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Isolation / communication



First computers

No notion of “process”, “protection”, “Operating systems”
* Just computing

Litterally feeding data by hand

e Security enforced by a lock on the door




First operating systems
for mainframes

e.g. OS/360 in the 60’s
* Firsttime an OS is kept the same over several machines

» Keeps track of allocated resources
- Reclaim them when the process is terminated

* But still mostly operated by hand

- No communication



Operating systems
for microcomputers

In 70°s-80’s, for the wide public

« CP/M/MS-DOS /PC-DOS

* Unix / Windows / Mac OS / GNU/Linux
* Multi-users, disk exchanges, ...

And development of ARPANET (soon to be the Internet)

In a word: communication



Communication

Computer Security Technology Planning Study (1972)
worries about that:

“it replaces manual, easily visible controls with reliance upon
logical and intangible program controls to keep separate data and
programs belonging to different users”

Nowadays it is taken for granted
* Multiple levels of users in same computer
- kernel, root, users, javascript vm

 Compartimentization to separate them
- Kernel/User, processes, virtual memory, file access permissions, ...

« Channels between the levels
- System calls, files, pipes, vm calls, ...



|solation

Historically:

e Batch processing
— Whole machine for yourself for a given time

Processes
— Whole virtual address space for yourself
- CPU time-sharing
User identifiers
- File permissions
— Process control
Virtual machines
— One step backwards
— Guest thinks running on its own machine
— Processes within it: isolation nesting
Containers
- One step in between
— Not really complete virtual machines, not really simple processes



Communication

Historically:

* Punch cards / printed paper
* Magnetic tapes

* Files

* Pipes

 Shared memory

 TCP/IP sockets

* VM channels



Communication

What harm could plugging this bring?

e Software autorun
- Now disabled

* Thunderbolt technology
— Can basically read all RAM with DMA...




Isolation vs communication
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Covert channels
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Covert channels

“A covert channel is created by a sender process that modulates
some condition (such as free space, availability of some service,
wait time to execute) that can be detected by a receiving process”

|.e. a way to subvert something into communicating
e CPU % usage
* Memory usage
* File open date

* Network packets timing
- TCP Port knocking

* LED blinking
- Disk, keyboard
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Side channels
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Side channels

“a side-channel attack is any attack based on information gained
from the implementation of a computer system, rather than
weaknesses in the implemented algorithm itself”

Problem:

 Visible resources
e Shared resources
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Visible resources

* Power monitoring
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l Visible resources

* Power monitoring
e Electromagnetic monitoring (TEMPEST)
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Visible resources

Power monitoring

Electromagnetic monitoring (TEMPEST)
Optical monitoring

Accoustic monitoring

— Use implementation whose behavior does not depend on the
data

— Or cipher data before processing it: blinding
- Instead of deciphering y?, decipher ye.re — y.r, eventually y
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Visible resources

Data remanence

* “Erased” (?) files
e Cold boot attack
* Eject RAM

Metadata
 Communication size, source/destination, timing, ...
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Perturbate resources

* Differential fault analysis

- Perturbate with rays

— Check how errors happen, can reveal algorithm details
* Software-initiated fault attacks

- Row hammer: just reading data!
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Shared resources: caches

Memory hierarchy
* Memory: ~100ns latency
 Cache: ~10ns latency

Data transparently duplicated in the cache v | (GBs)
* No semantic difference
* Timing difference
* Micro-architectural state I
Cache (MBs)

CPU

20



Shared resources: caches

Memory hierarchy
* Memory: ~100ns latency
* Cache: ~10ns latency

Data transparently duplicated in the cache v (GBs)
 No semantic difference
* Timing difference
* Micro-architectural state i
Cache @ (MBs)

Shared between cores!
Allows to observe behavior of other program

core core

00 .




Shared resources: caches

Cache attacks! 10 g

* Allow to observe the program
behavior
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But there 1s much worse on this...

J =)
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Spectre/Meltdown

2018 January 3™
 Two hardware vulnerabilities disclosed for the price of one
* Discovered 6 months before, kept embargoed

 |ntroduced...
— around 1995...

What happened??
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Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results
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Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

W oow e

 But what about branches?
- Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
foo (x) ;
} else {

bar (x) ; N
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Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results
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 But what about branches?
- Would have to wait for result to know which instructions to load?
- Rather predict/speculate which way to go

if (t[x] > 0) {
foo (x) ;

} else {
bar (x) ;
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Speculative execution

This speculation is essential for performance

e for (i = 0; 1 < n; i++)
t[i] = O;

Don’t want to wait for 1++ and i<n at each iteration!

e if (i >= N)
return -1;

Usually no error

Processor learns from experience
- “Most probably just like last time”
— Branch prediction 38



Speculative execution

What if the prediction got wrong?

* Processor cancels all effects
- No memory/cache write
- Restore register value
- Get PC back to proper branch

e |.e. restore architectural state

But does not restore micro-architectural state
 What if speculated execution loaded a value in the cache?
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@/ Spectre vulnerability

Vulnerable code e.g. in a system call:
static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return data[val*e64];

}

Apparently checking that we are not overflowing T
And most often so indeed
But what if actually i = N? 40



@/ Spectre vulnerability

What if actually i = N?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return data[val*e64];

}

 Still predicts that we should proceed
 Reads T]Ji]
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@/ Spectre vulnerability

What if actually i = N?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return datal[val*e64];

}

 Still predicts that we should proceed
* Reads T]i]
* And reads data[val*64] 42



@/ Spectre vulnerability

What if actually i >>> N?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return data[val*e64];

}

The TJ[i] read is basically wherever you want!

 Can read whole memory of victim
43



@/ Spectre vulnerability

But hey, wait, processor rolls back before returning, doesn't it?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return datal[val*e64];

}

Yes, sure, but the leak is already done
e data[val*64] has been read, i.e. loaded into the cache

* and attacker can measure that 44
- Having flushed the cache before calling f, then measuring access



@/ Spectre vulnerability

Attacker can measure that

500
400
300

200 | | |
0 50 100 150 200 250

Access time
[cycles]

That was 84!

Takes a bit of time
* Unoptimized version still achieves 10KB/s...
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@/ Spectre vulnerability

Sanitize your inputs....

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (i >= N)
return -EINVAL;
// TODO: Something to flush execution prediction
char val = T[i];
return data[val*é64];
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@/ Spectre vulnerability

Lessons learnt

All parties were right in their own model
e Speculative execution

 Cache

 Shared memory

It's the combination which is wrong
e Cache effects in shared memory due to speculative execution

A problem of overall model...

47



Meltdown vulnerability

Walit, there is even much worse!

Kernel-land and User-land share addressing space kernel

* But kernel space inaccessible to user-land
- Protected by page flags

Stack rw—/x

-

Libraries...

mmaps...

—

Heap ™w—

Bss 'w—

Data r'w—

R/O Data r—

Text r—-x

\o—»
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Meltdown vulnerability

Walit, there is even much worse!

// Address of net secret in kernel kernel
char *p = (char*) Oxffffffff825c8590;

char v = *p; Stack —
int x = data[v*64];

-

Libraries...

mmaps...

Reading the kernel variable speculated as being OK
Reading data according to the value Heap -

Eventually kernel raises SEGFAULT Bes -
But userland can still measure which data was loaded! [ -

R/O Data r—

T Text r—-x
0

—




Meltdown vulnerability

Attacker does not even need to make system calls
* Just read the target variables...

kernel

Kernel has the whole memory mapped
 Can read basically all memory

Stack rw—/x

-

Real cause: bug in Intel processor
* Should have trapped the access error
before loading the value, let alone use it!

Libraries...

mmaps...

Heap ™w—

Efficiency: Bes o
 3.2KB/s - 503KB/s Data -

R/O Data r—

Text r—-x

\o—»



Conclusion
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LEARNED ABOUT _.YES, THAT 1S
: ROUHAMMER. | PO WE JUST SUCK ) aﬁ RIGI-IU'
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