
 1

Sécurité des logiciels

Samuel Thibault <samuel.thibault@u-bordeaux.fr>
https://dept-info.labri.fr/~thibault/enseignements#SecuLang

Transparents de
Emmanuel Fleury <emmanuel.fleury@u-bordeaux.fr>

CC-BY-NC-SA

mailto:samuel.thibault@u-bordeaux.fr
https://dept-info.labri.fr/~thibault/enseignements#SecuLang
mailto:emmanuel.fleury@u-bordeaux.fr

 2

Motivation

 3

Internet is under attack!!!

Newsgroups: comp.risks
Subject: Virus on the Arpanet - Milnet
<Stoll@DOCKMASTER.ARPA> Thu, 3 Nov 88 06:46 EST

Hi Gang!

It's now 3:45 AM on Wednesday 3 November 1988. I'm tired, so don't believe
everything that follows... Apparently, there is a massive attack on Unix
systems going on right now.

I have spoken to systems managers at several computers, on both the east & west
coast, and I suspect this may be a system wide problem. Symptom: hundreds or
thousands of jobs start running on a Unix system bringing response to zero.

[...]

This virus is spreading very quickly over the Milnet. Within the past 4 hours,
I have evidence that it has hit >10 sites across the country, both Arpanet and
Milnet sites. I suspect that well over 50 sites have been hit. Most of these
are "major" sites and gateways.

[...]

This is bad news.

 4

An Autopsy of the
« Morris Worm » Case

● Nov. 2, 1988, 6PM (East Coast Time), New-York:
Morris drop his worm on the network of the MIT Artificial Intelligence Lab.

● Nov. 2, 1988, 7PM (East Coast Time), Berkeley:
Berkeley main Gateway get infected.

● Nov. 3, 1988, 6AM (East Coast Time), All over US:
After a night spent fighting the worm system administrators start to gather
information and organize resistance. At this time about 2,500 backbones
are down thus almost shutting down the Internet.

● Nov. 4, 1988, Berkeley, Usenix Conference:
A lot of the most talented system administrators from US were attending
Usenix conference in Berkeley and had to solve the problem remotely from
there (most of the time by phone as they can’t log on their server). A first
analysis of the Worm is presented at one of the Workshop and patches
start to get forged.

● Several days later:
The worm is eradicated from the backbones of Internet, security updates
and patches are applied. Morris is arrested at his university.

 5

Sequel of Morris Worm

 6

What we learnt from the Worm

● People are more dependant of information networks than
they could think (nowadays, they also share a lot more
sensitive information than they think without being prepared for
it);

● Internet is sensitive to massive network attacks;
● Internet security is a World wide problem.
● There is a need for computer security experts able to deal

with such alerts. Forging patches against new attacks,
inventing better counter-measures, staying ahead from
potential attackers.

● There is a need for central agencies gathering informations
and coordinating efforts about computer security issues.

There is a need for an international community of experts
exchanging about computer security in real-time.

 7

Vulnerability Statistics
(CERT|CC)

Year #Vulns
1999 894
2000 1,020
2001 1,677
2002 2,156
2003 1,527
2004 2,451
2005 4,935
2006 6,610
2007 6,520
2008 5,632
2009 5,736
2010 4,652
2011 4,155
2012 5,297
2013 5,191
2014 7,946
2015 6,480
2016 6,447
2017 14,714
2018 16,556
2019 12,174

 8

What is ‘Software Security’?

 9

Computer Security

● Security is « the freedom of danger, risk, and loss ».

● Data security : Protect/Attack static data
● Protocol Security : Protect/Attack data exchanges
● Software Security : Protect/Attack computer programs
● Social Engineering : Protect/Attack humans with computers

 10

Software Security Goals

● Preventing / finding misusage of computer programs in order
gain unauthorized capabilities or knowledge

● Application Security :
– Lies in user space
– Concerns about usual programming errors

● Buffer overflows, heap-overflows, format string bugs, …

● Operating System Security :
– Lies in kernel space
– Concerned about structural security

● Access control, randomization of memory layout, data execution prevention, …

 11

Security Flaws : Why?

● Computer programs are complex and long !
They need experts to be handled properly.

● Programs interact with each others in an unpredictable way.

● Networks leverage program interactions of several magnitude
orders.

● Internet is an extremely hostile place where you cannot hide.

● What You See Is Not What You eXecute (WYSINWYX).
(see next slides. . .)

 12

Architectural Models

● Harvard Architecture
– First implemented in the Mark I (1944).
– Keep program and data separated.
– Allows to fetch data and instructions in the

same time.
– Simple to handle for programmers but less

powerful for computers.

● Princeton Architecture
– First implemented in the ENIAC (1946).
– Allows self-modifying code and entanglement

of program and data.
– Difficult to handle for programmers but more

powerful for computers.

 13

What consequences
on Real World ?

● Facts about modern software:
– Programmers are coding in Harvard architecture.
– Machines are executing code in Princeton architecture.
– Compilers translate code from Harvard to Princeton architecture.
– But, a few is lost in translation. . . and some bugs may allow malicious

users to access unauthorized features through unexpected behaviors.

Most of the security issues in software security are
coming from a misunderstanding of

the coupling of these two architectures.

– Exploitation is basically using such “machine” outside of its
specifications.

 14

A Magic Example

Please no spoil

 15

Security Vulnerabilities

 16

Managing
Security Vulnerabilities

Discovering and Listing all the known vulnerabilities.

Process
1. Discover: Find a potential threat in a product;
2. Submission: Notification by users or analysts on a specific product;
3. Triage: Recognize already registered issues and dropping it;
4. Registration: Give a recognizable name;
5. Analysis: Understanding the issue in depth;
6. Fix: Solving the issue in the product.

We need a unique ID for each vulnerability!
Helps to quickly identify and analyze a vulnerability.

Requires a central structure to assign IDs!

 17

Common Vulnerabilities
and Exposures

● CVE Numbering Authority (CNA) (Debian, Apple, Google, …)

CVE-2014-0224
 year unique ID

● A CVE identifier includes :
● Number
● Brief description of security

vulnerability or exposure
● References (reports/advisories)

 18

CVE – Issue Sheet

 19

CVE - Homepage

 20

CVE – Web Form Submission

 21

CVE Details – Homepage

 22

CVE Details - Product

 23

CVE Details - Issue

 24

On-line
Vulnerability Advisory Databases

● US Computer Emergency Readiness Team (US-CERT)
– http://www.kb.cert.org/vuls/

● Common Vulnerabilities and Exposures (CVE)
– http://cve.mitre.org/

● CVE Details
– https://www.cvedetails.com/

● Packet Storm Security
– https://packetstormsecurity.com/

● National Vulnerability Database (NVD)
– http://nvd.nist.gov/

● Debian Security Advisory (DSA)
– http://www.debian.org/security/

● Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI)
– http://www.ssi.gouv.fr/

● CERT-FR
– http://cert.ssi.gouv.fr/cert-fr/certfr.html

http://www.kb.cert.org/vuls/
http://cve.mitre.org/
https://www.cvedetails.com/
https://packetstormsecurity.com/
http://nvd.nist.gov/
http://www.debian.org/security/
http://www.ssi.gouv.fr/
http://cert.ssi.gouv.fr/cert-fr/certfr.html

 25

Typology of
Software Security Risks

Threat
● A threat is a way for an attacker to misuse the program in an

unexpected manner. Threats are coming from:
– Algorithm Flaws: Design error at the algorithmic level.
– Program Bugs: Programming error leading to some unexpected

behavior.

Threats are potential security issues.

Vulnerability
● A vulnerability is a threat which can be used to gain some

unexpected advantages. Vulnerabilities are embodied through:
– Proofs of Concept: Program pinpointing the problem (usually not

harmful).
– Exploits: Program using the problem to effectively gain unauthorized

capabilities.

Vulnerabilities are actual security issues.

 26

Where Vulnerabilities can lie?

Program = Data + Algorithm + and more…

Attackers always target the weakest point :

● Information Flow
– Modify or control data values, inject arbitrary code, …

● Execution Flow
– Modify or control the running process by program counter overwriting,

return-into-libc attacks, symbol overload, . . .
● Resources

– Exhaust available resources (denial of service), spoof trusted resources
(man-in-the-middle), . . .

● Users
– Social engineering, Malwares (trojan horses, viruses, rootkits, . . .),

human mistakes (weak passwords, bad habits, . . .).

 27

Vulnerabilities Classification

● Remote/Local Exploit
– An attacker can exploit it from remote (resp. local) location.

● Information Leakage/Disclosure
– Some private information can be captured by the attacker.

● Identity Theft
– The attacker can pretend be someone else.

● Privilege Escalation (Root Exploit)
– The attacker can upgrade his privileges (resp. up to the root level).

● Arbitrary Command Execution
– The attacker can run any program which is available from the target.

● Arbitrary Code Execution
– The attacker can inject any program in the target and execute it.

● Denial of Service
– The attacker can deny access (temporarily or permanently) to a

service.

 28

Examples of real flaws

 29

The Heartbleed Bug

● Normal Use
– Step 1: Send a string and the string

length to the server;
– Step 2: The server receive the message

and reply by sending back the string;
– Step 3: The client get the string back.

● Triggering the Flaw
– Step 1: Send the smallest string possible

and the maximum string length to the
server;

– Step 2: The server receive the message
and reply by sending back the minimal
string and part of the process memory;

– Step 3: The client get the string back
plus extra-information.

 30

Attempt to insert
a backdoor in Linux

● In November 2003, kernel developers noticed that an attacker
tried to sneak a patch into the kernel sources of kernel/exit.c
(see ‘man clone’).

 31

Goals of the Course

Wake up, Neo
● Realize how many ways programming can get wrong
● Emphasize on C, but also look at various languages

Secure Programming
● Better understanding the limits of software security;
● Better knowledge of what is going “backstage”.

Code security Auditing
● Find software weaknesses and estimate threat;
● Understand security advisories.

 32

Course Outline

● Introduction to software security

● Usual Programming Flaws
● x86 Assembly Language

● Shellcodes
● Stack-overflows
● Heap-overflows
● Format strings

● Compilation hardening
● Analysis tools

 33

Process layout

Learn this by heart!!

● Stack: local variables

● Heap: dynamic variables
– Malloc, asprintf, …

● Bss: static variables initialized to 0

● Data: static variables initialized to non-0

● R/O Data: const data

● Text: Code

