
 1

Sécurité logicielle

Assembly language, part 1

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
Pieces from Emmanuel Fleury <emmanuel.fleury@u-bordeaux.fr>

CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr
mailto:emmanuel.fleury@u-bordeaux.fr

 2

Different programming levels

● High-level languages (No Code, Python, Java, C++, Go, rust,
…)

– Abstraction (lambda functions, objects, lists, …)
● Low-level language (C)

– Pointers!
● Assembly

– Close to the processor
– Still readable by a human

● Machine language
– The bytes as read by the processor

 3

Compiling C

gcc test.c -o test

Actually 4 steps
● Preprocessing : cpp test.c -o test2.c

– Still C language, but includes, macros etc. expanded
● C compilation : cc1 test2.c -o test.s

– Now assembly langage
● Assembly compilation : as test.s -o test.o -c

– Now machine langage, that the processor would be able to run
● Link : ld […] Scrt1.o crti.o crtbeginS.o test.o
-lc crtendS.o crtn.o -o test

– Now a real program that one can run from the shell

And then actual execution
● Dynamic link : /lib64/ld-linux-x86-64.so.2 ./test

 4

The gory details

● cpp test.c -o test2.c
● /usr/lib/gcc/x86_64-linux-gnu/10/cc1 test2.c
-o test.s

● as test.s -o test.o
● ld -dynamic-linker /lib64/ld-linux-x86-64.so.2
/usr/lib/x86_64-linux-gnu/Scrt1.o
/usr/lib/x86_64-linux-gnu/crti.o
/usr/lib/gcc/x86_64-linux-gnu/10/crtbeginS.o
test.o -lc
/usr/lib/gcc/x86_64-linux-gnu/10/crtendS.o
/usr/lib/x86_64-linux-gnu/crtn.o -o test

 5

Why we care about assembly

5 steps for bugs
● Preprocessing

– Usually fine
– Though there are sometimes surprises with macro parameter names

● C Compilation
– That’s where all the semantic translation lies
– If you miswrote your program, that’s when the compiler will misinterpret

everything
● Assembly compilation

– Essentially litteral translation
● Link

– Some horrible things can hide here, e.g. symbol conflict

● Dynamic link
– We have seen LD_LIBRARY_PATH, LD_PRELOAD,

symbol interposition

 6

Why we care about assembly

Assembly is what the processor will understand in the end

And it is still (mostly) human-readable, even if
● Elementary
● Very verbose
● Tedious

Not that seldomly the only way to understand
what the hell is happening

 7

Why we care about assembly

What does this do?

unsigned x = 0;
while (x < -1) {
 printf(“ok\n”);
}

An infinite loop… Yes!
Because -1 implicitly casted to unsigned, thus 4294967295
Always use -Wall -Wextra

https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat

 8

What is assembly?

The core of computation
● Not as hardcore as a Turing machine

but close (RAM machine from Cook & Reckhow)
● Von Neumann architecture: processor keeps repeating this:

– Read instruction from memory at address given by Program Counter
– Read operands (from memory or register)
– Compute
– Write result (to memory or register)
– Update Program Counter

 9

What is assembly?

Memory

Registers

ALU

Instruction Text

Data,
Heap,
Stack

 10

What is assembly?

Unstructured programming language:
● Trivial expressions (arithmetic, bitwise, logic)
● Read/write over memory
● Jump operators
● Tests

No
● Function calls (argument passing is done manually)
● Structured loop (do this manually)
● Structured scope (all variables and functions are global)

 11

What is assembly?

Put another way, can be thought as C with
● Only global functions and variables
● Only if (x > 0) goto foo; (or >=, <, <=, ==, !=)
● Assignments with only one operation

int abs(int j) {
 if (j >= 0) goto end;
 j = -j;
end:
 return j;
}

 12

What is assembly?

Put another way, can be thought as C with
● Only global functions and variables
● Only if (x > 0) goto foo; (or >=, <, <=, ==, !=)
● Assignments with only one operation
int r, i, t;
int factorial(int j) {
 r = 1; // result
 i = 2; // counter
loop:
 t = i – j;
 if (t > 0) goto end; // if i > j
 r = r * i;
 i += 1;
 goto loop
end:
 return r;
}

 13

Assembly languages

Basically as many as processors, most common:
● Intel IA-32 (aka x86, aka i386, aka x32 (but not only :/))
● AMD/Intel x86-64 (aka amd64, aka IA-32e, aka x64)
● Accorn ARM
● RISC-V
● Motorola PowerPC

 14

Intel processors

History... Yes, it’s important for understanding the mess of x86
assembly language

● Intel 4004 (1971): First commercial complete microprocessor!
– 4bit registers, 640B addressable memory, 740kHz

● Intel 8008 (1972):
– 8bit registers, 16kB addressable memory, 800kHz

● Intel 8086 (1978)
– 16bit registers, 1MB addressable memory, 10MHz

● Intel 80386 (1985): Virtual memory, floating point
– 32bit registers, 4GB addressable memory, 16MHz

● Intel Pentium MMX (1997): parallel floating point
– 32bit registers, 4GB addressable memory, 166MHz

● AMD Opteron (2003): 64bit
– 64bit registers, 1TB addressable memory, 1.4GHz

 15

Vocabulary

C: t[i]++;

Assembly: addl $1, t(%eax,4)

addl is the mnemonic, here “add long”
$1 and t(%eax,4) are the operands
$1 is an immediate
%eax is a register
t is a reference
4 is a multiplicator
t(%eax,4) is a memory location, at address t + %eax * 4

Operand order: source, destination (AT&T syntax)
(Intel uses the converse :/)

 16

Vocabulary

● Mnemonic
– Instruction name

● Operand
– Argument of the instruction

● Immediate:
– Constant value encoded along the instruction

● Register:
– Storage inside the processor

● Memory location:
– Storage outside the processor (RAM)

● Reference:
– Refers to a label/symbol that designates an address in memory

● Instruction set:
– Set of the instructions that the processor understands

● Opcode (Operation Code):
– Instruction as encoded in binary in machine language

