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Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack
● Known position
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Not executable? Still pwnd!

How to execute stuff
without being executable?

Remember what our shell code was:
Basically
execve(“/bin/sh”, {“/bin/sh”, NULL}, {NULL});

Do we really need to write code for this?
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without being executable?
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Not executable? Still pwnd!

How to execute stuff
without being executable?

Remember what our shell code was:
Basically
execve(“/bin/sh”, {“/bin/sh”, NULL}, {NULL});

Do we really need to write code for this?

What if we just ret to execve?

Result of ret to execve

So we have to set parameters accordingly
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Not executable? Still pwnd!

How to execute stuff
without being executable?

Overflow exactly like this!

Ret-into-libc hack

What if we want to do more than just one
system call?
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Not executable? Still pwnd!

How to execute stuff
without being executable?

A second chance...

First “return to” foo

0x1000
0x0ffc
0x0ff8
0x0ff4
0x0ff0
0x0fec
0x0fe8
0x0fe4
...

0x0fac ......

...

bar

foo

...

...

...

...

...

...

...

...

ESP



  11

Not executable? Still pwnd!

How to execute stuff
without being executable?

A second chance...
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Not executable? Still pwnd!

How to execute stuff
without being executable?

A second chance...

First “return to” foo
Now in foo, then “return to” bar
Now in bar

Err, but then bar’s parameters need to
be almost the same as foo’s...

But bar does not have to be a
proper function!
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Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

A lot of glibc functions end with cleaning
the stack, e.g.:

bar:
addl $12,%esp
ret
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Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc
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Not executable? Still pwnd!
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without being executable?

SP lifting hack, complete story:

First ret-into-libc
Now in creat, ..., returns to sp_lift_12
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Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack, complete story:

First ret-into-libc
Now in creat, ..., returns to sp_lift_12
Now in sp_lift, cleans stack
Stack cleaned, returns to exit
Now in exit, exits nicely
pwnd!
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Not executable? Still pwnd!

How to execute stuff
without being executable?

SP lifting hack

● Call chain can be arbitrarily long
● Just need to find in libc what you need
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Not executable? Still pwnd!

What is the basic problem?

We can overflow
● from a data buffer
● into a control area
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Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack heap
● Known position
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Heap overflow?

int litentier(void) {
  int i;
  char buf[64];

  printf("> ");
  fflush(stdout);

  gets(buf);
  i=atoi(buf);

  return i;
}
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Heap overflow?

int litentier(void) {
  int i;
  char *buf = malloc(64);

  printf("> ");
  fflush(stdout);

  gets(buf);
  i=atoi(buf);
  free(buf);
  return i;
}
No way to overflow into the stack
Something else?
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Heap overflow?

Heap structure (simplified)

When you call malloc three times
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Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers
Which allow to jump between allocations:

● BK (back)
● FD (forward)

Now free(data2)
● Have to update BK/FD
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FD = data2->FD;
BK->FD = FD;
FD->BK = BK;
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Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
● BK->FD = FD;
● FD->BK = BK;
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Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
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Heap overflow?
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Heap overflow?

So basically free(data2) does
● BK = data2->BK;
● FD = data2->FD;
● BK->FD = FD;
● FD->BK = BK;

Now, what if I overflow data1?
● I can choose data2’s BK at will
● I can choose data2’s FD at will

In the end, I can divert the control in the stack
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Countermeasures

Libc checks for coherency of headers
● More expensive free

Static code analysis / compiler-provided information
● Check for array bounds
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Stack overflow exploit needs...

Stack overflow exploit needs
● Executable stack
● Buffer on the stack
● Known position

– Next time!


