
 1

Sécurité des logiciels

NX? Not on the stack? Still pwnd!

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

 2

Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack
● Known position

0x0fac

0x0fac

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4

0x0fac

...

0x0fac

0x0fac
0x0fac
0x0fac

shell code

0x0fac

0x0fac

0x0fac

0x0fac

 3

Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack
● Known position

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

0x0fac

0x0fac

0x0fac

0x0fac

0x0fac
0x0fac
0x0fac

shell code

0x0fac

0x0fac

0x0fac

 4

Not executable? Still pwnd!

How to execute stuff
without being executable?

Remember what our shell code was:
Basically
execve(“/bin/sh”, {“/bin/sh”, NULL}, {NULL});

Do we really need to write code for this?

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

0x0fac

0x0fac

0x0fac

0x0fac

0x0fac
0x0fac
0x0fac

shell code

0x0fac

0x0fac

0x0fac

 5

Not executable? Still pwnd!

How to execute stuff
without being executable?

Remember what our shell code was:
Basically
execve(“/bin/sh”, {“/bin/sh”, NULL}, {NULL});

Do we really need to write code for this?

What if we just ret to execve?

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

execve

...

...

...

...

...

...
ESP

 6

Not executable? Still pwnd!

How to execute stuff
without being executable?

Remember what our shell code was:
Basically
execve(“/bin/sh”, {“/bin/sh”, NULL}, {NULL});

Do we really need to write code for this?

What if we just ret to execve?

Result of ret to execve

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

execve

ESP

 7

Not executable? Still pwnd!

How to execute stuff
without being executable?

Remember what our shell code was:
Basically
execve(“/bin/sh”, {“/bin/sh”, NULL}, {NULL});

Do we really need to write code for this?

What if we just ret to execve?

Result of ret to execve

So we have to set parameters accordingly

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

0x0fac

execve

0
0x0fac
/bin/sh

0x0fb4

0x0fb8

ESP

 8

Not executable? Still pwnd!

How to execute stuff
without being executable?

Overflow exactly like this!

Ret-into-libc hack

What if we want to do more than just one
system call?

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

0x0fac

...

execve

...

...
0

0x0fac
/bin/sh

...

0x0fb4

0x0fb8

 9

Not executable? Still pwnd!

How to execute stuff
without being executable?

Overflow exactly like this!

Ret-into-libc hack

What if we want to do more than just one
system call?

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

0x0fac

!!!

execve

...

...
0

0x0fac
/bin/sh

...

0x0fb4

0x0fb8

 10

Not executable? Still pwnd!

How to execute stuff
without being executable?

A second chance...

First “return to” foo

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

...

bar

foo

...

...

...

...

...

...

...

...

ESP

 11

Not executable? Still pwnd!

How to execute stuff
without being executable?

A second chance...

First “return to” foo
Now in foo, then “return to” bar

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

...

bar

foo

...

...

...

...

...

...

...

...

ESP

 12

Not executable? Still pwnd!

How to execute stuff
without being executable?

A second chance...

First “return to” foo
Now in foo, then “return to” bar
Now in bar

Err, but then bar’s parameters need to
be almost the same as foo’s...

But bar does not have to be a
proper function!

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

...

bar

foo

...

...

...

...

...

...

...

...

ESP

 13

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

A lot of glibc functions end with cleaning
the stack, e.g.:

bar:
addl $12,%esp
ret

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

bar

foo

...

...

...

...

...

...

...

...

ESP

 14

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

A lot of glibc functions end with cleaning
the stack, e.g.:

bar:
addl $12,%esp
ret

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

...

...

...

...

...

bar

foo

...

...

...

ESP

 15

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

A lot of glibc functions end with cleaning
the stack, e.g.:

bar:
addl $12,%esp
ret

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

...

...

...

bar

foo

...

...

...

...

...

ESP

 16

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

A lot of glibc functions end with cleaning
the stack, e.g.:

bar:
addl $12,%esp
ret

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

...

...

...

bar

foo

...

...

...

...

...

ESP

 17

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

42

sp_lift_12

creat

...

exit

arg1

arg3

arg2

...

...

ESP

 18

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc
Now in creat, ..., returns to sp_lift_12

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

42

sp_lift_12

creat

...

exit

arg1

arg3

arg2

...

...

ESP

 19

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc
Now in creat, ..., returns to sp_lift_12
Now in sp_lift, cleans stack

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

42

sp_lift_12

creat

...

exit

arg1

arg3

arg2

...

...

ESP

 20

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc
Now in creat, ..., returns to sp_lift_12
Now in sp_lift, cleans stack
Stack cleaned, returns to exit

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

42

sp_lift_12

creat

...

exit

arg1

arg3

arg2

...

...

ESP

 21

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc
Now in creat, ..., returns to sp_lift_12
Now in sp_lift, cleans stack
Stack cleaned, returns to exit
Now in exit, exits nicely
pwnd!

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

42

sp_lift_12

creat

...

exit

arg1

arg3

arg2

...

...

ESP

 22

Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

● Call chain can be arbitrarily long
● Just need to find in libc what you need

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

42

sp_lift_12

creat

...

exit

arg1

arg3

arg2

...

...

ESP

 23

Not executable? Still pwnd!

What is the basic problem?

We can overflow
● from a data buffer
● into a control area

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac

0x0fac

!!!

execve

...

...
0

0x0fac
/bin/sh

...

0x0fb4

0x0fb8

 24

Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack heap
● Known position

 25

Heap overflow?

int litentier(void) {
 int i;
 char buf[64];

 printf("> ");
 fflush(stdout);

 gets(buf);
 i=atoi(buf);

 return i;
}

 26

Heap overflow?

int litentier(void) {
 int i;
 char *buf = malloc(64);

 printf("> ");
 fflush(stdout);

 gets(buf);
 i=atoi(buf);
 free(buf);
 return i;
}
No way to overflow into the stack
Something else?

 27

Heap overflow?

Heap structure (simplified)

When you call malloc three times
data1

data2

data3

 28

Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers

data1

data2

data3

data4

data0

 29

Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers
Which allow to jump between allocations:

● BK (back)
● FD (forward)

data1

data2

data3

FD
BK

BK
FD

FD
BK

BK
FD

data4

data0

 30

Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers
Which allow to jump between allocations:

● BK (back)
● FD (forward)

Now free(data2)
● Have to update BK/FD

data1

data3

BK
FD

FD
BK

BK
FD

data4

data0

 31

Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers
Which allow to jump between allocations:

● BK (back)
● FD (forward)

Now free(data2)
● Have to update BK/FD

data1

data3

BK
FD

FD
BK

BK
FD

data4

data0

 32

Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers
Which allow to jump between allocations:

● BK (back)
● FD (forward)

Now free(data2)
● Have to update BK/FD

BK = data2->BK;
FD = data2->FD;
BK->FD = FD;
FD->BK = BK;

data1

data2

data3

FD
BK

BK
FD

FD
BK

BK
FD

data4

data0

 33

Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
● BK->FD = FD;
● FD->BK = BK;

data1

data2

data3

FD
BK

BK
FD

FD
BK

BK
FD

data4

data0

 34

Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
● BK->FD = FD;
● FD->BK = BK;

Now, what if I overflow data1?
● I can choose data2’s BK at will
● I can choose data2’s FD at will

...

...

...

data2

data3

FD
BK

BK
FD

FD
BK

BK
FD

data4

data0

 35

Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
● BK->FD = FD;
● FD->BK = BK;

Now, what if I overflow data1?
● I can choose data2’s BK at will
● I can choose data2’s FD at will

...

...

...

data2

data3

FD
BK

BK
FD

FD
BK

BK
FD

data4

data0

 36

Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
● BK->FD = FD;
● FD->BK = BK;

Now, what if I overflow data1?
● I can choose data2’s BK at will
● I can choose data2’s FD at will

In the end, I can divert the control in the stack

 37

Countermeasures

Libc checks for coherency of headers
● More expensive free

Static code analysis / compiler-provided information
● Check for array bounds

 38

Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack
● Known position

– Next time!

