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Isolation / communication
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First computers

● No notion of “process”, “protection”, “Operating systems”
● Just computing
● Litterally feeding data by hand
● Security enforced by a lock on the door
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First operating systems
for mainframes

e.g. OS/360 in the 60’s
● First time an OS is kept the same over several machines
● Keeps track of allocated resources

– Reclaim them when the process is terminated
● But still mostly operated by hand

– No communication
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Operating systems
for microcomputers

In 70’s-80’s, for the wide public
● CP/M / MS-DOS / PC-DOS
● Unix / Windows / Mac OS / GNU/Linux
● Multi-users, disk exchanges, ...

And development of ARPANET (soon to be the Internet)

In a word: communication



  

Communication

Computer Security Technology Planning Study (1972)
worries about that:

“it replaces manual, easily visible controls with reliance upon 
logical and intangible program controls to keep separate data and 
programs belonging to different users”

Nowadays it is taken for granted
● Multiple levels of users in same computer

– kernel, root, users, javascript vm
● Compartimentization to separate them

– Kernel/User, processes, virtual memory, file access permissions, ...
● Channels between the levels

– System calls, files, pipes, vm calls, ...
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Isolation

Historically:
● Batch processing

– Whole machine for yourself for a given time
● Processes

– Whole virtual address space for yourself
– CPU time-sharing

● User identifiers
– File permissions
– Process control

● Virtual machines
– One step backwards
– Guest thinks running on its own machine
– Processes within it: isolation nesting

● Containers
– One step in between
– Not really complete virtual machines, not really simple processes
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Communication

Historically:
● Punch cards / printed paper
● Magnetic tapes
● Files
● Pipes
● Shared memory
● TCP/IP sockets
● VM channels
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Communication

What harm could plugging this bring?
● Software autorun

– Now disabled
● Thunderbolt technology

– Can basically read all RAM with DMA...
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Isolation vs communication

From https://xkcd.com/2044/

https://xkcd.com/2044/
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Covert channels
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Covert channels

“A covert channel is created by a sender process that modulates 
some condition (such as free space, availability of some service, 
wait time to execute) that can be detected by a receiving process”

I.e. a way to subvert something into communicating
● CPU % usage
● Memory usage
● File open date
● Network packets timing

– TCP Port knocking
● LED blinking

– Disk, keyboard
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Side channels
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Side channels

“a side-channel attack is any attack based on information gained 
from the implementation of a computer system, rather than 
weaknesses in the implemented algorithm itself”

Problem:
● Visible resources
● Shared resources
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Visible resources

● Power monitoring

No multiplication Multiplication
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Visible resources

● Power monitoring
● Electromagnetic monitoring (TEMPEST)
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Visible resources

● Power monitoring
● Electromagnetic monitoring (TEMPEST)
● Optical monitoring
● Accoustic monitoring

→ Use implementation whose behavior does not depend on the 
data
→ Or cipher data before processing it: blinding

– Instead of deciphering ye, decipher ye.re → y.r, eventually y
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Visible resources

Data remanence
● “Erased” (?) files
● Cold boot attack
● Eject RAM

Metadata
● Communication size, source/destination, timing, ...
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Perturbate resources

● Differential fault analysis
– Perturbate with rays
– Check how errors happen, can reveal algorithm details

● Software-initiated fault attacks
– Row hammer: just reading data!

A RAS CAS Data R/W 
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Shared resources: caches

Memory hierarchy
● Memory: ~100ns latency
● Cache: ~10ns latency

Data transparently duplicated in the cache
● No semantic difference
● Timing difference
● Micro-architectural state
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Shared resources: caches

Memory hierarchy
● Memory: ~100ns latency
● Cache: ~10ns latency

Data transparently duplicated in the cache
● No semantic difference
● Timing difference
● Micro-architectural state

Shared between cores!
Allows to observe behavior of other program
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Shared resources: caches

Cache attacks!
● Allow to observe the program

behavior

Cache missing for fun and profit

More generally, monitor accesses to
ciphering tables, etc.
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But there is much worse on this...
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Spectre/Meltdown

2018 January 3rd

● Two hardware vulnerabilities disclosed for the price of one
● Discovered 6 months before, kept embargoed
● Introduced...

– around 1995...

What happened??
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Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results
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Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
  foo(x);
} else {
  bar(x);
}
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Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?
– Rather predict/speculate which way to go

if (t[x] > 0) {
  foo(x);
} else {
  bar(x);
}
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Speculative execution

This speculation is essential for performance

● for (i = 0; i < n; i++)
  t[i] = 0;

Don’t want to wait for i++ and i<n at each iteration!

● if (i >= N)
  return -1;

Usually no error

Processor learns from experience
– “Most probably just like last time”
– Branch prediction
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Speculative execution

What if the prediction got wrong?
● Processor cancels all effects

– No memory/cache write
– Restore register value
– Get PC back to proper branch

● i.e. restore architectural state

But does not restore micro-architectural state
● What if speculated execution loaded a value in the cache?
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Spectre vulnerability

Vulnerable code e.g. in a system call:

static char T[N] = { ... };

void f(char *data, unsigned i) {
  if (i >= N)
    return -EINVAL;
  char val = T[i];
  return data[val*64];
}

Apparently checking that we are not overflowing T
And most often so indeed
But what if actually i ≥ N?
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Spectre vulnerability

What if actually i ≥ N?

static char T[N] = { ... };

void f(char *data, unsigned i) {
  if (i >= N)
    return -EINVAL;
  char val = T[i];
  return data[val*64];
}

● Still predicts that we should proceed
● Reads T[i]
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Spectre vulnerability

What if actually i ≥ N?

static char T[N] = { ... };

void f(char *data, unsigned i) {
  if (i >= N)
    return -EINVAL;
  char val = T[i];
  return data[val*64];
}

● Still predicts that we should proceed
● Reads T[i]
● And reads data[val*64]
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Spectre vulnerability

What if actually i >>> N?

static char T[N] = { ... };

void f(char *data, unsigned i) {
  if (i >= N)
    return -EINVAL;
  char val = T[i];
  return data[val*64];
}

The T[i] read is basically wherever you want!
● Can read whole memory of victim
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Spectre vulnerability

But hey, wait, processor rolls back before returning, doesn’t it?

static char T[N] = { ... };

void f(char *data, unsigned i) {
  if (i >= N)
    return -EINVAL;
  char val = T[i];
  return data[val*64];
}

Yes, sure, but the leak is already done
● data[val*64] has been read, i.e. loaded into the cache
● and attacker can measure that

– Having flushed the cache before calling f, then measuring access
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Spectre vulnerability

Attacker can measure that

That was 84!

Takes a bit of time
● Unoptimized version still achieves 10KB/s...
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Spectre vulnerability

Sanitize your inputs....

static char T[N] = { ... };

void f(char *data, unsigned i) {
  if (i >= N)
    return -EINVAL;
// TODO: Something to flush execution prediction
  char val = T[i];
  return data[val*64];
}
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Spectre vulnerability

Lessons learnt

All parties were right in their own model
● Speculative execution
● Cache
● Shared memory

It’s the combination which is wrong
● Cache effects in shared memory due to speculative execution

A problem of overall model...
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Meltdown vulnerability

Wait, there is even much worse!

Kernel-land and User-land share addressing space
● But kernel space inaccessible to user-land

– Protected by page flags

kernel
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Meltdown vulnerability

Wait, there is even much worse!

// Address of net_secret in kernel
char *p = (char*) 0xffffffff825c8590;

char v = *p;
int x = data[v*64];

kernel
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Meltdown vulnerability

Wait, there is even much worse!

// Address of net_secret in kernel
char *p = (char*) 0xffffffff825c8590;

char v = *p;
int x = data[v*64];

Reading the kernel variable speculated as being OK
Reading data according to the value
Eventually kernel raises SEGFAULT
But userland can still measure which data was loaded!

kernel
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Meltdown vulnerability

Attacker does not even need to make system calls
● Just read the target variables...

Kernel has the whole memory mapped
● Can read basically all memory

Real cause: bug in Intel processor
● Should have trapped the access error

before loading the value, let alone use it!

Efficiency:
● 3.2KB/s - 503KB/s

kernel
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Conclusion
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From https://xkcd.com/1938/

https://xkcd.com/1938/

