
 1

System Security
Capabilities / credentials

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

PAM

Linux Pluggable Authentication Modules
● Centralize authentication questions

Services
● login
● sshd
● DM

Modules
● unix
● kerberos
● ldap
● fingerprint reader
● ...

PAM

4 types of module features :
● account

– expiration, time of day, ...
● authentication

– password, token, ...
● password

– updating the password
● session

– tuning the session
● welcome banner
● hardware access
● memory quotas

 4

POSIX Capabilities

root / non-root is too binary

setuid is awful

For instance, ping :
● On old distributions (e.g. Debian 9 stretch)

$ ls -l /bin/ping
-rwsr-xr-x 1 root root 61240 Nov 10 2016 /bin/ping

● Just because it needs to send raw packets over the network
● On newer distributions (e.g. Debian 10 buster)

$ ls -l /bin/ping
-rwxr-xr-x 1 root root 76K 2 févr. 2021 /bin/ping
getcap /bin/ping
/bin/ping cap_net_raw=ep

● This is a POSIX capability

POSIX Capabilities

POSIX capability : a precise administration right, e.g. :
● CAP_CHOWN
● CAP_KILL
● CAP_NET_ADMIN
● CAP_NET_RAW
● CAP_SYS_NICE
● ... (see man 7 capabilities)

● Processes have a list of capabilities (in addition to uid/gids)
● Program binaries can have a list of capabilities

– Similar to setuid

→ Allows to fine-tune administration rights delegation

POSIX Capabilities

They are stored in the FS as extended attributes (xattr)

$ xattr /bin/ping
security.capability
$ xattr -p security.capability /bin/ping |
hexdump
01 00 00 02 00 20 00 00 00 00 00 00 00 00 00 00
00 00 00 00 0a

non-POSIX Capabilities

E.g. Capsicum

Capabilities attached to an opened file
● CAP_READ
● CAP_SEEK
● CAP_MMAP_W
● ...

Limit the system calls that one can use of it
● Could seem redundant with seccomp+bpf
● But on a real capability-based OS, one can transfer them

between programs

Passing credentials / capabilities
over

man 7 unix
man 7 cmsg

Local UNIX sockets let the kernel make a direct relation between
two processes

● Identify the other end
– (identity when the socket was created)
– SO_PEERCRED
– SO_PEERSEC

● Pass a chosen identity
– SO_PASSCRED, SCM_CREDENTIALS cmsg
– SO_PASSSEC, SCM_SECURITY cmsg

● Pass a file descriptor
– SCM_RIGHTS cmsg

More generally, Access Control

Two main models

DAC (Discretionary Access Control)
● Transferrable capabilities
● e.g. file access rights

MAC (Mandatory Access Control)
● Non-transferrable capabilities
● e.g. CPU time, disk space, memory space

LSM (Linux Security Modules)

Main goal : support Mandatory Access Control

LSM is the kernel hooks support
Then various implementations

● SELinux
● AppArmor
● SMACK
● Tomoyo
● ...

LSM hooks

Plugged in lots of system calls
● Plugged after normal error handling
● Most often plugged after the DAC

– To be able to contradict it

User-level process

sys_open

lookup inode

error checks

DAC checks

LSM hookLSM module
policy

Yes/No

access inode

LSM hooks

TODO : show vfs_mkdir

« May a subject S perform a kernel operation OP on an internal
kernel object OBJ ? »

See linux/include/linux/security.h to see all calls
● security_inode_create/mkdir/rmdir/rename/...
● security_file_ioctl/lock/fcntl/...
● security_task_setnice/setioprio/setrlimit/kill/...
● ...

LSM modules

Most often, configurable list of authorizations, stored :
● In configuration files
● In a database
● In the FS itself (as xattr)

Most often, have a learning mode
● Access violations are logged
● But they are not denied
● Useful for development to track what authorizations are

missing
● Disabled on the production system

SELinux

(From the NSA, notably)

● Execution domains on processes, files, programs
– Stored in the file inodes with xattr

● Rules between these domains

For instance, an apache and a mariadb domain
● Programs in the apache domain

– can access files in the apache domain
● Programs in the mariadb domain

– can access the database in the mariadb domain
● But no crossover

Looks like unix users ? More fine-grain

Fine-grain SELinux

The passwd command allows users to change their password
● On standard UNIX, has to write to /etc/shadow

– I.e. /usr/bin/passwd is setuid, eww
● On SELinux :

$ ls -lZ /usr/bin/passwd
-rwsr-xr-x root root
system_u:object_r:passwd_exec_t:s0 /usr/bin/passwd
$ ls -lZ /etc/shadow
-r--------. root root
system_u:object_r:shadow_t:s0 /etc/shadow
$ passwd
Changing password for user user_name. [...]

$ ps -eZ | grep passwd
unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023
13212 pts/1 00:00:00 passwd

Fine-grain SELinux

A few rules
● passwd_exec_t makes execution enter passwd_t domain
● shadow_t files can be written to by the passwd_t domain
● other domains do not have the right to use passwd_exec_t

– e.g. crond_t, apache_t, bind_t, etc.

AppArmor

Based on configuration files
● Simpler to configure
● Authorizes some programs to do some actions

● Files identified by path, not inode
● « /usr/bin/passwd is allowed to write into /etc/passwd »

Enabled by default in Debian since Buster

And also... PolicyKit

● Completely userland
– Use credential passing to identify processes

● Lets unprivileged processes discuss with privileged processes
● Authorization depending on configurable rules

● For instance, access to sound rendering daemon (pulseaudio,
pipewire)

