
 1

System security
A glimpse into the kernel

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

 2

● Polls
– OS
– C
– Linux source

 3

The kernel

Last semester, we had a look at userland security
● Goal was to become root

Now, we have a look at kernelland security
● Goal is to intrude the kernel

Two main scenarii:
● We are not root yet

– Exploit kernel vulnerabilities
● We are root

– Load into kernel and hide there

 4

What we will not talk about

Software Security like last semester
● Stack overflow
● Heap overflow
● RoP
● Hardening
● Source code analysis

Most of it is the same in kernelland as in userland

 5

Goals of the Course

● Get a view on the general structure of Linux
● Understand the main Linux protection features

– Kernel/User interaction
– Kernel-provided features for userland security

● Give a try at hacking them
– We will see just a few tricks, not complete attacks

● (Would be very technical)

 6

Overall view of the Linux kernel

/usr/src/linux$ ls
[...]
include/
lib/
arch/

init/
kernel/
mm/

block/
drivers/
fs/
net/
sound/

 7

Overall view of the Linux kernel

VFS

EXT2/3/4 NTFS ... socket

IPv4 IPv6 ...memory manager

Syscalls
sbrk open read write close

scheduler
netdevblkdev

drivers

mprotect

 8

Reading the Linux source code

Entry points
● Boot startup

– start_kernel
● System calls

– sys_foo
– e.g. sys_open, sys_read, sys_write, sys_close, etc.

● VFS calls
– e.g. vfs_open, vfs_read, vfs_write, etc.

● Filesystem/driver calls
– e.g. for ext2/3/4 : ext2_file_read_iter,
ext2_file_write_iter, etc.

– See also struct file_operations
● Socket calls

– e.g. for IPv4 : inet_accept, inet_sendmsg, inet_recvmsg, etc.
– See also struct proto_ops

 9

Objects in the kernel

Various objects (yes, like OOP)
● struct file * : an opened file
● struct sock * : an opened socket
● struct dir_context * : an opened directory
● struct dentry * : a directory entry
● struct inode * : an inode
● struct sk_buf * : a network buffer

They all point at each other... or contain each other (see
container_of to get container)

 10

Virtual memory

Reminders
● Addresses

● Most often segmentation is used only for protection bits, not
offsets

● E.g. with Linux 32bit :
– 0x00000000 - 0xbfffffff : userland
– 0xc0000000 - 0xffffffff : kernelland

● E.g. with Linux 64bit :
– 0x0000000000000000 - 0x7fffffffffff : userland
– 0xffff800000000000 - 0xffffffffffff : kernelland

segmentation page table PhysicalLinearVirtual

 11

Virtual memory

Most often, userland and kernelland share the same page table
● Makes user/kernel switch efficient

– No need to flush the TLB!
● Allows the kernel to efficiently access user data

– Just dereference user-provided pointers!
● But also dangerous, as we will see...

Kernel

User

0x00000000

0xbfffffff
0xc0000000
0xffffffff

 12

System call

What really happens on a system call?
● Userland puts parameters in registers
● Userland runs a syscall instruction
● Processor traps into the configured system call kernel entry

point
– Switch segments
– Switch privilege level
– Jump onto the handler

● Kernelland reads parameters from registers
● Kernelland checks user pointers (access_ok)
● Kernelland reads data through user pointers (get_user)
● ... actually do work...
● Kernelland writes data through user pointers (put_user)
● Kernelland writes returned value in a register.

 13

Triggering bugs

Bugs are there
● How to trigger them?

● Bogus system call
– Just call it

● Bogus hardware driver
– Buy the hardware, or tinker USB chip

● Bogus filesystem driver
– Plug a USB stick

● Bogus network stack
– Send a bogus packet

● Bogus subsystem
– Invoke it (e.g. line discipline, odd socket family)

