Seécurité des logiciels

Side/Covert channels

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

Isolation / communication

First computers

No notion of “process”, “protection”, “Operating systems”
* Just computing

Litterally feeding data by hand

e Security enforced by a lock on the door

First operating systems
for mainframes

e.g. OS/360 in the 60’s
* Firsttime an OS is kept the same over several machines

» Keeps track of allocated resources
- Reclaim them when the process is terminated

* But still mostly operated by hand

- No communication

Operating systems
for microcomputers

In 70°s-80’s, for the wide public

« CP/M/MS-DOS /PC-DOS

* Unix / Windows / Mac OS / GNU/Linux
* Multi-users, disk exchanges, ...

And development of ARPANET (soon to be the Internet)

In a word: communication

Communication

Computer Security Technology Planning Study (1972)
worries about that:

“it replaces manual, easily visible controls with reliance upon
logical and intangible program controls to keep separate data and
programs belonging to different users”

Nowadays it is taken for granted
* Multiple levels of users in same computer
- kernel, root, users, javascript vm

 Compartimentization to separate them
- Kernel/User, processes, virtual memory, file access permissions, ...

« Channels between the levels
- System calls, files, pipes, vm calls, ...

|solation

Historically:

e Batch processing
— Whole machine for yourself for a given time

Processes
— Whole virtual address space for yourself
- CPU time-sharing
User identifiers
- File permissions
— Process control
Virtual machines
— One step backwards
— Guest thinks running on its own machine
— Processes within it: isolation nesting
Containers
- One step in between
— Not really complete virtual machines, not really simple processes

Communication

Historically:

* Punch cards / printed paper
* Magnetic tapes

* Files

* Pipes

 Shared memory

 TCP/IP sockets

* VM channels

Communication

What harm could plugging this bring?

e Software autorun
- Now disabled

* Thunderbolt technology
— Can basically read all RAM with DMA...

Isolation vs communication

“T \JSH THESE PARTS
COULD COMMUNICATE
MORE. ERSLY "00H, THIS NEWJ TECHNOLOGY
MAKES IT EASY TO CREATE
7 3 "=\ | ARBITRARY CONNECTIONS,
o INTEGRATING EVERYTHING™
Q
o D . o
Lo © @,
f C\d?o o) ©
“00H, THIS NEW TECHNOLDGY J
MPKES IT EASY TO ENCLOSE
ARBITRARY THINGS IN
SECURE. SANDBOXES!" “UH-OH, THERE ARE

S0 MANY CONNECTIONS

ITS CREATING BUGS
@ AND SECURITY HOLES!"
'@&A U 1"-‘-: - &
== 7 [- g - / 1 -

From https://xkcd.com/2044/

10

https://xkcd.com/2044/

Covert channels

11

Covert channels

“A covert channel is created by a sender process that modulates
some condition (such as free space, availability of some service,
wait time to execute) that can be detected by a receiving process”

|.e. a way to subvert something into communicating
e CPU % usage
* Memory usage
* File open date

* Network packets timing
- TCP Port knocking

* LED blinking
- Disk, keyboard

12

Side channels

13

Side channels

“a side-channel attack is any attack based on information gained
from the implementation of a computer system, rather than
weaknesses in the implemented algorithm itself”

Problem:

 Visible resources
e Shared resources

14

Visible resources

* Power monitoring

Ju1”;nﬂv"*n!J"Ul\'tJ“‘rJ”fI.]lh‘t'}[ulI'W!.F-w*:unurwmw J.ﬂ'1',l.lh,,"n"'l(-'l'”'l'[ﬂ.«"ﬁ'-1"'”*-"1-'i'l‘"ﬂl'i"1ﬂ"M'Jhi.hhq."*1,hrr“k’"d"m|"'bmllIﬂ"*;‘ﬂ!"rIH‘ﬂx"'v"J’““‘“.W“'*l”"ﬂl*"\llﬂ
! | [

Ty
uwﬁrml,w' w""""Jl“‘H"Lwn“r-W-""uun,h*""r'w"ﬂvw"‘a'p M’“‘W}Nﬂlﬁ"ﬂ'

No multiplication Multiplication

15

l Visible resources

* Power monitoring
e Electromagnetic monitoring (TEMPEST)

g auad i | ddaidsd

|
02 04 06 08 1 12 14 1 6

Visible resources

Power monitoring

Electromagnetic monitoring (TEMPEST)
Optical monitoring

Accoustic monitoring

— Use implementation whose behavior does not depend on the
data

— Or cipher data before processing it: blinding
- Instead of deciphering y?, decipher ye.re — y.r, eventually y

17

Visible resources

Data remanence

* “Erased” (?) files
e Cold boot attack
* Eject RAM

Metadata
 Communication size, source/destination, timing, ...

18

Perturbate resources

* Differential fault analysis

- Perturbate with rays

— Check how errors happen, can reveal algorithm details
* Software-initiated fault attacks

- Row hammer: just reading data!

19

Shared resources: caches

Memory hierarchy
* Memory: ~100ns latency
 Cache: ~10ns latency

Data transparently duplicated in the cache v | (GBs)
* No semantic difference
* Timing difference
* Micro-architectural state I
Cache (MBs)

CPU

20

Shared resources: caches

Memory hierarchy
* Memory: ~100ns latency
* Cache: ~10ns latency

Data transparently duplicated in the cache v (GBs)
 No semantic difference
* Timing difference
* Micro-architectural state i
Cache @ (MBs)

Shared between cores!
Allows to observe behavior of other program

core core

00 .

Shared resources: caches

Cache attacks! 10 g

* Allow to observe the program
behavior

2% mod p

2% mod p
2 d

=z mod p

=z mod p

z:=x*>mod p

a2+ mod p

Cache missing for fun and profit

More generally, monitor accesses to % R
ciphering tables, etc. :

z-a?**t! mod p
z2 mod p

x:=x2modp

z2 mod p

z:=z2modp

@ - a** ! mod p

2% mod p

. 3 ol
- 1
1 | |
meE B L]
e e e e e e e e e e e et e e e A e e e

z =z mod p

2
. r* mod
5108 P

22

But there 1s much worse on this...

J =)

23

Spectre/Meltdown

2018 January 3™
 Two hardware vulnerabilities disclosed for the price of one
* Discovered 6 months before, kept embargoed

 |ntroduced...
— around 1995...

What happened??

24

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

25

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

26

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

27

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

28

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

29

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

30

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

W oow e

 But what about branches?
- Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
foo (x) ;
} else {

bar (x) ; N

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results
4] 3|

 But what about branches?
- Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
foo (x) ;
} else {

bar (x) ; “

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

“

 But what about branches?
- Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
foo (x) ;
} else {

bar (x) ; "

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

 But what about branches?
- Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
foo (x) ;
} else {

bar (x) ; .

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

 But what about branches?
- Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
foo (x) ;
} else {

bar (x) ; s

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

L] B

 But what about branches?
- Would have to wait for result to know which instructions to load?
- Rather predict/speculate which way to go

if (t[x] > 0) {
foo (x) ;

} else {
bar (x) ;

36

Speculative execution

Nowadays processors optimize crazily
* Long pipeline

Instructions —# Fetch —# Decode —# Execute —¥» Retire —® Results

L “

 But what about branches?
- Would have to wait for result to know which instructions to load?
- Rather predict/speculate which way to go

if (t[x] > 0) {
foo (x) ;

} else {
bar (x) ;

37

Speculative execution

This speculation is essential for performance

e for (i = 0; 1 < n; i++)
t[i] = O;

Don’t want to wait for 1++ and i<n at each iteration!

e if (i >= N)
return -1;

Usually no error

Processor learns from experience
- “Most probably just like last time”
— Branch prediction 38

Speculative execution

What if the prediction got wrong?

* Processor cancels all effects
- No memory/cache write
- Restore register value
- Get PC back to proper branch

e |.e. restore architectural state

But does not restore micro-architectural state
 What if speculated execution loaded a value in the cache?

39

@/ Spectre vulnerability

Vulnerable code e.g. in a system call:
static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return data[val*e64];

}

Apparently checking that we are not overflowing T
And most often so indeed
But what if actually i = N? 40

@/ Spectre vulnerability

What if actually i = N?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return data[val*e64];

}

 Still predicts that we should proceed
 Reads T]Ji]

41

@/ Spectre vulnerability

What if actually i = N?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return datal[val*e64];

}

 Still predicts that we should proceed
* Reads T]i]
* And reads data[val*64] 42

@/ Spectre vulnerability

What if actually i >>> N?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return data[val*e64];

}

The TJ[i] read is basically wherever you want!

 Can read whole memory of victim
43

@/ Spectre vulnerability

But hey, wait, processor rolls back before returning, doesn't it?

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (1 >= N)
return -EINVAL;
char val = T[i];
return datal[val*e64];

}

Yes, sure, but the leak is already done
e data[val*64] has been read, i.e. loaded into the cache

* and attacker can measure that 44
- Having flushed the cache before calling f, then measuring access

@/ Spectre vulnerability

Attacker can measure that

500
400
300

200 | | |
0 50 100 150 200 250

Access time
[cycles]

That was 84!

Takes a bit of time
* Unoptimized version still achieves 10KB/s...

45

@/ Spectre vulnerability

Sanitize your inputs....

static char T[N] = { ... };

void f (char *data, unsigned i) ({
if (i >= N)
return -EINVAL;
// TODO: Something to flush execution prediction
char val = T[i];
return data[val*é64];

46

@/ Spectre vulnerability

Lessons learnt

All parties were right in their own model
e Speculative execution

 Cache

 Shared memory

It's the combination which is wrong
e Cache effects in shared memory due to speculative execution

A problem of overall model...

47

Meltdown vulnerability

Walit, there is even much worse!

Kernel-land and User-land share addressing space kernel

* But kernel space inaccessible to user-land
- Protected by page flags

Stack rw—/x

-

Libraries...

mmaps...

—

Heap ™w—

Bss 'w—

Data r'w—

R/O Data r—

Text r—-x

\o—»

Meltdown vulnerability

Walit, there is even much worse!

// Address of net secret in kernel kernel
char *p = (char*) Oxffffffff825c8590;

char v = *p; Stack —
int x = data[v*64];

-

Libraries...

mmaps...

—

Heap ™w—

Bss 'w—

Data r'w—

R/O Data r—

Text r—-x

\o—»

Meltdown vulnerability

Walit, there is even much worse!

// Address of net secret in kernel kernel
char *p = (char*) Oxffffffff825c8590;

char v = *p; Stack —
int x = data[v*64];

-

Libraries...

mmaps...

Reading the kernel variable speculated as being OK

—

Heap ™w—

Bss 'w—

Data r'w—

R/O Data r—

Text r—-x

\o—»

Meltdown vulnerability

Walit, there is even much worse!

// Address of net secret in kernel kernel
char *p = (char*) Oxffffffff825c8590;

char v = *p; Stack —
int x = data[v*64];

-

Libraries...

mmaps...

Reading the kernel variable speculated as being OK
Reading data according to the value Heap -

—

Bss 'w—

Data r'w—

R/O Data r—

Text r—-x

\o—»

Meltdown vulnerability

Walit, there is even much worse!

// Address of net secret in kernel kernel
char *p = (char*) Oxffffffff825c8590;

char v = *p; Stack —
int x = data[v*64];

-

Libraries...

mmaps...

Reading the kernel variable speculated as being OK
Reading data according to the value Heap -

Eventually kernel raises SEGFAULT Bes -
But userland can still measure which data was loaded! [-

R/O Data r—

T Text r—-x
0

—

Meltdown vulnerability

Attacker does not even need to make system calls
* Just read the target variables...

kernel

Kernel has the whole memory mapped
 Can read basically all memory

Stack rw—/x

-

Real cause: bug in Intel processor
* Should have trapped the access error
before loading the value, let alone use it!

Libraries...

mmaps...

Heap ™w—

Efficiency: Bes o
 3.2KB/s - 503KB/s Data -

R/O Data r—

Text r—-x

\o—»

Conclusion

54

THE MELTDOUN AND SPECTRE. EXPLOITS USE THE PHANTOM TROLLEY' ISNT
"SPECULATIVE EXECUTION?” LHATS THAT? SUPPOSED To TOUCH ANYONE.

BUT IT TURNS OUT You CA
YOU KNOW THE. TROLLEY PROBLEM? LJELL,
FOR A WHILE NOU, CPUs HAVE BASICALLY | | STLL USE IT O DO STUFF.
BEEN SENDING TROLLEYS DOLN BOTH AND IT CAN DRIVE
PATHS, QUANTUM-STVLE, LHILE AWAITING | | THROUGH LIALLS.
YOUR CHOICE. THEN THE UNNEEDED
"PHANTOM" TROLLEY DISAPPEARS.

THAT SOUNDS BAD WHATS THAT 2 50 YOURE SAYING
HONESTLY TvE Been | | IF YOU TOGGLE ARDL) OF MEMORY | e (00D IS FULL OF
ASSUMING WE UERE | [CELLS ON AND OFF REALLY FAST YOU | pHaNTOM TROLLEYS
DOOMED EVER SINCE CAN USE ELECTEICAL INTERFERENCE PRMED WITH HAMYERS,

TO FLIP NEARBY BITS AND—
LEARNED ABOUT _.YES, THAT 1S
: ROUHAMMER. | PO WE JUST SUCK) aﬁ RIGI-IU'
AT...COMPUTERS? '

OKAY. TLL, UH...
'f'LlF' ESFECIF.LLYE'I-IHREDDHEEJL lhE.-‘IN.LLPﬂFEfEﬁ’)

TN

From https://xkcd.com/1938/

https://xkcd.com/1938/

