
 1

Sécurité des logiciels

Compilation hardening

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr

 2

GOT overwriting

 3

Calling a library function?

#include <stdio.h>
int main(void) {
 puts("foo");
 return 0;
}

How does this actually work?

 4

Calling a library function?

...
extern int puts(const char *s);
...
int main(void) {
 puts("foo");
 return 0;
}

 5

Calling a library function?

...
extern int puts(const char *s);
...
int main(void) {
 puts("foo");
 return 0;
}

gcc test.c -o test.o -c ; objdump -d test.o
[...]
1040: e8 00 00 00 00 callq 10 <main+0x10>

I.e. leaves a “hole”, a “relocation”: no idea what it should be yet

 6

Calling a library function?

...
extern int puts(const char *s);
...
int main(void) {
 puts("foo");
 return 0;
}

gcc test.o -o test ; objdump -d test
[...]
1040: e8 eb fe ff ff callq 1030 <puts@plt>

“Filled” the hole
The thing is: we don’t know where libc will be in memory!

 7

Calling a library function?

<main>
1040: e8 eb fe ff ff callq 1030 <puts@plt>

Disassembly of section .plt :
<puts@plt>:
1030: ff 25 e2 2f 00 00 jmpq *0x2fe2(%rip)
 # 4018 <puts@GLIBC_2.2.5>
1036: 68 00 00 00 00 pushq $0x0
103b: e9 e0 ff ff ff jmpq 1020 <.plt>

Disassembly of section .got.plt :
4018: 36 10 00 00 00 00 00

mailto:puts@plt

 8

Calling a library function?

.text r-x

main

.plt r-x
puts@plt

.plt

.got.plt rw-

R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

.text r-x

puts

 9

Calling a library function?

.text r-x

main

.plt r-x
puts@plt

.got.plt rw-

R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

.text r-x

puts

.plt

 10

Calling a library function?

.text r-x

main

.plt r-x
puts@plt

.got.plt r--

R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

.text r-x

puts

.plt

 11

Calling a library function?

● Library calls through GOT
● By default, function names resolved lazily
● By default, GOT writable

→ attack target
→ making it read-only after program load

● -Wl,-z,relro -Wl,-z,now
● One example of build-time fortification option

● Possibly use prelink

 12

Fortifying the build

 13

Fortifying the build

● Checks in the generated code
● Checks in libc
● Guard areas
● Strengthened linking
● Strengthened memory layout

● More or less execution-time cost
● But considered worth the price

 14

Fortifying the build
Memory layout

 15

Memory layout

● ASLR!
– Nowadays, all areas at random locations
– Large holes between regions
– Requires PIE options for text
-fPIE -pie

– (Already by default nowadays)

● Non-executable stack
-Wl,-z,noexecstack

– (Already by default nowadays)

● Control-related data in read-only regions
-Wl,-z,relro -Wl,-z,now

– Also use const as much as possible
– e.g. for structures containing methods pointers

 16

Memory layout

Structures containing methods pointers
● Common in large C programs

– Use const!

● Quite common in C++ programs
– Object virtual methods!

→ Attack targets
-fvtable-verify=std

– Verifies the target makes sense for the object

● More generally, all indirect calls / jumps
-fcf-protect=branch

– Verifies the target makes sense
● Hardware support being added by Intel:

CET (Control-Flow Enforcement Technology)
– All branch targets marked with ENDBR

 17

Fortifying the build
Stack protection

 18

Stack protection

Stack-based buffer overflow

ret@

 19

canary

Stack protection

Stack-based buffer overflow
Adding a canary

● Overwritten as well
● Checked before ret instruction
● Ideally random (and per-thread), or
● 0x000d0aff

– Contains a ‘\0’
– Contains a ‘\r’ + ‘\n’
– Contains ~’\0’

ret@

 20

Stack protection

Stack clashing
● What happens if stack grows too much?

heap

 21

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash

heap

guard

 22

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it

heap

guard

 23

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it
● Make the compiler allocate precautiously

– -fstack-clash-protection

heap

guard

 24

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it
● Make the compiler allocate precautiously

– -fstack-clash-protection

heap

guard

 25

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it
● Make the compiler allocate precautiously

– -fstack-clash-protection

heap

guard

 26

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it
● Make the compiler allocate precautiously

– -fstack-clash-protection

heap

guard

 27

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it
● Make the compiler allocate precautiously

– -fstack-clash-protection

heap

guard

 28

Stack protection

Stack clashing
● What happens if stack grows too much?
● Putting a stack guard to prevent clash
● But if really large allocation, could step over it
● Make the compiler allocate precautiously

– -fstack-clash-protection

heap

guard

 29

Stack protection

Control-Flow Protection
● Basic issue: we are not returning where we are supposed to

Also remember Return-Oriented Programming
● Picking up gadgets from libc

addl $12,%esp
ret

Basically, erratic control flow

 30

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space

 31

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space

 32

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space

 33

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space

 34

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space
● Check equality on ret

 35

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space
● Check equality on ret

 36

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space
● Check equality on ret

 37

Stack protection

Control-Flow Protection

Shadow stack
● Replicates return addresses
● Somewhere else in address space
● Check equality on ret

Hardware support being added by Intel:
CET (Control-Flow Enforcement Technology)

● Shadow stacks only writable by call/ret instructions

 38

Fortifying the build
_FORTIFY_SOURCE

 39

_FORTIFY_SOURCE

-O2 -D_FORTIFY_SOURCE=1 (or 2)

Includes various additional compile-time or run-time checks

● Array bounds
● Parameters
● Unused error result
● And more!

 40

_FORTIFY_SOURCE

int main(void) {
 char s[10];
 read(STDIN_FILENO, s, 11);
}

For read, s is just a char *, and it is told it is 11-bytes big.

But compiler knows better!
And libc headers can benefit from it
__builtin_object_size(s, 0) returns 10
abbreviated __bos(s)

 41

_FORTIFY_SOURCE

In the libc headers

static inline
ssize_t read(int fd, void *buf, size_t n)
{
 return __read_chk(fd, buf, n, __bos(buf));
}

__read_chk can then check that n ≤ __bos(s)

 42

_FORTIFY_SOURCE

In the libc headers, even better:

static inline
ssize_t read(int fd, void *buf, size_t n)
{
 if (!__builtin_constant_p(n))
 return __read_chk(fd, buf, n, __bos(buf));
 if (n > __bos(buf))
 return __read_chk_warn(fd, buf, n, __bos(buf));
 return __read_alias(fd, buf, n);
}

__read_chk_warn wears a compile-time warning

 43

_FORTIFY_SOURCE

int main(void) {
 char s[10];
 strcpy(s, "Hello, world!");
}

Similar check for overflow

 44

_FORTIFY_SOURCE

int main(void) {
 int fd;
 fd = open("test.txt", O_RDONLY);
 ...
}

 45

_FORTIFY_SOURCE

int main(void) {
 int fd;
 fd = open("test.txt", O_RDWR|O_CREAT);
 ...
}

 46

_FORTIFY_SOURCE

int main(void) {
 int fd;
 fd = open("test.txt", O_RDWR|O_CREAT, 0600);
 ...
}

Check for missing parameter

 47

_FORTIFY_SOURCE

int main(int argc, char *argv[]) {
 char *s;
 asprintf(&s, "Hello, %s!\n", argv[1]);
 ...
}

Warn about unused result

 48

_FORTIFY_SOURCE

int myfunc(const char *s) {
 printf(s);
 ...
}

As discussed last week, bad idea.
But perhaps s really is a static constant string?
How to know?

 49

Fortifying the build
[almtu]san

 50

[almtu]san

Address / Leak / Memory / Thread / Undefined SANitizer
● In-compiler additions
● Small-ish checks
● Not negligible overhead! (can be 2x - 3x!)
● Very useful for debugging, Continuous Integration

 51

[almtu]san

Address / Leak SANitizer
● use-after-free

free(s); printf("%s\n", s);
● double-free

free(s); free(s);
● memory leaks

/* No free :) */
● use-after-return

int *f(void) {
 int a;
 return &a;
}

● use-after-scope
int *p;
{ int a; p = &a; }
printf("%d\n", *p);

 52

[almtu]san

Address / Leak SANitizer
● heap/stack/global buffer overflow

– Keeps track of set of valid addresses
– Knows exactly where variables & arrays are!
– Checks address on each pointer dereference

 53

[almtu]san

Memory SANitizer (LLVM-specific for now)
● Keeps track of set of initialized addresses
● Checks it on each pointer dereference for read

 54

[almtu]san

Thread SANitizer
● Looks out for

– Race conditions
– Lock ordering conflicts

 55

[almtu]san

Undefined SANitizer
● Looks out for undefined behavior (see previous course)

– Integer overflow
– Undefined integer shifts
– ...

 56

Cheat sheet

(bold options: now by default in Debian’s dpkg-buildflags)
● -Wall -Wextra -Wformat -Werror=format-security
● -fPIE -pie
● -Wl,-z,relro -Wl,-z,now
● -Wl,-z,noexecstack
● -fstack-protector-strong
● -fstack-clash-protection
● -D_FORTIFY_SOURCE=2 -O2
● -fvtable-verify=std
● -fcf-protection=full

Use hardening-check to check your binaries

For debugging,
● -fsanitize=address (or leak, or memory, or thread, or

undefined, or several at the same time)

