
 1

Sécurité des logiciels

Quelques notions de sécurité système
Samuel Thibault <samuel.thibault@u-bordeaux.fr>

CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

 2

Permissions

 3

Unix users

uid (User identity)
● Integer that represents a user
● By convention, 0 is for root

gid (Group identity)
● Integer that represents a group of users

$ id
uid=16595(sathibau) gid=1111(enseignant)
groups=1111(enseignant),1113(runtime),
1203(employee),1027(researcher),1211(teacher), …
$ id aguermou
uid=14925(aguermou) gid=1111(enseignant)
groups=1111(enseignant),
1203(employee),1027(researcher),1211(teacher), …

 4

Unix permissions

Permissions : rwx
● r : Read (4)
● w : Write (2)
● x : eXecute (1)

Permission triplet : ugo
● u : User
● g : Group
● o : Other

u+rwx,g+rx,o+rx rwx r-x r-x 755
u+rw,g+r,o+r rw- r-- r-- 644
u+rw,g+r rw- r-- --- 640

$ ls -ldn ~sathibau
drwxr-x--x 16595 1111 /net/cremi/sathibau

 5

Changing permissions

chmod 755 ~/tmp
chmod g+rx,o+rx ~/tmp

chmod 700 ~/secret
chmod g-rwx,o-rwx ~/secret

Also, see ACL (Access Control List)

 6

setuid
(Set User ID)

 7

setuid

Programs have their own uid, inherited from uid of parent

 sshd(sathibau)
 \- bash(sathibau)
 \- ls(sathibau)

 8

setuid

Programs have their own uid, inherited from uid of parent, except
when they change it

sshd(root)
 \- sshd(sathibau)
 \- bash(sathibau)
 \- ls(sathibau)

 9

setuid

Programs have their own uid, inherited from uid of parent, except
when they change it

sshd(root)

 10

setuid

Programs have their own uid, inherited from uid of parent, except
when they change it

sshd(root)
 \- sshd(root)

 11

setuid

Programs have their own uid, inherited from uid of parent, except
when they change it

sshd(root)
 \- sshd(root) setuid(16595)

setuid() changes the current uid of the calling process

 12

setuid

Programs have their own uid, inherited from uid of parent, except
when they change it

sshd(root)
 \- sshd(sathibau)

setuid() changes the current uid of the calling process

 13

setuid

Programs have their own uid, inherited from uid of parent, except
when they change it

sshd(root)
 \- sshd(sathibau)
 \- bash(sathibau)

setuid() changes the current uid of the calling process

 14

setuid

Programs have their own uid, inherited from uid of parent, except
when the program is setuid

sshd(root)
 \- sshd(sathibau)
 \- bash(sathibau)
 \- chsh(root)

$ ls -l /bin/chsh
-rwsr-xr-x root root /bin/chsh

Yes, this is a terrifying design.
They need to be perfectly sane.
We’ll see various ways not to be perfectly sane.

 15

setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the

program
● saved uid (getresuid()) : an uid saved for later use

 \- bash(sathibau)
 \- at(root)

 16

setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the

program
● saved uid (getresuid()) : an uid saved for later use

 \- bash(sathibau)
 \- at(root) seteuid(getuid())

 17

setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the

program
● saved uid (getresuid()) : an uid saved for later use

 \- bash(sathibau)
 \- at(sathibau)

 18

setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the

program
● saved uid (getresuid()) : an uid saved for later use

 \- bash(sathibau)
 \- at(sathibau)

Can use the saved uid to make effective alternate between the
two.

 19

PATH,
LD_LIBRARY_PATH,

LD_PRELOAD

 20

PATH

$ which ls
/bin/ls

$ echo $PATH
/usr/local/bin:/usr/bin:/bin

Can be used to trick setuid programs…

 21

LD_LIBRARY_PATH

$ ldd /bin/ls
[…]
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

$ mkdir ~/lib
$ cp /lib/x86_64-linux-gnu/libc.so.6 ~/lib/
$ export LD_LIBRARY_PATH=~/lib
$ ldd /bin/ls
[…]
libc.so.6 => /net/cremi/sathibau/lib/libc.so.6

Can be used to override system library
But cannot be used to trick setuid programs…
« safe » execution startup that ignores LD_LIBRARY_PATH

 22

LD_PRELOAD

$ LD_PRELOAD=~/lib/libm.so ldd /usr/bin/ls
[…]
/net/cremi/sathibau/lib/libm.so

Can be used to override symbols
But cannot be used to trick setuid programs…
« safe » execution startup that ignores LD_PRELOAD

 23

*PATH=. considered harmful

$ PATH=.:$PATH
$ LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

Is a terribly bad idea...

$ cd /tmp
$ ls

Would run whatever ls program that anybody would have left
there...

 24

Races

 25

Races

● TOCTOU : Time Of Check to Time Of Use

char *file = argv[1];
stat(file, &st);
if (st.st_uid == getuid()) {
 // User file, can safely open
 int fd = open(file, O_RDONLY);
 read(…); printf(…);

$ (while true ; do
ln -sf ~/myfile /tmp/hack
ln -sf /etc/shadow /tmp/hack
done) &
$ while ! /bin/suid-victim /tmp/hack; do : ; done

 26

Races

● TOCTOU : Time Of Check to Time Of Use
● Atomicity between check and use
char *file = argv[1];
int fd = open(file, O_RDONLY);
fstat(fd, &st);
if (st.st_uid == getuid()) {
 // User file, can safely read
 read(…); printf(…);

 27

Races

● TOCTOU : Time Of Check to Time Of Use

char *path = argv[1];
char *dir = dirname(strdup(path));

stat(dir, &st);
if (st.st_uid == getuid()) {
 // User file, can safely open
 int fd = open(path, O_RDONLY);
 read(…); printf(…);
}

 28

Races

● TOCTOU : Time Of Check to Time Of Use
● Atomicity between accessing directory and accessing its files

char *path = argv[1];
char *dir = dirname(strdup(path));
char *file = basename(path);
int dfd = open(dir, O_PATH) ;
fstat(dfd, &st);
if (st.st_uid == getuid()) {
 // User file, can safely open
 int fd = openat(dfd, file, O_RDONLY);
 read(…); printf(…);
}

