Virtualization,
micro-kernel-based OS

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

Goals

* One physical machine
- Host

e Several services
- Guests

* Lowering cost guest guest guest
* Management flexibility

e |solation host

- More security?
* Some people have given up trying to fix syscall security

Nothing new

 S/370 was emulating several S/360 in parallel (707)
* Unix process

* Filesystem with permissions

The question is the interface
« APC

* A simplified PC

* hypercalls

e system calls

Tons of solutions

Virtualbox
KVM/gemu
Xen
VMWare
chroot
LXC
Parallels
OpenVZ
UML

Contradictory qualities

Unmodified guest

Flexibility

Isolation

Execution speed S

Unmodified guest?

Modifying the kernel to adapt to virtual interface

e Xen: Executing in ring 1 instead of ring 0
— No privileged instruction
- Make hypercalls to manage page table etc.

 UML: Executing in a process
- Make system call to manage memory etc.

Special drivers for acceleration
e Virtio
* Hyper-V

Nowadays, integrated in standard distributions

Flexibility?

Memory
* Tuning : automatic / static / on the fly
* Avoid duplicate memory pages

Disk
* Tuning : automatic / static / on the fly
* Adding disk on the flys

Network
* On the fly

Exchanging data
* Mount shared filesystem

Accounting, quotas

|solation

Do guests

* see files of other guests?

e see each other?

e are on the same Ethernet network?

* use the same kernel?
- beware of rogue modules and crashes

Execution speed

CPU speed not really a problem
* Unless using total virtualization without hardware acceleration

Memory management
e Creating many processes
* Switching between processes

Disk, network
 Bandwidth
* Latency

3 main classes

10

3 main classes

Total virtualization
« KVM/gemu, Xen HVM, VirtualBox, VMware, ...

Para-virtualization
 Xen PV, Xen PV-HVM, Hyper-V, VMware drivers, virtio

Containers
* Process, chroot, cgroups, openVZ, LXC, ...

11

Total virtualization

KVM/gemu, Xen HVM, VirtualBox, VMware
 Simulate a complete PC

- BIOS, floppy, ...

- Or not : gboot Process
 Complex simulation

- Many CVEs guest kernel - - "
* Accelerated by hardyvare support e T

- Intel (vmx, VT-x, VT-i), AMD (svm), NPT
* A must for Windows etc. host

Wake-up, neo...
* Blue pill...

WSL2 (Windows Subsystem for Linux)

 Runs a real Linux kernel, thus perfect compatibility 12

Total virtualization summary

KVM/gemu, Xen HVM, VirtualBox, VMware
 Guest is not modified

* Not really flexible
- Removing RAM banks? pProcess

* Very isolated

- But beware of simulation bugs
e Use stubdom-dm

 Reasonable speed
— Thanks to hardware acceleration NOSt

guest kernel - - "

simulator

13

Non-stubdom simulation

KVM/gemu, Xen HVM, VirtualBox, VMware

e Simulation of hardware is running inside
the host

» Often with root privileges! process

 Better isolate that guest kernel -

simulator

Nost

14

Stubdom simulation

Xen HVM with stubdom

* Running hardware simulator in a separate

guest
— Limit what it can do
- Isolate just like the VM is supposed to be

process

guest kernel

Simt

host

15

Para-Virtualization

VMware drivers, virtio
e « VMware drivers »

e Often based on shared memory
— packet exchange protocol process
- frontend/backend dri
+ Speed, flexibility river| | guest kem
* But then security concerns on the simulator
shared-memory protocol
- e.g. virtio tries to factorize it host

- POSIX syscall interface did get proposed...

16

Para-Virtualization

Xen PV, Xen PV-HVM

PV kernel
- Really knows that it is virtualized OIS
e « Hypercalls » t syscall
- Essentially to replace privileged instructions
« CPU control, virtual memory, ... g. kernel
* PV drivers ¢ hypercall

host

17

Para-Virtualization
Real Xen picture

Virtualization type 1

* A hypervisor boots before the host
— Much smaller than a full-featured kernel

backend PV driver PV
host (domO) guest (domU)
{ {

Hypervisor

18

Para-Virtualization
Real Xen picture

Virtualization type 1

* A hypervisor boots before the host
— Much smaller than a full-featured kernel

* Or even disaggregated

backend PV driver PV
host (domO) domD guest (domU)
\ $.

Hypervisor

19

Para-Virtualization summary

Xen PV, Xen PV-HVM, VMware drivers, virtio, UML

* Guest is modified
- Largely (PV), or drivers

* Very flexible process
- Dynamic resizes

* Very isolated g. kernel
- Separate.kernels simulator
- Interface is hypercalls
* Meant exactly for thi
eant exacltly 1or tnis usage hOSt

* Excellent speed
- That's meant for it !

20

Containers

Process, chroot, cgroups/NS, openVZ, LXC
* Process++

Varying isolation g. process

. Filesys_.tem space host
- « private / »

* pid space

* network space

What did we forget ?

WSL1
 Emulates the Linux system call interface

21

Containers summary

Process, chroot, cgroups/NS, openVZ, LXC

* Unmodified guest
— Asin : it's just a normal process

* Very flexible g. process

* More or less isolated
- Depending on the support
- Same kernel, incompatibility concerns (udev, systemd)
* Perfect speed
— ldentical to a process

host

22

Flexibility?

23

Memory flexibility

Adding memory
* Not « that » hard

Removing memory
e Ew...
* Ballooning

guest

driver

host

24

Disk flexibility

Online resize
* Containers : ~= quotas
e Others:

- Use Ivm’s Ivresize on the host
- Use resize2fs inside the guest
- Seamless!

25

Network flexibility

Virtual plugging
* Bridge ~= network switch
* Usual host management (bridge, VLAN, ...)

— Or openvswitch

guest guest guest
eth0 eth0 ethO
vifO vif1 Vif2
br0 br1 | host

ethO eth1.20

26

Hardware flexibility

* PCI passthrough
* USB passthrough
e | Security ! (DMA, ...)
- VT-d support (IOMMU)

guest guest

|| ||
host
| |

netboard video board

27

Virtualization conclusion

All solutions try to optimize for the 4 qualities
* More or less successful

* Keep evolving
- Don'’t trust what people say

* Check what you really want

28

Micro-kernel-based OS

29

Micro-kernel-based OS

* Micro kernel containing only the few required features
- Task switching
- Memory management
- Inter-Process communication (IPC, RPC)

* Rather than a big kernel containing all system calls
Minix, LynxOS, L4, GNU/Hurd

Will here discuss GNU/Hurd

30

Micro-kernel layering

100t user

Kernel Tasks, memory, IPC

31

Micro-kernel layering

read() is not a system call

 RPC to whatever server backs the opened file
Ditto for all POSIX functions

* Underlying RPC calls
— Natively isolated

e Server crash? Not a problem

- « computer bought the farm » is just an error, not something-of-the-
death

* Driver isolated in its own process
- Qverflows limited to itself

* Driver hung? Just kill it and let it restart

* Easier to debug/tune
- Just run gdb, gprof, ...

e Can virtualize at a very fine grain 32

Neighbour Hurds

user @ @ user @
N>

@@

1(0]0] 8 100t

Kernel

Neighbour Hurds, shared pfinet

Sub-Hurd

- - : user

root user/root

Kernel

Micro-kernel-based systems

Strong isolation
* By default
— No risk of forgetting something

Didn’t expand in the industry
e But virtualization/containerization looks more and more like it

36

T \SH THESE PARTS
COULD COMMUNICATE
MORE EASILY”

4.

{

“00H, THIS NEW TECHNOLOGY
MPKES IT EASY TO ENCLOSE
ARBITRARY THINGS IN

SECURE. SANDBOXES!

&,
&

“00H, THIS NEWJ TECHNOLOGY
MAKES IT EASY TO CREATE

=) | ARBITRARY CONNECTIONS,

INTEGRATING EVERYTHING!

P @) o

J

“UH-OH, THERE ARE
S0 MANY CONNECTIONS
ITS CREATING BUGS
AND SECURITY HOLES!"

37

