Virtualization, micro-kernel-based OS

Samuel Thibault <samuel.thibault@u-bordeaux.fr> https://dept-info.labri.fr/~thibault/enseignements#SecuSys

Goals

- One physical machine
 - Host
- Several services
 - Guests
- Lowering cost
- Management flexibility
- Isolation
 - More security?
 - Some people have given up trying to fix syscall security

Nothing new

- S/370 was emulating several S/360 in parallel
- Unix process
- Filesystem with permissions

The question is the interface

- A PC
- A simplified PC
- hypercalls
- system calls

Tons of solutions

- Virtualbox
- KVM/qemu
- Xen
- VMWare
- chroot
- LXC
- Parallels
- OpenVZ
- UML
- •

Contradictory qualities

Unmodified guest?

Modifying the kernel to adapt to virtual interface

- Xen: Executing in ring 1 instead of ring 0
 - No privileged instruction
 - Make hypercalls to manage page table etc.
- UML: Executing in a process
 - Make system call to manage memory etc.

Special drivers for acceleration

- Virtio
- Hyper-V

Nowadays, integrated in standard distributions

Flexibility?

Memory

- Tuning: automatic / static / on the fly
- Avoid duplicate memory pages

Disk

- Tuning: automatic / static / on the fly
- Adding disk on the flys

Network

On the fly

Exchanging data

Mount shared filesystem

Isolation

Do guests

- see files of other guests?
- see each other?
- are on the same Ethernet network?
- use the same kernel?
 - beware of rogue modules and crashes

Execution speed

CPU speed not really a problem

Unless using total virtualization without hardware acceleration

Memory management

- Creating many processes
- Switching between processes

Disk, network

- Bandwidth
- Latency

3 main classes

3 main classes

Total virtualization

KVM/qemu, Xen HVM, VirtualBox, VMware, ...

Para-virtualization

Xen PV, Xen PV-HVM, Hyper-V, VMware drivers, virtio

Containers

Process, chroot, cgroups, openVZ, LXC, ...

Total virtualization

KVM/qemu, Xen HVM, VirtualBox, VMware

- Simulate a complete PC
 - BIOS, floppy, ...
 - Or not : qboot
- Complex simulation
 - Many CVEs
- Accelerated by hardware support
 - Intel (vmx, VT-x, VT-i), AMD (svm), NPT
- A must for Windows etc.

process

guest kernel

simulator

host

Wake-up, neo...

Blue pill...

WSL2 (Windows Subsystem for Linux)

Runs a real Linux kernel, thus perfect compatibility

Total virtualization summary

KVM/qemu, Xen HVM, VirtualBox, VMware

- Guest is not modified
- Not really flexible
 - Removing RAM banks?
- Very isolated
 - But beware of simulation bugs
 - Use stubdom-dm
- Reasonable speed
 - Thanks to hardware acceleration

process

guest kernel

simulator

Non-stubdom simulation

KVM/qemu, Xen HVM, VirtualBox, VMware

- Simulation of hardware is running inside the host
- Often with root privileges!
- Better isolate that

process

guest kernel

simulator

Stubdom simulation

Xen HVM with stubdom

- Running hardware simulator in a separate guest
 - Limit what it can do
 - Isolate just like the VM is supposed to be

process
guest kernel simu

Para-Virtualization

VMware drivers, virtio

- « VMware drivers »
- Often based on shared memory
 - packet exchange protocol
 - frontend/backend
- Speed, flexibility
- But then security concerns on the shared-memory protocol
 - e.g. virtio tries to factorize it
 - POSIX syscall interface did get proposed...

Para-Virtualization

Xen PV, Xen PV-HVM

- PV kernel
 - Really knows that it is virtualized
- « Hypercalls »
 - Essentially to replace privileged instructions
 - CPU control, virtual memory, ...
- PV drivers

Para-Virtualization Real Xen picture

Virtualization type 1

- A hypervisor boots before the host
 - Much smaller than a full-featured kernel

Para-Virtualization Real Xen picture

Virtualization type 1

- A hypervisor boots before the host
 - Much smaller than a full-featured kernel
- Or even disaggregated

Para-Virtualization summary

Xen PV, Xen PV-HVM, VMware drivers, virtio, UML

- Guest is modified
 - Largely (PV), or drivers
- Very flexible
 - Dynamic resizes
- Very isolated
 - Separate kernels
 - Interface is hypercalls
 - Meant exactly for this usage
- Excellent speed
 - That's meant for it!

process

g. kernel

simulator

Containers

Process, chroot, cgroups/NS, openVZ, LXC

Process++

Varying isolation

- Filesystem space
 - « private / »
- pid space
- network space
- •
- What did we forget ?

WSL1

Emulates the Linux system call interface

g. process

Containers summary

Process, chroot, cgroups/NS, openVZ, LXC

- Unmodified guest
 - As in: it's just a normal process
- Very flexible
- More or less isolated
 - Depending on the support
 - Same kernel, incompatibility concerns (udev, systemd)
- Perfect speed
 - Identical to a process

g. process

Flexibility?

Memory flexibility

Adding memory

Not « that » hard

Removing memory

- Ew...
- Ballooning

Disk flexibility

Online resize

- Containers : ~= quotas
- Others:
 - Use lvm's lvresize on the host
 - Use resize2fs inside the guest
 - Seamless!

Network flexibility

Virtual plugging

- Bridge ~= network switch
- Usual host management (bridge, VLAN, ...)
 - Or openvswitch

Hardware flexibility

- PCI passthrough
- USB passthrough
- ! Security ! (DMA, ...)
 - VT-d support (IOMMU)

Virtualization conclusion

All solutions try to optimize for the 4 qualities

- More or less successful
- Keep evolving
 - Don't trust what people say
- Check what you really want

Micro-kernel-based OS

Micro-kernel-based OS

- Micro kernel containing only the few required features
 - Task switching
 - Memory management
 - Inter-Process communication (IPC, RPC)
- Rather than a big kernel containing all system calls

Minix, LynxOS, L4, GNU/Hurd

Will here discuss GNU/Hurd

Micro-kernel layering

Micro-kernel layering

read() is not a system call

RPC to whatever server backs the opened file

Ditto for all POSIX functions

- Underlying RPC calls
- → *Natively* isolated
 - Server crash? Not a problem
 - « computer bought the farm » is just an error, not something-of-thedeath
 - Driver isolated in its own process
 - Overflows limited to itself
 - Driver hung? Just kill it and let it restart
 - Easier to debug/tune
 - Just run gdb, gprof, ...
 - Can virtualize at a very fine grain

Neighbour Hurds

Neighbour Hurds, shared pfinet

Sub-Hurd

Micro-kernel-based systems

Strong isolation

- By default
 - → No risk of forgetting something

Didn't expand in the industry

But virtualization/containerization looks more and more like it

