
TD 7: dynamic/static analysis

Get the TD tarball from
https://dept-info.labri.fr/~thibault/SecuLog/td7.tgz
unpack it, run make

1 Dangerous functions

Look at getpw.c which calls getpw, compile it. The linker warns that this function is dangerous, why?
Try to reduce the size and see that it segfaults on return, explain how that happens.

The gecos field is an information that users can usually change at will for their own account with the
chfn command (but that’s disabled at CREMI). Explain how that could be exploited.

man 3 mktemp and the linker say that this function is dangerous and mkstemp should be used instead,
why? Look at mktemp.c to confirm your suspicion.

2 Memory leak reporting

2.1 Definite loss

Look at test-leak.c. Try to run
cppcheck test-leak.c
See that the cppcheck static analyzer could spot one leak location, the most obvious one.
Now try
valgrind ./test-leak
Valgrind also spotted both leaks. It doesn’t enable precise tracking by default, enable it :
valgrind --leak-check=full ./test-leak
There it tells you which allocations were never freed. Notice that this is a backtrace : at the top of the trace

it shows you that it’s a malloc call which was never matched with a free, and just below it we see the
actual function that did the malloc call. This does not necessarily mean that it’s the culprit ! Check further
in the trace and in the source code to see what function was supposed to free the data. If the pointer was
transferred via global variables etc. it’d be even less clear. But at least valgrind tells in which context it was
allocated.

Also try to run
./test-leak.asan
It also spots the leak locations.
Why can such a memory leak be a security concern?

2.2 Still reachable loss

Look at test-reachable-leak.c
This is strictly speaking also an improper memory cleanup, but the pointer is still reachable, which

makes a difference. Check whether cppcheck and asan report it. Check valgrind, see that for the full
report an additional option is needed :

1

https://dept-info.labri.fr/~thibault/SecuLog/td7.tgz


valgrind --leak-check=full --show-leak-kinds=all ./test-reachable-leak

3 Uninitialized values

Look at test-uninitialized.c. Since c[0] is inside a malloc-ed area, it has an uninitialized value.
Try to run it, it will probably print foo is 0, but there is really no guarantee that it does so. Indeed, try to
first set

export MALLOC_PERTURB_=123
and run it again. See man mallopt for the details (use / to look for something in the manual).
Check whether cppcheck and asan report it. Check valgrind, see how the report looks like : it points

at where the value is actually used, not where it was allocated. As seen in the course, when f was called,
valgrind simply passed over the information that the parameter was uninitialized. Fortunately, see that
valgrind tells that --track-origins=yes can be used to track the origin (note however that this is quite
expensive).

Now look at test-uninitialized-printf.c and check what valgrind says about it. It spits out
a lot of warnings about printfs, but the real culprit is our program!

Note that beyond the problem of erratic behavior, this can potentially leak information that was pre-
viously stored in the area that was just allocated !

4 Undefined behavior

Look at test-undefined.c, it is trying to compute INT_MAX+1, which is an integer overflow and
thus undefined behavior. Try to run the program, see that it indeed produces a negative value ! Try to run
through valgrind, it does not report anything : it just sees an incl instruction, it does not have the source
code, so it does not know whether it is actually an unsigned or a int variable.

Try the usan-built test-undefined.usan, see that since it’s the compiler that injects usan checks, it
does know the type and could thus introduce the appropriate check.

5 Buffer overflow

5.1 Heap buffer overflow

Look at test-overrun.c. Try to run it, see that it just "works" fine ! But that’s only because malloc
rounds up the allocation size, and thus the overflow happens to be non-fatal by pure luck !

See how cppcheck, asan, usan, and valgrind report the error (or not). Explain closely what their
formulation mean ("0 bytes after a block of size 10 alloc'd"), and for each tool see how you
get to know the origin of the allocation.

5.2 Static buffer overflow

Look at test-overrun-data.c, it’s basically the same, but in the data segment. Why only usan and
cppcheck manage to spot the overflow?

5.3 Stack buffer overflow

Look at test-overrun-stack.c, again it’s the same, but on the stack. Why asan is now able to spot
it, but still not valgrind?

2



6 Mutex ordering (hors-programme)

Look at test-mutex-order.c, we have two threads which take the same pair of locks, but in different
order, so this can lead to a deadlock. See how tsan and

valgrind --tool=helgrind ./test-mutex-order
report it. Explain how to understand their reports. Notice that we did not have to actually get a deadlock

for them to spot the issue, the tools just happened to observe the differing order.
Notice that cppcheck is not able to spot it.

7 Race conditions (hors-programme)

Look at test-race.c, we have two threads writing to the same variable without any protection ! See
how tsan and helgrind report it as well, and how to understand their reports.

Again, cppcheck cannot spot it.

8 Odd expressions

— Look at test-expr.c, do you see the bug?
Run make clean and make test-expr , see that test-expr.c gets a build warning. Try the
program, see that it indeed misbehaves. Understand the bug, fix it. This looks quite trivial, but we
do see such bugs staying for years in e.g. Linux drivers :/

Note : in the following coverity reports, you do not need to understand what the software is about, the
snippet is enough to understand what is getting wrong. Also, the blue-background horizontal stripes are
not part of the code, they just show a scenario that the coverity tool found that raises a concern. Quite often
the very first stripes are not interesting, they for instance just mean that we don’t exit the function early.
Start looking at the salmon stripes, possibly the yellow stripes, and only if needed look back in the time at
the blue stripes.

— Look at https://scan.coverity.com/o/oss_success_stories/57
Why line 774 cannot be reached? (and thus no error ever reported !)
What are the advantages and drawbacks of using an assignment as a truth value, for instance in this
particular case?

— Look at https://scan.coverity.com/o/oss_success_stories/73 and check man assert
Why can assert be actually a dangerous thing according to this issue?
Why in this case it happens not to be a concern, but just by luck?

— Look at https://scan.coverity.com/o/oss_success_stories/86
How could the static analysis find out that there was an issue here?

— Look at https://scan.coverity.com/o/oss_success_stories/87
What is happening during execution? (no need to look back, focus on the loop itself). What is the
fix? Why did this only rarely happen to pose problem in practice? (and thus never fixed before)

9 Control flow

— Look at https://scan.coverity.com/o/oss_success_stories/59
What is the actual issue? Why is the issue reported as "dead code"?

— Look at https://scan.coverity.com/o/oss_success_stories/62
Why is the analyzer saying that the value is unused?

— Look at https://scan.coverity.com/o/oss_success_stories/97
Imagine what kinds of horrible things could happen with such a "case fallthrough".

3

https://scan.coverity.com/o/oss_success_stories/57
https://scan.coverity.com/o/oss_success_stories/73
https://scan.coverity.com/o/oss_success_stories/86
https://scan.coverity.com/o/oss_success_stories/87
https://scan.coverity.com/o/oss_success_stories/59
https://scan.coverity.com/o/oss_success_stories/62
https://scan.coverity.com/o/oss_success_stories/97


When you have time, also read the story of a whole telephone network collapse due to a misplaced
break : http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/att_collapse.html

— Look at https://scan.coverity.com/o/oss_success_stories/99
What is the terrible consequence of this error?

— Look at https://scan.coverity.com/o/oss_success_stories/93
How is it that it cannot be reached?

10 Damn pointers...

— Look at https://scan.coverity.com/o/oss_success_stories/64
How can the analyzer be sure that there is a memory leak?

— Look at https://scan.coverity.com/o/oss_success_stories/100
Why is this code wrong?

— Look at https://scan.coverity.com/o/oss_success_stories/66
What is the contradiction?

— Look at https://scan.coverity.com/o/oss_success_stories/68
Why can the analyzer spot that pos cannot be 0?
What is the difference between the current code and the proposed fix?

— Look at https://scan.coverity.com/o/oss_success_stories/51
What is the difference between the current code and the proposed fix?

— Look at https://scan.coverity.com/o/oss_success_stories/88
What was supposed to happen, and what is actually happening? What fix should be done? Why
can’t we simplify this down to
for (cur_module = wmodules; cur_module; cur_module = cur_module->next) {

cur_module->context->destroy(cur_module->data);
free(cur_module);

}
?

11 Error checking

— Look at https://scan.coverity.com/o/oss_success_stories/69
See that the tool apparently learnt from the rest of the code that it is a good idea to check the return
value.

— Look at https://scan.coverity.com/o/oss_success_stories/82
What do they mean by "tainted string"? (the dbfcmd() function sends the string as a command to
the SQL database server, and was thus explicitly marked not to be fed with tainted data)
What should be done here?

4

http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/att_collapse.html
https://scan.coverity.com/o/oss_success_stories/99
https://scan.coverity.com/o/oss_success_stories/93
https://scan.coverity.com/o/oss_success_stories/64
https://scan.coverity.com/o/oss_success_stories/100
https://scan.coverity.com/o/oss_success_stories/66
https://scan.coverity.com/o/oss_success_stories/68
https://scan.coverity.com/o/oss_success_stories/51
https://scan.coverity.com/o/oss_success_stories/88
https://scan.coverity.com/o/oss_success_stories/69
https://scan.coverity.com/o/oss_success_stories/82

	Dangerous functions
	Memory leak reporting
	Definite loss
	Still reachable loss

	Uninitialized values
	Undefined behavior
	Buffer overflow
	Heap buffer overflow
	Static buffer overflow
	Stack buffer overflow

	Mutex ordering (hors-programme)
	Race conditions (hors-programme)
	Odd expressions
	Control flow
	Damn pointers...
	Error checking

