
 1

Sécurité des logiciels

Distributing software

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

Cliparts from public-domain openclipart.org

mailto:samuel.thibault@u-bordeaux.fr

 2

Distributing software

Source
code

Binary

Binary

Binary

Program Compile

ShipRun

Some
website

Ship

 3

Distributing software

Source
code

Binary

Binary

Binary

Program Compile

ShipRun

Some
website

Ship

BUGS

 4

Distributing software

Source
code

Binary

Binary

Binary

Program Compile

ShipRun

Some
website

Ship

BUGS

 5

Distributing software

Source
code

Binary

Binary

Binary

Program Compile

ShipRun

Some
website

Ship

Trojan horse?

 6

Compiler bugs

Compiler bugs
● They are awful
● Only way to find out: look at generated assembly code

static int g[1];
static int *p = &g[0];
static int *q = &g[0];
int foo (void) {
 g[0] = 1;
 *p = 0;
 *p = *q;
 return g[0];
}
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

 7

Compiler bugs

Compiler bugs
● They are awful
● Only way to find out: look at generated assembly code

static int g[1];
static int *p = &g[0];
static int *q = &g[0];
int foo (void) {
 g[0] = 1;
 *p = 0;
 *p = *q;
 return g[0];
}
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952

 8

Compiler bugs

Compiler bugs
● They are awful
● Only way to find out: look at generated assembly code

Compilers are very reliable
● Very heavily tested

– Millions of testcases
● Most often the bug is in your code :)
● But still sometimes you encounter a compiler bug

https://compcert.org/
● Formally-proven compilers
● Still bugs in the non-proven front-ends :)

https://compcert.org/

 9

Compiler Trojans

Compiler trojans
● They are even more awful

 10

Compiler Trojans

printf("Hello, world!\n");

How is '\n' parsing implemented in the compiler?

c = *ptr++;
if (c == '\\') {
 c = *ptr++;
 switch (c) {
 case 'n': putchar('\n'); break;
 case 'r': putchar('\r'); break;
 ...
 }
}
ERrr, chicken-and-egg problem!!

 11

Compiler Trojans

printf("Hello, world!\n");

How is '\n' parsing implemented in the compiler?

c = *ptr++;
if (c == '\\') {
 c = *ptr++;
 switch (c) {
 case 'n': putchar(10); break;
 case 'r': putchar(13); break;
 ...
 }
}
Chicken-and-egg problem avoided
But we could just go back?

 12

Compiler Trojans

printf("Hello, world!\n");

How is '\n' parsing implemented in the compiler?

c = *ptr++;
if (c == '\\') {
 c = *ptr++;
 switch (c) {
 case 'n': putchar('\n'); break;
 case 'r': putchar('\r'); break;
 ...
 }
}
And that will work!
The \n ↔ 10 and \r ↔ 13 mapping is burried in the compiler binary!

 13

Compiler bootstrap

C-based
C compiler

source
C compiler

Compilation

 14

Compiler bootstrap

C-based
C compiler

source

C compiler

C compiler
Compilation

 15

Compiler bootstrap

Does it produce the same binary?
Most probably not!

C-based
C compiler

source

C compiler

C compiler
Compilation

Compilation
C compiler

 16

Compiler bootstrap

C-based
C compiler

source

C compiler

C compiler
Compilation

Compilation
C compiler

Compilation
C compiler

Stage 1

Stage 2

Stage 3

 17

Compiler trojans

Now, think about something horrible...
Can we burry some trojan in a compiler?
Yes, we can
Ken Thompson played with it around 80’s...
... very successfully!

 18

Compiler trojans

UNIX login command
● Checks the password of the user logging in
● Basically,
 strcmp(given_passwd, expected_passwd) == 0

● But the login source could contain a backdoor
 strcmp(given_passwd, expected_passwd) == 0
|| strcmp(given_passwd, "mysupersecret") == 0

● But that’s very visible in the source code...

● But we can burry this in the compiler!

 19

Compiler trojans

Thompson’s hacked compiler
● Basically, he added

if (code I am compiling looks like
 "strcmp(given_passwd, expected_passwd) == 0")
 replace_it_with
 "strcmp(given_passwd, expected_passwd) == 0
|| strcmp(given_passwd, "mysupersecret") == 0";

● Then compiled login.c
● Got a login command that contains the backdoor

– Even if login.c does not contain it!
● But still visible in the compiler source code...
● But we can burry this in the compiler!

 20

Compiler trojans

Thompson’s hacked compiler
● (Less) basically,

if (code I am compiling looks like
 "strcmp(given_passwd, expected_passwd) == 0")
 replace_it_with
 "strcmp(given_passwd, expected_passwd) == 0
|| strcmp(given_passwd, "mysupersecret") == 0";
if (code I am compiling looks like a compiler)
 Add code above and this code;

● Then compiled the patched compiler
● Then used it to compile the unpatched compiler
● Then used that to compile login.c
● Backdoor is there, with no source code to show it!!!

 21

Compiler trojans

● First step

C-based
C compiler

source

C compiler

C compiler
Compilation

login.c
Compilation

login

 22

Compiler trojans

● Second step

C-based
C compiler

source

C compiler

C compiler
Compilation

login.c
Compilation

login

C-based
C compiler

source
C compiler

Compilation

 23

Compiler trojans

● Second step

C compiler

login.c
Compilation

login

C-based
C compiler

source
C compiler

Compilation

 24

Compiler bootstrap

How was the first C compiler written?
● In assembly langage

Writing a compiler in its own language is the self-hosting step

Nowadays, language compilers initially start with a C
implementation

● Sometimes they keep it around (e.g. ocaml),
– Useful for bootstrapping the language on a new architecture

● Sometimes not (e.g. rust)
– Another option is cross-compiling a compiler

Can we escape the compiler trust issue?
● We can’t even trust the assembler...

 25

Compiler bootstrap

● Stage0 bootstrap project:

hex monitor
(500 bytes)

hex0.hex hex0

hex1.hex0 hex1

hex2.hex1 hex2

cc.hex2 cc

M2-Planet C compiler

 26

Compiler bootstrap

● Another bootstrap approach:

C compiler

C compiler
source

Version x
C compilerCompilation

on Guix

C compiler
source

Version y
C compilerCompilation

on NixOS

C compiler
source

Version z
C compilerCompilation

on Debian

 27

Compiler bootstrap

And check that the result is bit-for-bit identical
● Reproducible builds

That requires a long-term effort to make builds independent of
● Date
● Timezone
● Build path
● File order on disk
● System language
● ...

https://reproducible-builds.org/

Pushed for notably by the Tails Linux distribution

https://reproducible-builds.org/

 28

Distributing software

Source
code

Binary

Binary

Binary

Program Compile

ShipRun

Some
website

Ship

 29

Distributing software

Source
code

Binary

Source
code

Source
code

Program

CompileRun

Some
website

Ship

Ship
ATTACKS

 30

Attacking the source repository

● Remember the Linux attack attempt by injecting

● Could very well have went unnoticed
● Could very well actually exist unnoticed...

 31

Attacking the source repository

PHP

 32

Attacking the source repository

PHP
● The git server was compromised
● Allowed to sneak a couple commits in

● They decided to stop self-hosting their git repository
● Moved to github.com

Delegating security is usually not a good idea
● You cannot really control your delegate with just a contract
● Sometimes know-how is simpler to externalize, though...

 33

Distributing software

Source
code

Binary

Source
code

Source
code

Program

CompileRun

Some
website

Ship

Ship
Sign

Verify

 34

Distributing software

Signing source code cryptographically
● With e.g. PGP (using gpg tools)
● Can be automatized
● And sign releases

git uses sha1 hashes everywhere
● Considered weak nowadays
● Getting replaced

Put it in the Bitcoin blockchain?
● Hidden surprises indeed

 35

Distributing software

Signed source code, but
● painful to compile on one’s own laptop
● painful to collect signing keys from developers

Distribution-provided signature chain
● Here, Debian example

 36

Distributing software

Source
code

Binary

Source
code

Binary

Program

ShipRun

Build

Ship

 37

Distributing software

 keyring

 38

Distributing software

Source
code

Binary

Source
code

Binary

Program

ShipRun

Distribution
server

Build

Ship
Sign Verify Sign

SignVerify

 39

Distributing software

Not all software distribution does such checks
E.g. basically anybody can publish on the Python Package Index
(PyPI) repository
→ Subject to software supply chain attack

● e.g. Typo squatting

● sudo pip install scikitlearn

● owned! That was scikit-learn

● A researcher tried to typo-squat a thousand packages, just to
see...

● Got hundreds of thousands of downloads in 2 years...

 40

Distributing software

Uncontrolled repositories is a mess

e.g. Node Package Manager (npm)
● Very large hype
● > 1 million packages...
● Depend on each other
● Installing React.js pulls 3 000 packages...
● Owned by the npm company
● Do you feel the bad smell?

 41

Distributing software

Uncontrolled repositories is a mess

● Azer Koçulu maintained a kik module in npm
● The Kik Interactive company asked him to change the name
● He refused
● The Kik Interactive company went to the npm company
● The npm company unpublished the kik module

● Azer said #@^[, and unpublished all his packages from npm
● Including his left-pad package
● A one dozen-line package
● That thousands of packages depend on
● Including the very-used React.js, Babel, Ember.js, ...
● Basically broke large portions of websites world-wide

 42

How to rule the world

From Lance R. Vick
“

● Buy expired NPM maintainer email domains,
● Re-create maintainer emails,
● Take over packages,
● Submit legitimate security patches that include package.json

version bumps to malicious dependency you pushed,
● Enjoy world domination.

”

 43

Conclusion

Distributing software is a complex matter
● Completely open repository is not a solution

– Even less so when owned by a company
● Cryptographic signatures are a must

– Have to maintain keyrings
● Then you have to compile

– Do you trust your compiler?
● Then you have to run

– Do you trust your Operating System?
– Do you trust your CPU?

