Seécurité des logiciels

Dynamic/static analysis

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

Static vs Dynamic analysis

Reminder: Halting problem

Both are useful

e Static analysis
- Issues that don’t seem to pop up in practice
— Fix bugs before seeing only their symptoms
* Dynamic analysis
- Issues that pop up in practice and can’t be analyzed

Dynamic analysis

Dynamic analysis

* We discussed compiler-injected checks last week

* Here, we start from already-compiled binaries
- Valgrind

* First, let’s discuss emulation vs simulation

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 5
break;

Emulation vs simulation

* Real program * Emulator
incl %ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 6
break;

Emulation vs simulation

* Real program * Emulator
incl %ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 7
break;

Emulation vs simulation

* Real program * Emulator
incl %ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 8
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 9
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 10
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 11
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 12
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 13
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 14
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 15
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 16
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 17
break;

Emulation vs simulation

* Real program * Emulator
incl $%ebx readmem (&opcode, 1, r[EIP]);
movl $1,%eax switch (opcode) {
jmp somewhere case INS INCL:
readmem (&args, 1, r[EIP]+1) ;
r[argsé&T7]++;
break;

case INS MOVL:
readmem (&args, 1, r[EIP]+1);
readmem(&val, 4, r[EIP]+2);
r[args&7l] = val;
break;
case INS JMP:
readmem (&target, 4, r[EIP]+1);
r[EIP] = target; 18
break;

Emulation vs simulation

So emulation is really reproducing CPU behavior
e 1-for-1

 Nachos: mipssim.cc

e Also called “interpreter”

Actually... That is what happens inside the CPU :)
* See microcode/microprogramming

In software this is ssslllooowwwww

19

Emulation vs simulation

Simulation

e Just let original program run on the native CPU
— At full speed!
This is actually what gdb does

- Also kvm, xen, User-Mode Linux, ...
Catch situations as needed, e.g. breakpoint

— Can tell the processor to stop at a given address
— Or use the INT3 instruction (fits in one byte! \xCC)

— Or tell the Operating System to catch system calls

* Very fast
But cannot observe code behavior at fine grain

20

Emulation vs simulation

What about getting the best of both worlds?
* Running native code at full speed
* But that does what we want

Just-In-Time compilation (JIT)

* Produce native code that does what we want, on the fly
* Just let it execute

e Cache the produced code, for subsequent executions

21

Emulation vs simulation

* Real program JIT version
incl %ebx EAX: .long O
movl $1,%eax EBX: .long O
Jjmp somewhere [...]

movl EBX, $eax
incl %eax
movl %eax,EBX

movl S$1,%eax
movl %eax,EAX

movl Ssomewhere, %$eax
jmp DO JUMP
22

Emulation vs simulation

JIT

* Basically like a compiler
— A C compiler takes a C source code and produces assembly code
- A JIT takes a binary code and produces binary code

e Stores emulated CPU state in memory
- Variables EAX, EBX, etc. for registers

* But optimizes emulated register access
— Native register allocation for emulated registers
- Register spilling whenever needed, just like compiler

addl %eax, $Sebx movl EBX, $eax
addl EAX, $eax
incl %ebx incl %eax

movl %eax,EBX 23

Emulation vs simulation

JIT
e Significantly longer code
* But still way faster than pure emulation

* Can inject whatever check we want, e.g.
— addresses
- undefined values

24

Valgrind

JIT

* Reads blocks of code from your binary
— Separated by jumps / syscall
- Typically the content of

* Blocks of function with no if/for/while

 if, for, while

* Produces corresponding JIT emulation blocks
- Wlth pluggable additional checks

memcheck: correct memory accesses
* helgrind: correct concurrency
e cachegrind: cache efficiency analysis
 callgrind: call graph analysis
* massif: memory usage efficiency analysis

- Caching

25

Valgrind, a trivial example

* Real program * Valgrind version
incl myvar pushl $4

pushl Smyvar
call check data rw
incl myvar

26

memcheck, what it does

Traps calls to malloc/free
Replaces them with its own implementations:
 malloc allocates a fresh area
* free checks it is a valid pointer
* free does not deallocate
* free marks area as invalid (thus forever)

Then, on memory access, check that either
* Address is on the stack
— Note: hard to determine which parts of the stack is valid
* Address is in the data segment
- Note: hard to determine which parts of the data segment is valid

e Address is inside a malloc-ed area

- That one, however, is precise
27

memcheck, how It does

Checking against list of allocations would be terribly costly

— Maintains an “A” array

* One bit per byte of memory of the process
- 1 if valid address, O if invalid address

e Sparse
— Collapse large chunks of contiguous 1/0

e At program startup, mark bss/data/rodata segments as valid
* At stack allocation, mark allocated piece as valid

* At stack deallocation, mark deallocated piece as invalid

* On malloc, fill the bits for the allocated area

* On free, clear the bits for the allocated area

28

memcheck, how It does

11111111
Stack rw—/x 11111111
| 11100000
* 00000000
00000000
11111111
11111111
11111111
mmapS.“ 11111111
11111111
00000000
00000000
00000000
4 00111111
H | 11111111
cap rw-— 11111111
00000000
B 11111111
8§ 11111111
11111111
11111111
11111111
11111111
R/OD 11111111
ata r—— 11111111
11111111
11111111
11111111

00000000 29
00000000
00000000

Libraries...

Data r'w—

Text r—-x

‘ o

memcheck, how It does

[1]
Stack r'w—/Xx [1]
| 11100000

* [0]

[0]

Libraries... (1]
[1]
[1]
mmaps... [1]
[1]
[0]
[0]
4 [0]

| 00111111
H _ [1]
eap r'w 1]
[0]
B _ [1]
SS r'w 1]
[1]
[1]
Data ™w (11
[1]
[1]
R/O Data r—— 1]
[1]
[1]
Text r—x (11

30

‘ o

memcheck, what it does (2)

Tracks uninitialized values

— Maintains a “V" array

* One bit per bit of memory of the process!!
- 0 if initialized bit, 1 if uninitialized bit
Sparse

At program startup, mark bss/data/rodata as initialized
At stack allocation / malloc, mark new area as uninitialized
On initializing memory, mark area as initialized

31

memcheck, what it does (2)

Tracks uninitialized values

Note: check is done only when actually used
* Avoids a huge lot of false positives

Conditional jump depends on uninitialised wvalue (s)

|.e. when copying data from a variable to another, just copy over
the V bits.

|.e. sometimes hard to determine where the initialization is missing
)

32

helgrind, what it does

Tracks concurrency tricks

e.g. traps calls to pthread _mutex_lock/unlock
* Checks lock acquisition ordering

 Checks no memory access at same address without a lock
held

33

valgrind: notes

Valgrind runs over the whole user process
* Including libraries, e.g. libc
* It may warn about bugs in libc :/
* |t may warn about code in libc, but error is in your code

It does not run over the kernel code

* |t lets system calls be made natively
* But it checks parameters, and marks memory accordingly

34

valgrind: notes

* False positives
* Bugs in libraries

— “suppressions”

- Rules in suppression file
- VALGRIND HG DISABLE CHECKING (variable)

* home-made allocator
- VALGRIND MALLOCLIKE BLOCK ()

35

Static analysis

36

Static analysis

Compilers can do a lot of trivial checks

* Function parameters typecheck

— That is why we #include . h files
ssize t sendfile(int out, int in, off t *offset,
size t count);

int my offset;
sendfile (out, in, &my offset, 10);
warns, and indeed might overflow!

* Also returned type!

- Without prototype, return type assumed to be int
* Bogus if it was actually a pointer!!

37

Static analysis

Compilers can do more involved checks
Function annotations
* char *strcat(char *dst, const char *src)

__attribute _ ((access(read_write, 1), access(read_only, 2)));
— Compiler will know that dst needs to be initialized somehow

* int my_printf(void *foo, const char *fmt, ...)
___attribute _ ((format (printf, 2, 3)));
— Compiler will check parameters according to printf-like format.
e char *strcpy (char *dest, const char *src)
__attribute__ ((nonnuli(1, 2)))

— Compiler will check parameters are not NULL

38

Static analysis

With optimization enabled, compiler can go further
Interval analysis
e int t[10];
for (int 1 = 0; i <= 10; i++)
t[i]=1;

e if (1 > 10)
return;
t[i] = 1;

e if (p == NULL)
printf ("oops?\n") ;
*p:O;

39

Static analysis

With optimization enabled, compiler can go further

Inter-block analysis
e 1f (1 == 0) {

printf ("foo\n") ;

p = NULL;
} else {

printf ("bar\n") ;

p = NULL;

40

Static analysis

With optimization enabled, compiler can go further
Inter-procedural analysis
e static void f(int *p) {

*p:O;

}

static void g (void) ({
int *q;

£(q)
}

41

Static analysis

With optimization enabled, compiler can go further

e gcc does some of it
- But not all it could, it's just a compiler

e cppcheck does more of it
e coverity does a lot more of it

We’'ll see that in the practice lesson

42

Stressing your code :
fuzzing, coverage, CI

43

Fuzzing

Making sure your program doesn’t misbehave

e Just feed it random stuff!
- unzip /dev/random
* Or not so random
— Prepare zip-looking file. zip
- unzip file.zip
* Even better, carefully-chosen random
- Prepare zip-looking file.zip
- unzip file.zip
— Observe which parts of unzip have been executed
— Try to modify £ile. zip randomly
- Observe again
— etc. until all parts of unzip have been tried
— Code coverage

Fuzzing tools : AFL, libFuzzer, honggfuzz

44

Code coverage

Not only fuzzing :)

Program testsuite

* Should check all parts of the program
e gcc —--coverage

e gcov generates coverage report

45

Continuous Integration

All of this (valgrind, [altu]san, cppcheck, coverity, fuzz) take time
But it can be all automated!

Run this during the night
— Morning report of all the bugs you commited the day before

Run this on merge requests
— Before integrating external contributions

46

Conclusion

47

Conclusion

Valgrind has extremely little false positives
* Always keep your code valgrind-warnings-free
* Use CI for this

asan/lsan/usan have extremely little false positives
e Can as well just develop with asan always enabled

Static analysis tools are costly
* Use CI for them

48

