
 1

Sécurité des logiciels

Side/Covert channels

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

 2

Isolation / communication

 3

First computers

● No notion of “process”, “protection”, “Operating systems”
● Just computing
● Litterally feeding data by hand
● Security enforced by a lock on the door

 4

First operating systems
for mainframes

e.g. OS/360 in the 60’s
● First time an OS is kept the same over several machines
● Keeps track of allocated resources

– Reclaim them when the process is terminated
● But still mostly operated by hand

– No communication

 5

Operating systems
for microcomputers

In 70’s-80’s, for the wide public
● CP/M / MS-DOS / PC-DOS
● Unix / Windows / Mac OS / GNU/Linux
● Multi-users, disk exchanges, ...

And development of ARPANET (soon to be the Internet)

In a word: communication

Communication

Computer Security Technology Planning Study (1972)
worries about that:

“it replaces manual, easily visible controls with reliance upon
logical and intangible program controls to keep separate data and
programs belonging to different users”

Nowadays it is taken for granted
● Multiple levels of users in same computer

– kernel, root, users, javascript vm
● Compartimentization to separate them

– Kernel/User, processes, virtual memory, file access permissions, ...
● Channels between the levels

– System calls, files, pipes, vm calls, ...

 7

Isolation

Historically:
● Batch processing

– Whole machine for yourself for a given time
● Processes

– Whole virtual address space for yourself
– CPU time-sharing

● User identifiers
– File permissions
– Process control

● Virtual machines
– One step backwards
– Guest thinks running on its own machine
– Processes within it: isolation nesting

● Containers
– One step in between
– Not really complete virtual machines, not really simple processes

 8

Communication

Historically:
● Punch cards / printed paper
● Magnetic tapes
● Files
● Pipes
● Shared memory
● TCP/IP sockets
● VM channels

 9

Communication

What harm could plugging this bring?
● Software autorun

– Now disabled
● Thunderbolt technology

– Can basically read all RAM with DMA...

 10

Isolation vs communication

From https://xkcd.com/2044/

https://xkcd.com/2044/

 11

Covert channels

 12

Covert channels

“A covert channel is created by a sender process that modulates
some condition (such as free space, availability of some service,
wait time to execute) that can be detected by a receiving process”

I.e. a way to subvert something into communicating
● CPU % usage
● Memory usage
● File open date
● Network packets timing

– TCP Port knocking
● LED blinking

– Disk, keyboard

 13

Side channels

 14

Side channels

“a side-channel attack is any attack based on information gained
from the implementation of a computer system, rather than
weaknesses in the implemented algorithm itself”

Problem:
● Visible resources
● Shared resources

 15

Visible resources

● Power monitoring

No multiplication Multiplication

 16

Visible resources

● Power monitoring
● Electromagnetic monitoring (TEMPEST)

 17

Visible resources

● Power monitoring
● Electromagnetic monitoring (TEMPEST)
● Optical monitoring
● Accoustic monitoring

→ Use implementation whose behavior does not depend on the
data
→ Or cipher data before processing it: blinding

– Instead of deciphering ye, decipher ye.re → y.r, eventually y

 18

Visible resources

Data remanence
● “Erased” (?) files
● Cold boot attack
● Eject RAM

Metadata
● Communication size, source/destination, timing, ...

 19

Perturbate resources

● Differential fault analysis
– Perturbate with rays
– Check how errors happen, can reveal algorithm details

● Software-initiated fault attacks
– Row hammer: just reading data!

A RAS CAS Data R/W

 20

Shared resources: caches

Memory hierarchy
● Memory: ~100ns latency
● Cache: ~10ns latency

Data transparently duplicated in the cache
● No semantic difference
● Timing difference
● Micro-architectural state

M

Cache

CPU

(GBs)

(MBs)

 21

Shared resources: caches

Memory hierarchy
● Memory: ~100ns latency
● Cache: ~10ns latency

Data transparently duplicated in the cache
● No semantic difference
● Timing difference
● Micro-architectural state

Shared between cores!
Allows to observe behavior of other program

M

Cache

core

(GBs)

(MBs)

core

 22

Shared resources: caches

Cache attacks!
● Allow to observe the program

behavior

Cache missing for fun and profit

More generally, monitor accesses to
ciphering tables, etc.

 23

But there is much worse on this...

 24

Spectre/Meltdown

2018 January 3rd

● Two hardware vulnerabilities disclosed for the price of one
● Discovered 6 months before, kept embargoed
● Introduced...

– around 1995...

What happened??

 25

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results

 26

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results

I1

 27

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results

I2 I1

 28

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results

I3 I2 I1

 29

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results

I4 I3 I2 I1

 30

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

Fetch Decode Execute RetireInstructions Results

I5 I4 I3 I2

 31

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I5 I4 I3 I2

 32

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I5 I4 I3

 33

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I5 I4

 34

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I5

 35

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I6

 36

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?
– Rather predict/speculate which way to go

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I6 I5 I4 I3

 37

Speculative execution

Nowadays processors optimize crazily
● Long pipeline

● But what about branches?
– Would have to wait for result to know which instructions to load?
– Rather predict/speculate which way to go

if (t[x] > 0) {
 foo(x);
} else {
 bar(x);
}

Fetch Decode Execute RetireInstructions Results

I7 I6 I5 I4

 38

Speculative execution

This speculation is essential for performance

● for (i = 0; i < n; i++)
 t[i] = 0;

Don’t want to wait for i++ and i<n at each iteration!

● if (i >= N)
 return -1;

Usually no error

Processor learns from experience
– “Most probably just like last time”
– Branch prediction

 39

Speculative execution

What if the prediction got wrong?
● Processor cancels all effects

– No memory/cache write
– Restore register value
– Get PC back to proper branch

● i.e. restore architectural state

But does not restore micro-architectural state
● What if speculated execution loaded a value in the cache?

 40

Spectre vulnerability

Vulnerable code e.g. in a system call:

static char T[N] = { ... };

void f(char *data, unsigned i) {
 if (i >= N)
 return -EINVAL;
 char val = T[i];
 return data[val*64];
}

Apparently checking that we are not overflowing T
And most often so indeed
But what if actually i ≥ N?

 41

Spectre vulnerability

What if actually i ≥ N?

static char T[N] = { ... };

void f(char *data, unsigned i) {
 if (i >= N)
 return -EINVAL;
 char val = T[i];
 return data[val*64];
}

● Still predicts that we should proceed
● Reads T[i]

 42

Spectre vulnerability

What if actually i ≥ N?

static char T[N] = { ... };

void f(char *data, unsigned i) {
 if (i >= N)
 return -EINVAL;
 char val = T[i];
 return data[val*64];
}

● Still predicts that we should proceed
● Reads T[i]
● And reads data[val*64]

 43

Spectre vulnerability

What if actually i >>> N?

static char T[N] = { ... };

void f(char *data, unsigned i) {
 if (i >= N)
 return -EINVAL;
 char val = T[i];
 return data[val*64];
}

The T[i] read is basically wherever you want!
● Can read whole memory of victim

 44

Spectre vulnerability

But hey, wait, processor rolls back before returning, doesn’t it?

static char T[N] = { ... };

void f(char *data, unsigned i) {
 if (i >= N)
 return -EINVAL;
 char val = T[i];
 return data[val*64];
}

Yes, sure, but the leak is already done
● data[val*64] has been read, i.e. loaded into the cache
● and attacker can measure that

– Having flushed the cache before calling f, then measuring access

 45

Spectre vulnerability

Attacker can measure that

That was 84!

Takes a bit of time
● Unoptimized version still achieves 10KB/s...

 46

Spectre vulnerability

Sanitize your inputs....

static char T[N] = { ... };

void f(char *data, unsigned i) {
 if (i >= N)
 return -EINVAL;
// TODO: Something to flush execution prediction
 char val = T[i];
 return data[val*64];
}

 47

Spectre vulnerability

Lessons learnt

All parties were right in their own model
● Speculative execution
● Cache
● Shared memory

It’s the combination which is wrong
● Cache effects in shared memory due to speculative execution

A problem of overall model...

 48

Meltdown vulnerability

Wait, there is even much worse!

Kernel-land and User-land share addressing space
● But kernel space inaccessible to user-land

– Protected by page flags

kernel

 49

Meltdown vulnerability

Wait, there is even much worse!

// Address of net_secret in kernel
char *p = (char*) 0xffffffff825c8590;

char v = *p;
int x = data[v*64];

kernel

 50

Meltdown vulnerability

Wait, there is even much worse!

// Address of net_secret in kernel
char *p = (char*) 0xffffffff825c8590;

char v = *p;
int x = data[v*64];

Reading the kernel variable speculated as being OK

kernel

 51

Meltdown vulnerability

Wait, there is even much worse!

// Address of net_secret in kernel
char *p = (char*) 0xffffffff825c8590;

char v = *p;
int x = data[v*64];

Reading the kernel variable speculated as being OK
Reading data according to the value

kernel

 52

Meltdown vulnerability

Wait, there is even much worse!

// Address of net_secret in kernel
char *p = (char*) 0xffffffff825c8590;

char v = *p;
int x = data[v*64];

Reading the kernel variable speculated as being OK
Reading data according to the value
Eventually kernel raises SEGFAULT
But userland can still measure which data was loaded!

kernel

 53

Meltdown vulnerability

Attacker does not even need to make system calls
● Just read the target variables...

Kernel has the whole memory mapped
● Can read basically all memory

Real cause: bug in Intel processor
● Should have trapped the access error

before loading the value, let alone use it!

Efficiency:
● 3.2KB/s - 503KB/s

kernel

 54

Conclusion

 55
From https://xkcd.com/1938/

https://xkcd.com/1938/

