Seécurité des logiciels

NX? Not on the stack? Still pwnd!

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

Stack overflow exploit needs...

Stack overflow exploit needs

0x1000
e Executable stack OXOff OxOfac
C
o Buffer on the stack * OxOfac
« Known position 0x0LL8 Ox0fac
0x0ff4
Ox0E£ED OxOfac
o0 Fec
Ox0fad OxOfac
Ox0fad OxOfac
OxOfac
OxOfac
OxOfac
OxDEac shell code

Stack overflow exploit needs...

Stack overflow exploit needs

0x1000
e Executable stack ox0rs 0xOfac
. X C
Buffer on thg stack OxOfac
 Known position 0x0££8 00
0x0£f4 xuvtac
00 ££0 OxOfac
ox0fec
0x0fa8 OxOfac
0x0fed OxOfac
OxOfac
OxOfac
OxOfac
0x0fac

Not executable? Still pwnd!

How to execute stuff

without being executable? g:zzzz OxOfac
OXOf
Remember what our shell code was: 0x0££8 Xae
Basically 0x0££4 0xOfac
execve(“/bin/sh”, {¥/bin/sh”, NULL}, {NULL}); oxoffo OxOfac

0x0fec

Do we really need to write code for this? OxOfac
0x0fe8

0x0fe4 Ox0fac

OxOfac

OxOfac

OxOfac
O0x0fac

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000

0xO0ffc
Remember what our shell code was: 0x0£f£8
Basically 0x0££4
execve(“/bin/sh”, {*/bin/sh”, NULL}, {NULL}); oxo£fo0

ESP » 0xOfec

. . f?
Do we really need to write code for this” 0x0fe8

0x0fe4

What if we just ret to execve?

O0x0fac

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
0x0ffc
Remember what our shell code was: 0x0f£f8
Basically 0x0££4
execve(“/bin/sh’, {*/bin/sh”, NULL}, {NULLYESoze; NN
0x0fec execve
Do we really need to write code for this? Ox0£as
0x0fe4

What if we just ret to execve?

Result of ret to execve

O0x0fac

Not executable? Still pwnd!

How to execute stuff

- i) 0x1000
without being executable” 0x0fb8 |
0xO0ffc
0x0fb4
Remember what our shell code was: 0x0££8
Basically 0x0££4 Ox0fac
execve(“/bin/sh”, {*/bin/sh”, NULL}, {NULL})E¥xo£+0 _
0xO0fec execve
Do we really need to write code for this?
0x0fe8
. . 0x0fed
What if we just ret to execve? e
0 -
OxOfac =
Result of ret to execve _ bin/eh
0xO0fac

So we have to set parameters accordingly e o 7

Not executable? Still pwnd!

How to execute stuff

' i 0x1000
without being executable? X 0x0fb8 |
0xO0ffc
: : 0x0fb4
Overflow exactly like this! 0x0f£8
Ox0fFf4 OxOfac
Ret-into-libc hack 0x0££0
_ . OxOfec
What if we want to do more than just one Ox0£as
system call?
0x0fe4
-
OxOfac
» /bin/sh <

O0x0fac

Not executable? Still pwnd!

How to execute stuff

' ' 0x1000
without being executable? 0x0fb8 |
0xO0ffc
: : 0x0fb4
Overflow exactly like this! 0x0f£8
Ox0fFf4 OxOfac
Ret-into-libc hack 0x0££0 !!!
_ . OxOfec
What if we want to do more than just one Ox0£as
system call?
0x0fe4
-
OxOfac
» /bin/sh <

O0x0fac

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
Ox0ffc

A second chance... 0x0ff8
Ox0ff4

First “return to” foo 0x0££0 bar

E%{O fec foo

O0x0fe8

0x0fe4

O0x0fac

10

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
Ox0ffc

A second chance... 0x0ff8
Ox0ff4

First “return to” foo ESxos£0 bar
Now in foo, then “return to” bar Ox0fec foo

O0x0fe8

0x0fe4

O0x0fac

11

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
0x0ffc
A second chance... 0x0££8
ESRozes TN

First “return to” foo 0x0££0 bar
Now !n foo, then “return to” bar 0x0fec foo
Now in bar 0x0fas

, 0x0fed
Err, but then bar’s parameters need to e
be almost the same as foo’s...

But bar does not have to be a Ox0fac
proper function! .

12

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
0x0ffc
SP lifting hack 0X0££8
0x0ff4
A lot of glibc functions end with cleaning 0x0££0
the stack, e.g.: 0x0fec
Edx0ze8
bar: bar
addl $12,%esp 0x0fed f
oo
ret
0x0fac

13

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
0x0ffc
SP lifting hack 0X0££8
0x0ff4
A lot of glibc functions end with cleaning 0x0££0
the stack, e.g.: 0x0fec
Ex0zed

bar: bar
a 0x0fe4

addl $12,%esp P

ret

0x0fac

14

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
0x0ffc

SP lifting hack 0x0££8

ESxof£d -

A lot of glibc functions end with cleaning 0X0££0
the stack, e.g.: 0x0fec
. 0x0fe8

ar: bar
N 0x0fe4

addl $12,%esp P

ret

0x0fac

15

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000
0x0ffc
>
SP lifting hack Exoess
0x0ff4
A lot of glibc functions end with cleaning 0x0££0
the stack, e.g.: 0x0fec
bar: 0x0fe8
o 0x0fe4 bar
addl $12,%esp f
(o]0
ret
0xOfac

16

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000 15
0x0ffc

SP lifting hack, complete story: 0x0££8 |
0x0££4 2!

First ret-into-libc 0x0££0 arg3
0xOfec arg2
0x0fe8 ¢
0x0fed sp_lift_ 12

esp >

0x0fac

17

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000 15
0x0ffc
SP lifting hack, complete story: 0x0££8 |
0x0££4 exit
First ret-into-libc 0x0££0 arg3
Now in creat, ..., returns to sp_lift_12 0x0fec arg2
0x0fe8 arg
ESRo0fel sp_lift_ 12
creat
0xOfac

18

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000 45
0x0ffc
SP lifting hack, complete story: 0x0££8 _
0x0££4 exit
First ret-into-libc 0x0££0 arg3
Now in creat, ..., returns to sp_lift_12 0x0fec arg2
—»
Now in sp_lift, cleans stack ESP e arg
0x0fed sp_lift 12
creat
0x0fac

19

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000 1
0x0ffc
SP lifting hack, complete story: 0x0££f8
4> o
Eoeed
First ret-into-libc 0x0££0 arg3
Now n crea_t, ..., returns to sp_lift_12 0x0fec arg2
Now in sp_lift, cleans stack | 0x0£as arg
Stack cleaned, returns to exit -
sp_lift 12
0x0fe4
creat
0xO0fac

20

Not executable? Still pwnd!

How to execute stuff

without being executable? 0x1000 1
0x0ffc
" ESE0zc5 TR
SP lifting hack, complete story: x0££8 |
0x0££4 exit
First ret-into-libc 0x0££0 arg3
Now n crea_t, ..., returns to sp_lift_12 0x0fec arg2
Now in sp_lift, cleans stack | 0x0£as arg
Stack cleaned, returns to exit sp_lift 12
. : . . 0x0fe4 - =
Now in exit, exits nicely creat
pwnd!
OxOfac

21

Not executable? Still pwnd!

How to execute stuff
without being executable? 0x1000

42

0x0ffc
t Froc:> I

SP lifting hack Yxozes _
0x0££4 exit

e Call chain can be arbitrarily long 0x0££0 arg3

* Just need to find in libc what you need . pfec arg2
0x0fe8 arg1
0x0fed sp_lift 12

creat

0xO0fac

22

Not executable? Still pwnd!

What is the basic problem?

0x1000
OxO0EE 0x0fb8 —
We can overflow x0trc x0T
 from a data buffer 0x0f£f8 o
. Xurac
* into a control area 0x0ff4
i
0x0££0 e
0xO0fec
0x0fe8
0x0fe4
<
Ox0Ofac =
0x0fac » /bin/sh =

23

Stack overflow exploit needs...

Stack overflow exploit needs Stack rwex
| |
* Executable stack '
 Buffer on the_ staek heap Librazies.
* Known position
mmaps...
| * |
Heap ' rw—
Bss rw—
Data rw—
R/O Data r—
Text r—-x

‘O—b

Heap overflow?

int litentier (void) { Stack rwolx
int i; 3

char buf[64]; Libraries...
printf ("> ") : mmaps...
fflush (stdout) ; \
Heap | r'w—
gets (buf) ;
i=atoi (buf) ; Bss o
Data r'w—
return i;
R/O Data r——
}
Text r—-x

‘o——-

Heap overflow?

int litentier (void) { Stack WX
|

int 1; Y

char *buf = malloc(64) ; Libraries...
brintf ("> ") ; mmaps...
fflush (stdout) ; \

Heap ' ‘IW—

gets (buf) ;
i=atoi (buf) ; Bss ™
free (buf) ;

Data r'w—

return 1i;
} R/O Data r——
No way to overflow into the stack Text r—x

‘o——-

Something else?

Heap overflow?

Heap structure (simplified)

When you call malloc three times
data1

data2

data3

27

Heap overflow?

Heap structure (simplified)

When you call malloc three times

There are actually some additional headers

datav

data1

data2

data3

28

datad

Heap overflow?

datauv
Heap structure (simplified) J
-

When you call malloc three times

data1

There are actually some additional headers
Which allow to jump between allocations:
 BK (back)
 FD (forward)

Heap overflow?

datauv
Heap structure (simplified) J

When you call malloc three times b
data1

There are actually some additional headers —

Which allow to jump between allocations: 'y 1y

 BK (back)
 FD (forward)

Now free(data2)
 Have to update BK/FD

Heap overflow?

datauv
Heap structure (simplified) ;

. -
When you call malloc three times

data1

There are actually some additional headers
Which allow to jump between allocations:
+ BK (back) v
 FD (forward)

Now free(data2) ;-;

 Have to update BK/FD data3

[H31
datad

Heap overflow?

datav

Heap structure (simplified)

When you call malloc three times b
data1
There are actually some additional headers -
Which allow to jump between allocations: 'y <y
 BK (back) datas

 FD (forward)

Now free(data2) _;-;

 Have to update BK/FD .
ata3
BK = data2->BK;

FD = data2->FD:;
FD->BK = BK; |-
datad

Heap overflow?

datav

So basically free(data2) does
e BK = data2->BK;
e FD = data2->FD;
» BK->FD = FD; data

| . |

data2

O

data3

[H33
datad

-

\J

Heap overflow?

datauv
So basically free(data2) does
e BK = data2->BK;

e FD = data2->FD;
« BK->FD = FD;
« FD->BK = BK;

Now, what if | overflow data1?
| can choose data2’s BK at will
| can choose data2’s FD at will

Heap overflow?

datauv
So basically free(data2) does
e BK = data2->BK;

e FD = data2->FD;
 BK->FD =FD;
 FD->BK = BK;

Now, what if | overflow data1?
| can choose data2’s BK at will
| can choose data2’s FD at will

Heap overflow?

So basically free(data2) does Stack

rw—/x

e BK = data2->BK;
* FD = data2->FD; Libraries...
 BK->FD =FD;
» FD->BK = BK; i
Now, what if | overflow data1? — + —
| can choose data2’s BK at will - ™
| can choose data2’s FD at will Bss rw—

Data r'w—
In the end, | can divert the control in the stack

R/O Data r—

T Text r—x
0

Countermeasures

Libc checks for coherency of headers
* More expensive free

Static code analysis / compiler-provided information
e Check for array bounds

37

Stack overflow exploit needs...

Stack overflow exploit needs Stack ______rw-/x

* Executable stack '

 Buffer on the stack Libran

. arices...
 Known position
- Next time! mmaps...
\ * |

Heap ' rw—
Bss rw—
Data rw—
R/O Data r—
Text r—x

‘O—b

