
 1

System Security
Rootkit, countermeasures

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

 2

● last slide of cours1

 3

rootkits

Today, we will write a rootkit
● Installs some code into privileged area
● Contains a backdoor
● Hides itself from discovery from the admin

 4

rootkits

Basic principle

● sys_call_table is the table of the implementations of the
system calls

– Indexed by system call number
– Mere function pointers to implementations

● Replace entry in sys_call_table with our own
implementation

– Usually calls the real implementation before/after doing its stuff

Thus redirecting a system call

 5

rootkits

First difficulty: addresses
● KASLR!
● Finding the address of sys_call_table

– Not trivially exposed to modules
● Finding the address of the real implementation

– Some times trivially exposed, most often not

« Trivially » solved thanks to /proc/kallsyms
● root-only
● But could be obtained on another system

 6

rootkits

Then also RO-data, we will see that later

 7

rootkits

● Visibility in lsmod
● Visibility in /lib/modules/.../
● Visibility in auto-load configuration

Hide them: redirect more system calls (read, getdents, ...)

Or load them further away
● System BIOS
● Blue pill

– virtualization
● Device firmware

 8

Kernel countermeasures

Protect memory: make most of the kernel R/O
● Code, obviously
● Methods structures: const

– file_operations, proto_ops, ...
● Anything that only needs to be written at initialization

– e.g. machine description
– post-init read-only memory
– __read_only qualifier

We’ll however see that on x86 it’s trivial to bypass this :/

 9

Kernel countermeasures

KASLR
● Just like ASLR, but for the kernel code

Then we want to hide kernel addresses
● Don’t print pointers in dmesg

– printk("%p") format is hashed
● Don’t show addresses

– /proc/kallsyms hides addresses

 10

Kernel countermeasures

Structure layout randomization
● Order structure members randomly!
● Performed by the compiler

– Thus only "random" per build
– Attacker "just" needs to use the same build

struct t {
 int x;
 int y;
}

struct t {
 int y;
 int x;
}

 11

Kernel countermeasures

Just disabling module loading?
● Would prevent « plug-and-play »... :/

At least prevent from loading unsigned modules

Blacklist modules for elder protocols/hardware
● Even if signed

Other kinds of loads: BPF filters
● E.g. for tcpdump, but also used for various subsystems
● Actually a virtual machine
● Security-sensitive
● Limited action, limited amount of computation

 12

Linux Kernel Lockdown

Prevents loading unsigned modules
Prevent various userland access to system

● I/O ports
● MSR
● ACPI
● ...

 13

Filtering system calls :
sandboxing

seccomp
● One-way switch to being able only to

– exit()
– sigreturn()
– read()
– write()

● Quite extreme :)

seccomp-bpf
● BPF filter to decide which system call is allowed
● E.g. ssh now uses it

