
  1

Sécurité des logiciels

print? pwnd!
escape? pwnd!

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr


  2

Printf is evil



  3

Printf is evil

int main(void) {
  char buf[128];
  while (1) {
    fgets(buf, sizeof(buf), stdin);
    printf(buf);
  }
}

What is the bug?



  4

Printf is evil

int main(void) {
  char buf[128];
  while (1) {
    fgets(buf, sizeof(buf), stdin);
    printf("%s", buf);
  }
}

What is the bug?



  5

Printf is evil

int main(void) {
  char buf[128];
  while (1) {
    fgets(buf, sizeof(buf), stdin);
    printf(buf);
  }
}

What is the bug?



  6

Printf is evil

printf("%p %p %p %p %p\n");

Parameters do “exist”, even if none was
passed!

Leaks whatever you want from the stack

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“%p %p %p...”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  7

Printf is really evil

printf("%2$p %6$p\n");

You can even choose what to print!

Note: %2$p means:
- the second parameter after the format,
- so here it is the third parameter of printf

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“%2$p %6$p\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  8

Printf is awfully evil

printf("aa%n\n");

What the hell is that?
0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%n\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  9

Printf is awfully evil

printf("aa%n\n");

What the hell is that?

Normal use:

int n;
printf("aa%n\n", &n);

Writes in n the number of printed chars so
far, i.e. 2 here (aa).

Yes, printf can write to memory

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%n\n”

main...

&n

“3rd param”

“4th param”

ESP



  10

Printf is awfully evil

printf("aa%n\n");

Uses 2nd parameter as address where to
write 2.

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%n\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  11

Printf is awfully evil

printf("aa%4$n\n");

Uses 5th parameter as address where to
write 2.

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%4$n\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  12

Printf is awfully evil

printf("%12345p%4$n\n");

Uses 5th parameter as address where to
write 12345.

Smells really bad...

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“%12345p%4...”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  13

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%n\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP



  14

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%n\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP

buf



  15

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

I.e. we actually control what is on the
stack...

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“6th param”

“5th param”

“7th param”

“8th param”

“aa%n\n”

main...

“2nd param”

“3rd param”

“4th param”

ESP

buf



  16

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

I.e. we actually control what is on the
stack...

Let’s pass “AAAA\x01\x02\x03\x04%3$p”

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

“7th param”

“8th param”

“AAAA\x01...”

main...

“2nd param”

ESP

buf

0x00

0x70243325

0x41414141

0x04030201



  17

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

I.e. we actually control what is on the
stack...

Let’s pass “AAAA\x01\x02\x03\x04%3$p”

Prints 0x04030201

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

0x00

0x70243325

“7th param”

“8th param”

“AAAA\x01...”

main...

“2nd param”

0x41414141

0x04030201

ESP

buf



  18

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

I.e. we actually control what is on the
stack...

Let’s pass “AAAA\x01\x02\x03\x04%3$n”

Writes 8 in memory at 0x04030201!

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

0x00

0x6e243325

“7th param”

“8th param”

“AAAA\x01...”

main...

“2nd param”

0x41414141

0x04030201

ESP

buf



  19

Printf is awfully evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

I.e. we actually control what is on the
stack...

Let’s pass “%50p\x01\x02\x03\x04%3$n”

Writes 54 in memory at 0x04030201!

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

0x00

0x6e243325

“7th param”

“8th param”

“%50p\x01...”

main...

“2nd param”

0x70303525

0x04030201

ESP

buf



  20

Printf is definitely evil

Remember that our victim code was

buf[128];
fgets(buf, sizeof(buf), stdin);
printf(buf);

I.e. we actually control what is on the
stack...

Let’s pass “AAAA\x01\x02\x03\x04%3$s”

Prints string from address 0x04030201!!

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

0x00

0x73243325

“7th param”

“8th param”

“AAAA\x01...”

main...

“2nd param”

0x41414141

0x04030201

ESP

buf



  21

Printf is definitely evil

printf(s); is definitely evil, never do that

Replace with printf("%s", s);



  22

Escaping is tricky...



  23

Escaping is tricky

printf("Hello, world!\n");

What about printing the " character?



  24

Escaping is tricky

printf("Hello, world!\n");

What about printing the " character?

printf("\"Hello, world!\"\n");

\ is called an escape character.



  25

Escaping is tricky

printf("Hello, world!\n");

What are issues with escaping characters?

● Escaping itself "\\"
● Unknown escaping "\z"
● Escaping at end "\"

The January 2021 sudo exploit was an escaping-at-end issue



  26

Escaping is tricky

SMTP protocol (Simple Mail Transfer Protocol):

354 Enter message, ending with "." on a line by 
itself

But then how can the mail contain a “.” on a line by itself?
● Emit ".." on a line by itself

But then how can the mail contain a “..” on a line by itself?
● Emit "..." on a line by itself

But then how can the mail contain a “...” on a line by itself?
etc.



  27

Escaping is tricky

SMTP protocol (Simple Mail Transfer Protocol)

Its escaping looks quite lame... But it is systematic.



  28

Escaping is tricky

Web form to register for something
● First name
● Family name
● etc.

char *query;
asprintf(&query,
   "INSERT INTO people VALUES('%s', '%s')",
   first_name, last_name);
mysql_query(con, query);

What if I enter as name: Samuel'); DROP ALL TABLES;--



  29

Escaping is tricky

From https://xkcd.com/327/

https://xkcd.com/327/


  30

Escaping is tricky



  31

Escaping is tricky

Web form to register for something
● First name
● Family name
● etc.

printf("\\begin{description}\n");
printf("\\item[First name]: %s\n", first_name);
printf("\\item[Last name]: %s\n", last_name);
printf("\\end{description}\n");

Which characters have some meaning in TeX??
#$%&\^_{}~
Also @ if \makeatletter is used



  32

Escaping is tricky

Web form to register for something
● First name
● Family name
● etc.

And then used on a webforum
● Avoid html tags etc.



  33

Text is tricky



  34

Text is tricky



  35

Text is tricky

Unicode has
● Plain letters: A
● Ligatures: f i -> fi
● Characters with double-spacing: ideograms
● Characters with no space:

– Zero-Width Space (U+200B)
– Writing direction: Left-to-Right, Right-to-Left

● Combining characters: e + U+0301 → é

https://www.youtube.com/watch?v=jC4NNUYIIdM 

https://www.youtube.com/watch?v=jC4NNUYIIdM


  36

Text is tricky

Fortunately Unicode does not have
● An embedded interpreter
● Yes, it got proposed...



  37

Implementation-defined /
Undefined /
Unspecified
behaviors



  38

Odd behaviors

From C99:
Implementation-defined behavior

● unspecified behavior where each implementation documents 
how the choice is made

Undefined behavior
● behavior, upon use of a nonportable or erroneous program 

construct or of erroneous data, for which this International 
Standard imposes no requirements

Unspecified behavior
● use of an unspecified value, or other behavior where this 

International Standard provides two or more possibilities and 
imposes no further requirements on which is chosen in any 
instance.



  39

Odd behaviors

Put another way:

Implementation-defined behavior
● can be anything, but at least sane, and stable.

Undefined behavior
● can be anything. Including insane such as eating your disk.

Unspecified behavior
● can be anything among a few specified sane things, and 

stable.



  40

Odd behaviors

int x = -1;
int y = x >> 2;

int x = 32;
int y = 1 << x;

int x = 0x7fffffff;
x++;

f(printf("a"),
  printf("b"));

printf("%d %d\n",
       x++, x++);

implementation-defined

undefined

undefined

unspecified

undefined



  41

“On x86 the add instruction will be used for signed add. This has 
two’s complement behavior on overflow. I’ll thus get two’s 
complement on int”

“Somebody told me that in basketball you can’t hold the ball and 
run. But I tried it and it worked. He doesn’t actually know 
basketball...”

In 2010, more than half of the SPECINT2006 benchmarks had 
some integer undefined behavior.



  42

Why such odd behaviors?

Performance

Gives freedom to compiler to optimize code

int i;
for (i = 1; i <= n; i++) { ... }

will iterate exactly n times.

And n equal to INT_MAX is *not* supposed to happen



  43

Why such odd behaviors?

Compilers tend to use this more and more
● Beware of that!!

e.g. memcpy vs memmove
● Optimization of memcpy in glibc broke bogus usage
● glibc had to keep a compatibility symbol...

-fsanitize=undefined
● We’ll discuss more of this in the coming weeks



  44

Do other languages do better?

They try to, e.g. Rust
● But still bugs: “I-unsound” bugs
● Poses optimization concerns
● Or runtime-checks that add overhead


