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Permissions
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Unix users

uid (User identity)
● Integer that represents a user
● By convention, 0 is for root

gid (Group identity)
● Integer that represents a group of users

$ id
uid=16595(sathibau) gid=1111(enseignant) 
groups=1111(enseignant),1113(runtime),
1203(employee),1027(researcher),1211(teacher), …
$ id aguermou
uid=14925(aguermou) gid=1111(enseignant)
groups=1111(enseignant),
1203(employee),1027(researcher),1211(teacher), …
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Unix permissions

Permissions : rwx
● r : Read (4)
● w : Write (2)
● x : eXecute (1)

Permission triplet : ugo
● u : User
● g : Group
● o : Other

u+rwx,g+rx,o+rx   rwx r-x r-x   755
u+rw,g+r,o+r      rw- r-- r--   644
u+rw,g+r          rw- r-- ---   640

$ ls -ldn ~sathibau
drwxr-x--x 16595 1111 /net/cremi/sathibau
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Changing permissions

chmod 755 ~/tmp
chmod g+rx,o+rx ~/tmp

chmod 700 ~/secret
chmod g-rwx,o-rwx ~/secret

Also, see ACL (Access Control List)
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setuid
(Set User ID)
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setuid

Programs have their own uid, inherited from uid of parent

       sshd(sathibau)
           \- bash(sathibau)
                  \- ls(sathibau)
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setuid

Programs have their own uid, inherited from uid of parent, except 
when they change it

sshd(root)
    \- sshd(sathibau)
           \- bash(sathibau)
                  \- ls(sathibau)
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setuid

Programs have their own uid, inherited from uid of parent, except 
when they change it

sshd(root)
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setuid

Programs have their own uid, inherited from uid of parent, except 
when they change it

sshd(root)
    \- sshd(root)
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setuid

Programs have their own uid, inherited from uid of parent, except 
when they change it

sshd(root)
    \- sshd(root)  setuid(16595)

setuid() changes the current uid of the calling process
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setuid

Programs have their own uid, inherited from uid of parent, except 
when they change it

sshd(root)
    \- sshd(sathibau)

setuid() changes the current uid of the calling process
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setuid

Programs have their own uid, inherited from uid of parent, except 
when they change it

sshd(root)
    \- sshd(sathibau)
           \- bash(sathibau)

setuid() changes the current uid of the calling process
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setuid

Programs have their own uid, inherited from uid of parent, except 
when the program is setuid

sshd(root)
    \- sshd(sathibau)
           \- bash(sathibau)
                  \- chsh(root)

$ ls -l /bin/chsh
-rwsr-xr-x root root /bin/chsh

Yes, this is a terrifying design.
They need to be perfectly sane.
We’ll see various ways not to be perfectly sane.
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setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the 

program
● saved uid (getresuid()) : an uid saved for later use

           \- bash(sathibau)
                  \- at(root)
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setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the 

program
● saved uid (getresuid()) : an uid saved for later use

           \- bash(sathibau)
                  \- at(root) seteuid(getuid())
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setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the 

program
● saved uid (getresuid()) : an uid saved for later use

           \- bash(sathibau)
                  \- at(sathibau)
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setuid

● real uid (getuid()): the uid that started the program
● effective uid (geteuid()) : the uid currently set for the 

program
● saved uid (getresuid()) : an uid saved for later use

           \- bash(sathibau)
                  \- at(sathibau)

Can use the saved uid to make effective alternate between the 
two.
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PATH,
LD_LIBRARY_PATH,

LD_PRELOAD
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PATH

$ which ls
/bin/ls

$ echo $PATH
/usr/local/bin:/usr/bin:/bin

Can be used to trick setuid programs…
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LD_LIBRARY_PATH

$ ldd /bin/ls
[…]
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

$ mkdir ~/lib
$ cp /lib/x86_64-linux-gnu/libc.so.6 ~/lib/
$ export LD_LIBRARY_PATH=~/lib
$ ldd /bin/ls
[…]
libc.so.6 => /net/cremi/sathibau/lib/libc.so.6

Can be used to override system library
But cannot be used to trick setuid programs…
« safe » execution startup that ignores LD_LIBRARY_PATH
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LD_PRELOAD

$ LD_PRELOAD=~/lib/libm.so ldd /usr/bin/ls
[…]
/net/cremi/sathibau/lib/libm.so

Can be used to override symbols
But cannot be used to trick setuid programs…
« safe » execution startup that ignores LD_PRELOAD
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*PATH=. considered harmful

$ PATH=.:$PATH
$ LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

Is a terribly bad idea...

$ cd /tmp
$ ls

Would run whatever ls program that anybody would have left 
there...
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Races
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Races

● TOCTOU : Time Of Check to Time Of Use

char *file = argv[1];
stat(file, &st);
if (st.st_uid == getuid()) {
    // User file, can safely open
    int fd = open(file, O_RDONLY);
    read(…); printf(…);

$ ( while true ; do
ln -sf ~/myfile /tmp/hack
ln -sf /etc/shadow /tmp/hack
done ) &
$ while ! /bin/suid-victim /tmp/hack; do : ; done
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Races

● TOCTOU : Time Of Check to Time Of Use
● Atomicity between check and use
char *file = argv[1];
int fd = open(file, O_RDONLY);
fstat(fd, &st);
if (st.st_uid == getuid()) {
    // User file, can safely read
    read(…); printf(…);
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Races

● TOCTOU : Time Of Check to Time Of Use

char *path = argv[1];
char *dir = dirname(strdup(path));

stat(dir, &st);
if (st.st_uid == getuid()) {
    // User file, can safely open
    int fd = open(path, O_RDONLY);
    read(…); printf(…);
}
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Races

● TOCTOU : Time Of Check to Time Of Use
● Atomicity between accessing directory and accessing its files

char *path = argv[1];
char *dir = dirname(strdup(path));
char *file = basename(path);
int dfd = open(dir, O_PATH) ;
fstat(dfd, &st);
if (st.st_uid == getuid()) {
    // User file, can safely open
    int fd = openat(dfd, file, O_RDONLY);
    read(…); printf(…);
}


