syscall security

host

guest guest guest
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Nothing new

● S/370 was emulating several S/360 in parallel
● Unix process
● Filesystem with permissions

The question is the interface
● A PC
● A simplified PC
● hypercalls
● system calls
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Tons of solutions

● Virtualbox
● KVM/qemu
● Xen
● VMWare
● chroot
● LXC
● Parallels
● OpenVZ
● UML
● ...
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Contradictory qualities

Unmodified guest

Isolation

Execution speed

Flexibility
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Unmodified guest?

Modifying the kernel to adapt to virtual interface
● Xen: Executing in ring 1 instead of ring 0

– No privileged instruction
– Make hypercalls to manage page table etc.

● UML: Executing in a process
– Make system call to manage memory etc.

Special drivers for acceleration
● Virtio
● Hyper-V

Nowadays, integrated in standard distributions
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Flexibility?

Memory
● Tuning : automatic / static / on the fly
● Avoid duplicate memory pages

Disk
● Tuning : automatic / static / on the fly
● Adding disk on the flys

Network
● On the fly

Exchanging data
● Mount shared filesystem

Accounting, quotas
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Isolation

Do guests
● see files of other guests?
● see each other?
● are on the same Ethernet network?
● use the same kernel?

– beware of rogue modules and crashes
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Execution speed

CPU speed not really a problem
● Unless using total virtualization without hardware acceleration

Memory management
● Creating many processes
● Switching between processes

Disk, network
● Bandwidth
● Latency
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3 main classes
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3 main classes

Total virtualization
● KVM/qemu, Xen  HVM, VirtualBox, VMware, ...

Para-virtualization
● Xen PV, Xen PV-HVM, Hyper-V, VMware drivers, virtio

Containers
● Process, chroot, cgroups, openVZ, LXC, ...
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Total virtualization

KVM/qemu, Xen HVM, VirtualBox, VMware
● Simulate a complete PC

– BIOS, floppy, ...
– Or not : qboot

● Complex simulation
– Many CVEs

● Accelerated by hardware support
– Intel (vmx, VT-x, VT-i), AMD (svm), NPT

● A must for Windows etc.

Wake-up, neo...
● Blue pill...

WSL2 (Windows Subsystem for Linux)
● Runs a real Linux kernel, thus perfect compatibility

host

simulator

guest kernel

process
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Total virtualization summary

KVM/qemu, Xen HVM, VirtualBox, VMware
● Guest is not modified
● Not really flexible

– Removing RAM banks?
● Very isolated

– But beware of simulation bugs
● Use stubdom-dm

● Reasonable speed
– Thanks to hardware acceleration host

simulator

guest kernel

process
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Non-stubdom simulation

KVM/qemu, Xen HVM, VirtualBox, VMware
● Simulation of hardware is running inside

the host
● Often with root privileges!

● Better isolate that

host

simulator

guest kernel

process
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Stubdom simulation

Xen HVM with stubdom
● Running hardware simulator in a separate

guest
– Limit what it can do
– Isolate just like the VM is supposed to be

host

simulatorguest kernel

process



  16

Para-Virtualization

VMware drivers, virtio
● « VMware drivers »
● Often based on shared memory

– packet exchange protocol
– frontend/backend

● Speed, flexibility
● But then security concerns on the

shared-memory protocol
– e.g. virtio tries to factorize it
– POSIX syscall interface did get proposed...

host

simulator

guest kern

process

driver
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Para-Virtualization

Xen PV, Xen PV-HVM
● PV kernel

– Really knows that it is virtualized
● « Hypercalls »

– Essentially to replace privileged instructions
● CPU control, virtual memory, ...

● PV drivers

host

g. kernel

process

syscall

hypercall
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Para-Virtualization
Real Xen picture

Virtualization type 1
● A hypervisor boots before the host

– Much smaller than a full-featured kernel

host (dom0)

Hypervisor

guest (domU)

driver PVbackend PV
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Para-Virtualization
Real Xen picture

Virtualization type 1
● A hypervisor boots before the host

– Much smaller than a full-featured kernel
● Or even disaggregated

host (dom0)

Hypervisor

guest (domU)

driver PV

domD

backend PV
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Para-Virtualization summary

Xen PV, Xen PV-HVM, VMware drivers, virtio, UML
● Guest is modified

– Largely (PV), or drivers
● Very flexible

– Dynamic resizes
● Very isolated

– Separate kernels
– Interface is hypercalls

● Meant exactly for this usage

● Excellent speed
– That’s meant for it !

host

simulator

g. kernel

process
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Containers

Process, chroot, cgroups/NS, openVZ, LXC
● Process++

Varying isolation
● Filesystem space

– « private / »
● pid space
● network space
● ...
● What did we forget ?

WSL1
● Emulates the Linux system call interface

host

g. process
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Containers summary

Process, chroot, cgroups/NS, openVZ, LXC
● Unmodified guest

– As in : it’s just a normal process
● Very flexible
● More or less isolated

– Depending on the support
– Same kernel, incompatibility concerns (udev, systemd)

● Perfect speed
– Identical to a process

host

g. process
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Flexibility?
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Memory flexibility

Adding memory
● Not « that » hard

Removing memory
● Ew...
● Ballooning

host

guest

driver               
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Disk flexibility

Online resize
● Containers : ~= quotas
● Others :

– Use lvm’s lvresize on the host
– Use resize2fs inside the guest
– Seamless!
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Network flexibility

Virtual plugging
● Bridge ~= network switch
● Usual host management (bridge, VLAN, ...)

– Or openvswitch

                                                                               host

guest

eth0

br0                                 

vif0

guest

eth0

vif1

guest

eth0

                br1
vif2

eth0 eth1.20
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Hardware flexibility

● PCI passthrough
● USB passthrough
● ! Security ! (DMA, ...)

– VT-d support  (IOMMU)

guestguest

host

netboard video board
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Virtualization conclusion

All solutions try to optimize for the 4 qualities
● More or less successful
● Keep evolving

– Don’t trust what people say
● Check what you really want
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Micro-kernel-based OS
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Micro-kernel-based OS

● Micro kernel containing only the few required features
– Task switching
– Memory management
– Inter-Process communication (IPC, RPC)

● Rather than a big kernel containing all system calls

Minix, LynxOS, L4, GNU/Hurd

Will here discuss GNU/Hurd
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Micro-kernel layering

pfinet
proc

auth
ext2fs

root user

sh

cp

Kernel Tasks, memory, IPC
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Micro-kernel layering

read() is not a system call
● RPC to whatever server backs the opened file

Ditto for all POSIX functions
● Underlying RPC calls

→ Natively isolated

● Server crash? Not a problem
– « computer bought the farm » is just an error, not something-of-the-

death
● Driver isolated in its own process

– Overflows limited to itself
● Driver hung? Just kill it and let it restart
● Easier to debug/tune

– Just run gdb, gprof, ...
● Can virtualize at a very fine grain
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Neighbour Hurds

pfinet
proc

auth
ext2fs

root

cpshuser

pfinet
proc

auth
ext2fs

root

cpshuser

Kernel
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Neighbour Hurds, shared pfinet

cpsh cpsh

pfinet

Kernel

user user

proc

auth
ext2fs

root
proc

auth
ext2fs

root
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Sub-Hurd

pfinet
proc

auth
ext2fs

root

sh

cp

Kernel

user
pfinet

proc

auth
ext2fs

user/root
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Micro-kernel-based systems

Strong isolation
● By default

→ No risk of forgetting something

Didn’t expand in the industry
● But virtualization/containerization looks more and more like it
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