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Compiler bugs

Compiler bugs
● They are awful
● Only way to find out: look at generated assembly code

static int g[1];
static int *p = &g[0];
static int *q = &g[0];
int foo (void) {
  g[0] = 1;
  *p = 0;
  *p = *q;
  return g[0];
}
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952
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Compiler bugs

Compiler bugs
● They are awful
● Only way to find out: look at generated assembly code

Compilers are very reliable
● Very heavily tested

– Millions of testcases
● Most often the bug is in your code :)
● But still sometimes you encounter a compiler bug

https://compcert.org/
● Formally-proven compilers
● Still bugs in the non-proven front-ends :)

https://compcert.org/
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Compiler Trojans

Compiler trojans
● They are even more awful
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Compiler Trojans

printf("Hello, world!\n");

How is '\n' parsing implemented in the compiler?

c = *ptr++;
if (c == '\\') {
  c = *ptr++;
  switch (c) {
    case 'n': putchar('\n'); break;
    case 'r': putchar('\r'); break;
    ...
  }
}
ERrr, chicken-and-egg problem!!
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Compiler Trojans

printf("Hello, world!\n");

How is '\n' parsing implemented in the compiler?

c = *ptr++;
if (c == '\\') {
  c = *ptr++;
  switch (c) {
    case 'n': putchar(10); break;
    case 'r': putchar(13); break;
    ...
  }
}
Chicken-and-egg problem avoided
But we could just go back?
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Compiler Trojans

printf("Hello, world!\n");

How is '\n' parsing implemented in the compiler?

c = *ptr++;
if (c == '\\') {
  c = *ptr++;
  switch (c) {
    case 'n': putchar('\n'); break;
    case 'r': putchar('\r'); break;
    ...
  }
}
And that will work!
The \n ↔ 10 and \r ↔ 13 mapping is burried in the compiler binary!
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Compiler bootstrap

Does it produce the same binary?
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Compiler trojans

Now, think about something horrible...
Can we burry some trojan in a compiler?
Yes, we can
Ken Thompson played with it around 80’s...
... very successfully!
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Compiler trojans

UNIX login command
● Checks the password of the user logging in
● Basically,
   strcmp(given_passwd, expected_passwd) == 0

● But the login source could contain a backdoor
   strcmp(given_passwd, expected_passwd) == 0
|| strcmp(given_passwd, "mysupersecret") == 0

● But that’s very visible in the source code...

● But we can burry this in the compiler!
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Compiler trojans

Thompson’s hacked compiler
● Basically, he added

if (code I am compiling looks like
 "strcmp(given_passwd, expected_passwd) == 0")
    replace_it_with
  "strcmp(given_passwd, expected_passwd) == 0
|| strcmp(given_passwd, "mysupersecret") == 0";

● Then compiled login.c
● Got a login command that contains the backdoor

– Even if login.c does not contain it!
● But still visible in the compiler source code...
● But we can burry this in the compiler!
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Compiler trojans

Thompson’s hacked compiler
● (Less) basically,

if (code I am compiling looks like
 "strcmp(given_passwd, expected_passwd) == 0")
    replace_it_with
  "strcmp(given_passwd, expected_passwd) == 0
|| strcmp(given_passwd, "mysupersecret") == 0";
if (code I am compiling looks like a compiler)
    Add code above and this code;

● Then compiled the patched compiler
● Then used it to compile the unpatched compiler
● Then used that to compile login.c
● Backdoor is there, with no source code to show it!!!



  21

Compiler trojans

● First step
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Compiler trojans
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Compiler bootstrap

How was the first C compiler written?
● In assembly langage

Writing a compiler in its own language is the self-hosting step

Nowadays, language compilers initially start with a C 
implementation

● Sometimes they keep it around (e.g. ocaml),
– Useful for bootstrapping the language on a new architecture

● Sometimes not (e.g. rust)
– Another option is cross-compiling a compiler

Can we escape the compiler trust issue?
● We can’t even trust the assembler...
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Compiler bootstrap

● Stage0 bootstrap project:

hex monitor
(500 bytes)

hex0.hex hex0

hex1.hex0 hex1

hex2.hex1 hex2

cc.hex2 cc

M2-Planet C compiler
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Compiler bootstrap

● Another bootstrap approach:
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Compiler bootstrap

And check that the result is bit-for-bit identical
● Reproducible builds

That requires a long-term effort to make builds independent of
● Date
● Timezone
● Build path
● File order on disk
● System language
● ...

https://reproducible-builds.org/

Pushed for notably by the Tails Linux distribution

https://reproducible-builds.org/
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Attacking the source repository

● Remember the Linux attack attempt by injecting

● Could very well have went unnoticed
● Could very well actually exist unnoticed...
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Attacking the source repository

PHP
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Attacking the source repository

PHP
● The git server was compromised
● Allowed to sneak a couple commits in

● They decided to stop self-hosting their git repository
● Moved to github.com

Delegating security is usually not a good idea
● You cannot really control your delegate with just a contract
● Sometimes know-how is simpler to externalize, though...
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Distributing software

Signing source code cryptographically
● With e.g. PGP (using gpg tools)
● Can be automatized
● And sign releases

git uses sha1 hashes everywhere
● Considered weak nowadays
● Getting replaced

Put it in the Bitcoin blockchain?
● Hidden surprises indeed
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Distributing software

Signed source code, but
● painful to compile on one’s own laptop
● painful to collect signing keys from developers

Distribution-provided signature chain
● Here, Debian example
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Distributing software
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Distributing software

Not all software distribution does such checks
E.g. basically anybody can publish on the Python Package Index 
(PyPI) repository
→ Subject to software supply chain attack

● e.g. Typo squatting

● sudo pip install scikitlearn

● owned! That was scikit-learn

● A researcher tried to typo-squat a thousand packages, just to 
see...

● Got hundreds of thousands of downloads in 2 years...
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Distributing software

Uncontrolled repositories is a mess

e.g. Node Package Manager (npm)
● Very large hype
● > 1 million packages...
● Depend on each other
● Installing React.js pulls 3 000 packages...
● Owned by the npm company
● Do you feel the bad smell?
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Distributing software

Uncontrolled repositories is a mess

● Azer Koçulu maintained a kik module in npm
● The Kik Interactive company asked him to change the name
● He refused
● The Kik Interactive company went to the npm company
● The npm company unpublished the kik module

● Azer said #@^[, and unpublished all his packages from npm
● Including his left-pad package
● A one dozen-line package
● That thousands of packages depend on
● Including the very-used React.js, Babel, Ember.js, ...
● Basically broke large portions of websites world-wide
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How to rule the world

From Lance R. Vick
“

● Buy expired NPM maintainer email domains,
● Re-create maintainer emails,
● Take over packages,
● Submit legitimate security patches that include package.json 

version bumps to malicious dependency you pushed,
● Enjoy world domination.

”
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Conclusion

Distributing software is a complex matter
● Completely open repository is not a solution

– Even less so when owned by a company
● Cryptographic signatures are a must

– Have to maintain keyrings
● Then you have to compile

– Do you trust your compiler?
● Then you have to run

– Do you trust your Operating System?
– Do you trust your CPU?


