System security
A glimpse into the kernel

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuSys

 Polls
- 0OS
- C
- Linux source

The kernel

Last semester, we had a look at userland security

 Goal was to become root Attacker
Now, we have a look at kernelland security
* Goal is to intrude the kernel

Two main scenarii:

* We are not root yet
— Exploit kernel vulnerabilities

e We are root
- Load into kernel and hide there

What we will not talk about

Software Security like last semester
e Stack overflow

 Heap overflow

* RoP

* Hardening

e Source code analysis

Most of it is the same in kernelland as in userland

Goals of the Course

* Get a view on the general structure of Linux

* Understand the main Linux protection features
- Kernel/User interaction
- Kernel-provided features for userland security

* Give a try at hacking them

- We will see just a few tricks, not complete attacks
e (Would be very technical)

Overall view of the Linux kernel

/usr/src/linux$ 1ls

[...]

include/
lib/
arch/

init/
kernel/
mm/

block/
drivers/
fs/

net/
sound/

Overall view of the Linux kernel

sbrk mprotect open read write close
Syscalls | | | |
VFS
EXT2/3/4 NTFS e socket
y v
memory manager IPv4 IPv6
blkdev netdev
scheduler \/

drivers 7

Reading the Linux source code

Entry points

* Boot startup
— start kernel

System calls
- sys_foo

- e.0. sys_open, sys read, sys write, sys close, efc.
VFS calls
- e.0.vfs open, vfs read, vfs write, etc.

Filesystem/driver calls

- e.g.forext2/3/4 : ext2 file read iter,
ext2 file write iter, efc.

- See also struct file operations

Socket calls
- e.g.for|Pv4 : inet accept, inet sendmsg, inet recvmsg, etc.

- See also struct proto ops 8

Objects in the kernel

Various objects (yes, like OOP)
e struct file * :an opened file

e struct sock * :an opened socket

 struct dir context *:an opened directory
e struct dentry * :a directory entry

e struct inode *:aninode

 struct sk buf *:a network buffer

They all point at each other... or contain each other (see
container of to get container)

Virtual memory

Reminders
 Addresses

Virtual —* segmentation > Linear —* pagetable —*> Physical

* Most often segmentation is used only for protection bits, not
offsets
* E.g. with Linux 32bit :
- 0x00000000 - Oxbfffffff : userland
- 0xc0000000 - Oxffffffff : kernelland

* E.g. with Linux 64bit :
- 0x0000000000000000 - Ox7fffff£ff££f : userland

- Oxf£f££800000000000 - Oxffffffffffff : kernelland
10

Virtual memory

Most often, userland and kernelland share the same page table
 Makes user/kernel switch efficient
— No need to flush the TLB!

* Allows the kernel to efficiently access user data

— Just dereference user-provided pointers!
e But also dangerous, as we will see...

Oxffffffff
Kernel
0xc0000000
Oxbfffffff
User
0x00000000

11

System call

What really happens on a system call?

Userland puts parameters in registers

Userland runs a syscall instruction

Processor traps into the configured system call kernel entry
point

- Switch segments

- Switch privilege level
- Jump onto the handler

Kernelland reads parameters from registers

Kernelland checks user pointers (access ok)
Kernelland reads data through user pointers (get user)
... actually do work...

Kernelland writes data through user pointers (put_user)

Kernelland writes returned value in a register. ”

Triggering bugs

Bugs are there
* How to trigger them?

* Bogus system call
- Just call it

* Bogus hardware driver
- Buy the hardware, or tinker USB chip

* Bogus filesystem driver
- Plug a USB stick

* Bogus network stack
- Send a bogus packet

* Bogus subsystem
- Invoke it (e.g. line discipline, odd socket family)

13

