A Multiparadigmatic Study
of the Object-Oriented Design Patterns

Ph. Narbel
LaBRI, University of Bordeaux 1
351, Cours de la Libération, 33405 Talence, France
narbel@labri.fr

Abstract. The understanding of programming paradigms has not been
fully established yet, though many mainstream languages, e.g. C++,
Java, ML, offer more than one paradigm. This paper addresses this un-
derstanding problem through a programming experiment: considering
the classic object-oriented programming (OOP) design patterns as de-
scribed in the GoF book [GHJV95], we systematically look at them from
the viewpoint of other paradigms, in particular the generic modular and
the functional paradigms. The main results of this experiment are: (1)
Many OO design pattern intents are meaningful in a more general setting
than OOP, and as such they are good candidates for exploring paradigms;
(2) Many OO design patterns have counterparts in generic modular pro-
gramming, but with different properties, in particular with respect to
dynamic/static behavior and type safety; (3) Some OOP design patterns
can be implemented by using basic functional programming, justifying
the idea that functional programming can also be seen as a simplified
OOP having its place in a OO language; (4) Some OOP design patterns
seem definitely associated with the OOP paradigm, stressing the intrinsic
properties of this paradigm.

Keywords : Design patterns in OOP, design patterns in generics, design
patterns in functional programming, design patterns in OCaml.

1 Introduction

A design pattern describes a solution that addresses a recurrent design problem in
programming. As such, a pattern helps a programmer in building software archi-
tectures and in having new ideas. More generally, a pattern explicits a high level
of knowledge in a specific area of programming. Although patterns have been
mostly recognized and developed for object-oriented programming [GHJV95],
they clearly exist in any paradigm, and even in any style or language (see
e.g. [AIS77,CS95,Gab96]). This said, some questions arise: are patterns intrinsic
to paradigms? May patterns contribute to the understanding of paradigms? May
patterns in one paradigm help in finding patterns in other paradigms?

The purpose of this paper is to develop and synthesize some effective answers
to the above questions. As a matter of fact, design pattern intents often hap-
pen to be more general than specific needs to be found within one paradigm.
Also, paradigms sometimes offer similar constructions even if these show different
properties, e.g. with respect to simplicity, encapsulation, type-safety, extensibil-
ity, etc. In the light of these remarks, the idea here is to revisit the classic OOP

design patterns as described in the GoF book [GHJV95] from a multiparadig-
matic viewpoint: Each pattern is systematically looked at, discussed, attempted
to be translated into other paradigms than OOP, in particular into generic mod-
ular programming and into basic functional programming.

Modular programming is roughly speaking the use of syntactic units with en-
capsulation capabilities (see e.g. [Par72,Sco00,SGMO02]). This kind of program-
ming gives rise to some comparable software architecture problems as in OOP, in
particular when OOP is based on a class-is-module model, like in Java or C++:
the main architecture structuring component level is the same, and accordingly
similar transmission, extension, adaptation problems occur. Of course, these sim-
ilarities are encountered when module systems are sophisticated enough so as
to be able to compete with the specific mechanisms associated with OOP. For
instance, Ada or Modula-3 fall into this category, but even more the ML-like
languages [Mac86,HP05,Dre05]. In these module systems, modules are typed,
they can statically be transformed by using parameterized modules — called ML-
functors —, they can exploit inclusion-based inheritance, they can handle subtype
relationships, etc. In other words, these module systems provide the program-
mer with fully typed generic modular programming. Still, in translating OOP
techniques into modular programming techniques, object transmission must be
replaced by module transmission, dynamic behavior must often be replaced by
static behavior, and specific class constructions must be replaced by specific ab-
stract data type constructions. Nevertheless, general software design qualities
can be preserved and compared. For instance, signs of this fact can already be
observed in C++ when class templates are used to obtain more static behavior
and type precision, as well as less execution overhead and various optimization
possibilities (see e.g. [CE00,Ale01]).

Functional programming is based on functions seen as independent units,
implemented by the concept of closure (see e.g., [Rea89,FWH92]), that is, en-
capsulation of code together with an associated private environment. As such,
closures can be seen as a special kind of simple objects. Thus, when single behav-
ior transmission or modification is involved in some OOP technique, functional
programming may offer more straightforward equivalent forms. In other words,
functional programming can sometimes be a good ally to simplify some OOP
techniques. For instance, signs of this fact can already be observed in C++ in
some overloading uses of the function call operator “()” — called C++-functors
(see e.g. [Cop92,CE00,Ale01]), and discussions about this paradigm relationship
already exist (see e.g. [Kiith99,SM00,MS04]). On the other hand, typed functional
programming like in ML or Haskell offers a kind of safe union types called induc-
tive types (or sum types). These types allow one to define type structures which
are similar to class hierarchies. Thus, as in the case of functional closures, these
type constructions may sometimes offer convenient comparable programming
forms.

Now, looking at each OOP design pattern in [GHIJV95] with the two above
paradigms in mind will lead us to the following general view and classification
of these patterns:

1. (Generic Modular Design Patterns). Some OOP design patterns have a direct
meaning and translation into generic modular programming:

o (Architectural Patterns): OOP patterns addressing general software ar-
chitecture problems, i.e., patterns able to make units more adaptable and
more composable in a general setting, i.e., Facade, Bridge, Adapters,
Visitor, Strategy, Template method, Singleton.

e (Data Type Definition Patterns): OOP patterns able to make specific
object/data type definitions more adaptable and more composable, i.e.,
Composite, Interpreter, Iterator, Abstract Factory, Factory Method,
Builder.

e (Data Type Transformation Patterns): OOP patterns having a global
and uniform effect on existing user-defined data types, and on the ob-
jects/values they produce, i.e., Proxy, Decorator, Singleton, Visitor.

The rationale of these distinctions is the following: the first subset contains
very general patterns which are naturally not bound to any paradigm. The
second and third subsets are about data types, which generally take a central
role within a paradigm and ask for specific design questions. Defining new
types or modifying existing types often make use of different constructions.
2. (Functional Design Patterns). Some OOP design patterns are close to plain
functional programming techniques because of closures and inductive types:

o (Simple Functional Patterns): OOP patterns addressing single method
encapsulation/transmission problems, i.e., Command, Strategy, Tem-
plate Method, Chain of Responsibility.

o (Functional Type Patterns): OOP patterns addressing union-like and re-
cursive type definition problems, i.e., Composite, Interpreter, Visitor.

This last subset consists of patterns dealing with a very sensitive program-
ming matter, that is, balancing between flexibility, staticness and encapsula-
tion. These patterns have already been most debated, in particular under the
name of “expression problem” (see e.g. [Wad98,App97,Bru03,Tor04,ZMO05]).

3. (“Pure” OO Design Patterns). Some OOP patterns are not easily translated
into other paradigms. This is the case when objects takes their full part into
these patterns, that is, patterns specifically dealing with autonomous values
with individual mutable states and behavior:

o (State-Oriented Patterns): OOP patterns addressing managing encapsu-
lated state problems, i.e., State, Memento, Mediator, Observer, Fly-
weight.

o (Object Independent Behavior Patterns): OOP patterns devoted to build-
ing objects of the same type but with different implementations, i.e.,
Prototype, Abstract Factory, Factory Method, Builder.

These “irreducible” patterns allow one to more precisely understand what is
essential to the OO paradigm. No surprise, the characteristic features are to
be found in the objects themselves, rather than in the usual OOP facilities
like classes, interfaces, or inheritance.

The next figure gives a synthetic view of this multiparadigmatic way of looking
at the OOP design patterns. There are 17 patterns out of the 23 presented
in [GHJV95] which can be seen as being not exclusive to OOP. Overlapping
occurs since some patterns can be associated with more than one of the above
pattern categories, and can have more than one translation:

Data Type Definition

Pure Object-Oriented

State Mediator Abstract Factory Iterator .
Memento Flyweight Factory Method _ ﬂ\ncﬂonal TypE
Observator Prototype Builder Composite

Interpreter

J

Data Type Transformation

~N

Proxy] . h
Decorator (Singleton (Visitor >, J
Brid Strat)

ridge rate:
Facade 9 o
Adapters Template Method
J
Architectural Command

Chain of Responsibility
J

Simple Functional

Note that this kind of programming experiment has already been undertaken
(see e.g. [Nor96,BLR9S8]). However, we stress here on two ideas: First, most clas-
sic OOP patterns in [GHJV95] mainly address problems raised when dealing
with encapsulated units. Most of them provide techniques to ensure flexibility
while preserving encapsulation. When no encapsulation takes place, these pat-
terns may indeed become trivial or even irrelevant. An example is given by the
Visitor pattern. Second, most of the ideas behind the OOP patterns in [GHIV95]
are general enough so as not to be interpreted as missing language constructs.
Of course, this could be sometimes a matter of interpretation. For instance, Sin-
gleton can be seen as an emulation of a plain module construct, but it can also
be interpreted as a technique for using a class and enforcing a specific behavior
over its instantiation.

In the following pages, we precise and justify the above viewpoint. Our main
translation language will be ML (its dialect OCaml [LDG*06]). In fact, OCaml
also offers a full object system, but according to our programming experiment, we
restrict ourselves to generic modular and functional programming capabilities.
Note that most of the generic modular programming translations could also have
been discussed in Ada95 or Modula-3.

2 Design Patterns and Generic Modular Programming

Let us first recall some important differences between OOP and modular pro-
gramming by stating their main respective advantages:

e Advantages of OOP: dynamic variation/choice of encapsulated code, and
exploitation of object type compatibilities.
e Advantages of modular programming: static verification and type safety, and
more optimization possibilities.
OOP promotes type compatibilities between object types, a very powerful tool to
obtain flexibility at run-time. However, static verification and type precision are
sometimes difficult to ensure. Well-known intrinsic problems occur for instance
when n-ary methods need coherent object arguments, e.g. in comparison methods
(see e.g. [BCCT95,CMLCO06]). Also, execution overhead may come from late
bindings (see e.g. [Cra02]), even if this effect must not be overestimated.

This said, many similarities can be observed between OOP and modular
programming, particularly when classes are the main encapsulating construc-
tion, like in Java or C++, and when sophisticated typed modular generics is
available. The following points make this fact more precise, being the basics to
understand how some OO design patterns may have admissible counterparts in
generic modular programming:

1. (Interfaces). The relationship interface/implemented class is similar to the
relationship module signature/ module. In particular, ML module signatures
are interfaces which can be instantiated by more than one module (an im-
portant property from the point-of-view of parameterized modules whose
parameters are typed by signatures). ML-like module signatures and mod-
ules take the following form in OCaml:

module type S = sig module M : S = struct
type t type t = int
val £ : t % t —> int let £ (x, y) = 2%(x + y)
[(o]

end end

2. (Inheritances). Inclusion is a simple way of looking at inheritance. Module
inclusion has indeed some similarities to class inheritance:

module M1
module M2

= struct [...] end
= struct include M1 [...] end (x M1 is copied into M2 x)

Interface inheritances are similar to signature inclusions as well:

module type S1
module type S2

sig [...] end
sig include S1 [...] end (% S1 is copied into S2 x)

The above similarities are deeper than just syntactic sugar constructions:
the derived signature S2 is compatible with S1, that is, if a module M2 im-
plements 82, it also implements S1 (since M2 implements everything in S1).
For the same reason, if the header of a parameterized module has the form
F(X:S1), then F(M1) and F(M2) are both valid applications of F. Moreover,
some overridings may be available when multiple definitions are allowed: the

semantics is generally to consider only the last occurrence of a definition
(with no late binding capabilities). Also, very naturally in generic modular
programming, such inheritance can be generalized into generic inheritance:

module F (X : S1) = struct
include X

[..]

end

module M2 = F (M1)

. (Delegations). The element F in an object obj1 is said to be delegated to an
object obj2 if obj2 is an instance variable of obj1 and if E is dependent on
a call to some element in obj2 (see e.g. [Cra02,GHJIV95]). This idea may be
translated into modular programming when nested modules are allowed: the
element E of a module M1 is said to be delegated to a module M2, if M2 is a
inner-module of M1 and if E is dependent on a call to some element in M2.
For instance, modular delegation in ML can be specified and implemented:

. module type WINDOW = sig
module type WINDOW_SYS = sig module Imp : WINDOW.SYS
val device_rect = [...]

(] val draw_rect : [...]

[...]

end end

module Win : WINDOW = struct
module _Imp : WINDOWSYS = [...]
let draw_rect = _Imp.device_rect [...]
end
Of course, the assignment of Imp by some module must be static (the main
difference with OO delegation). In this respect, generic modular program-
ming is of effective help:
module Win (X : WINDOW.SYS) : WINDOW = struct
module _Imp : WINDOWSYS = X
let draw_rect = _Imp.device_rect [...]
end
Staticness makes run-time component composition impossible. Nevertheless,
when object delegation is considered as a technique to improve the global
qualities of an architecture, this kind of generic modular delegation can play
a similar role.
. (Abstract classes). An abstract class C is a partially defined class such that
all its derived classes include the implemented elements of C. Although no
such mechanism exists in modular programming, a similar code factoring
effect can be obtained through generic inheritance:

module type S1 = sig module type 52 = sig

include S1
val f :
(] [] \[/al]g: [
end end
module AbstractComponent (X : S1) : 82 = struct
include X
let g = [...] /* implemented elements x/
(]
end

FEach time AbstractComponent is applied to some X, it generates a new
derived modular instance of S2 which shares the implementation of g.

Note that the two main constructions exploited in OO design patterns, i.e. dele-
gations and abstract classes, are translated into a single construction in generic
modular programming, i.e. parameterized modules with inner/included modules.
In fact, the OO constructions have the same general use, that is, code factor-
ing (see e.g. the discussion about Strategy and Template Method in [Mar03]).
Moreover, the two corresponding applications of generics have different intents,
though with static flavor in both cases. Summing up the above relationships:

Object-Oriented: Generic Modular:
interface/implemented class < module signature/module
inheritance < inclusion

delegation < nesting + generics
abstract classes < inclusion + generics

Let us now present in more detail the subsets of OOP patterns which have
translations into generic modular programming.

2.1 Architectural Design Patterns

First, there are several OO design patterns in [GHJV95] which solve general
component-based software architecture problems and, as such, may have a quite
satisfactory translation into generic modular programming;:

e Facade is a very general design pattern which can be applied to any kind
of architecture: Facade defines a higher-level component that makes a set of
components easier to use. This pattern has clear counterparts in plain or
generic modular programming.

e Bridge is one of the most general design pattern improving an architec-
ture: it decouples an abstraction from its implementation so that the two can
vary independently. In other words, Bridge extracts specific elements E out
of a unit component C in order to make C independent from E. In OOP,
reconnecting ' and C is based on delegation. Bridge is indeed the canoni-
cal pattern showing the benefits of delegation: easy selection, separation of
concerns, extensions with limited growth of the overall number of pairwise
dependent components. As described above, this kind of delegation can be
translated into generic modular programming. For instance, let us use an
example based on a window type [GHIV95]:

module type GRAPHIC_SYS = sig module type WINDOW = sig
type t module W : GRAPHIC_SYS
val device_draw : t —> unit type t = W.t
[...] val draw : t —> unit
end end

module Win (X : GRAPHIC_SYS) : WINDOW = struct
module Sys = X
type t = Sys.t
let draw w = [...] Sys.device_draw [...]
end

module Sys_0Graphics
module Sys_Tk
module Win_0Graphics
module Win_Tk

[...] (x OCaml Graphics dependent x)
[...] (x Tk dependent x)

Win (Sys_0Graphics)

Win (Sys_Tk)

As expected, a window type built after Win does not commit to a concrete
implementation of a graphic system. Moreover given a new implementation
of GRAPHIC_SYS, it is easy to get a new window type:
module Sys_OpenGL = [...] (* OpenGL dependent x)
module Win_OpenGL_Ext = Win (Sys_OpenGL)
Note that Bridge has been discussed for C++ templates (see e.g. [CE00,VJ03]).
Strategy is also a pure application of the delegation idea but with a less gen-
eral intent than Bridge: it lets an algorithm vary independently from clients
that use it. When restricted to single operations, it also has a translation in
functional programming (see below p. 13). Template method is very similar
to Strategy: it lets subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure. This pattern relies on abstract classes
instead, but can be translated into generic modular programming as well.
Object Adapter converts an interface of a component into another interface
clients expect. This pattern relies on delegation too. Class Adapter has the
same intent but instead relies on class derivation. Accordingly, these two
patterns can be translated into generic modular programming. For Class
Adapters, one may even consider multiple interface inheritance so that the
adapter type may be compatible with the adaptee and the target types:
module type ADAPTEE = sig module type TARGET = sig

type t type s
val f : t —> t val eff : s —> s
end end

module Adapter (A : ADAPTEE) : ADAPTER =
module type ADAPTER = sig struct

include ADAPTEE include A
include TARGET type s = A.t
end let eff = A.f
end;;

Any module produced by Adapter will be an implementation of TARGET, still
remaining an implementation of ADAPTEE. Note that like Bridges, adaptation
has also been discussed for C++ templates (see [CE00]).

Visitor can also be considered as a general architectural design pattern since
its intent is mainly to make an encapsulating unit hierarchy more extensible:
it lets you define a new operation without changing the classes of the elements
on which it operates. Without the Visitor idea, each class has to be derived
separately, making the overall architecture size grows out of control. Similar
undesirable effects occur in any paradigm where encapsulating units may be
related and multiple. For instance, in ML-like modular programming, con-
sider the following programming situation: assume that M1, M2, ..., Mn
are modules implementing the same signature S. For any extension of S, each
module Mi would need an individual extension, and the same is true for the
parameterized modules taking arguments of type S. Generic modular pro-
gramming Visitors are possible using the same idea as in the OOP version:
one just transmits modular Visitors as arguments to the visited parameter-
ized components. Note that when explicitly applied to data type extensions,
Visitor may also be seen as a type transformation pattern (see below p. 11).

2.2 Data Type Definition Design Patterns

Some design patterns in [GHIJV95] are related to defining object types with spe-
cific properties related to composition, flexibility and extensibility. These pat-
terns may have translations into generic modular programming when considering
the world of abstract data types (ADT):

e Composite allows one to compose objects into tree structures to let clients
treat individual objects and compositions of objects uniformly. A single type
can thus represent primitives as well as their compositions through recur-
rent definition calls and containers. In the case of usual modular ADTs, this
type flexibility is not possible: type compatibility does not a priori hold be-
tween the instances/values of different ADTs (see e.g. [Nar05]). Nevertheless,
producing composite ADTs from other ADTs remains possible in modular
programming. For instance, one can generically construct ADTs made of
lists of other ADTs:

module type S_TYPE = module Composite (X : S_TYPE) : S_TYPE =
sig struct

type t type t = X.t list

val f : t —> unit let £ 1 = List.iter X.f 1
end end

Note here that the parameterized module Composite is iterable since it is of
type S_TYPE -> S_TYPE. However, as remarked above, different implemen-
tations of S_TYPE will be pairwise incompatible. This seems to be the price
to pay for type safety. Indeed, the original OO Composite can be unsafe,
e.g. if comparison methods exist between different forms of a Composite
(see discussion in p. 5). Note that as type definition, Composite has also
possible translations into typed functional programming (see below p. 13).

e Interpreter can be seen as a specialized Composite: Given a language, it
defines a representation for its grammar along with an interpreter that uses
the representation to interpret sentences in the language. Non-terminals are
represented by abstract classes, and terminals are derived classes. Since a
grammar is often recursive, we get a composite-like organization.

e Tterator provides a way to access the elements of an aggregate object sequen-
tially without exposing its underlying representation. This pattern consists
of independently defining different iterator types able to c exploit different
data structure representations. Generic modular programming can be used
to obtain this separation of concerns. For instance, here is a simple case for

lists:
module type ITERATOR = sig
module type LIST = sig type ’'a iter
type ’a 1st type ’a iterated
val empty : ’a 1lst val make : ’a iterated —> ’a iter
val next : ’a iter —> (’a iter x ’a)
end ;; [-..]
end ;;

An explicit connection can then be set between these two signatures:

module type ITER_LIST = sig

module L : LIST

include (ITERATOR with type ’a iterated = ’a L.Ist)
end;;

Next, different kinds of list iterators may be implemented:

module Iteratorl (X : LIST) : ITER_LIST = struct

module L = X
type ’'a iter = [...]
type ’'a iterated = ’a L.1lst (x type coherence checked x)
(-]
end;;

module Iterator2 (X : LIST) : ITER_LIST = struct

module L = X

type ’'a iter = [...]

type ’'a iterated = ’a L.1lst (% type coherence checked x)
end;;

e Abstract Factory provides an interface for creating families of related or
dependent objects without specifying their concrete classes. This pattern is
based on class derivation and as such, it can also have a generic modular
programming translation. However, if the use of this pattern is explicitly to
mix up objects with different implementations, this pattern keeps its OO
flavor (cf. below p. 15). Generally, Abstract Factory is implemented with
Factory Methods which lets a class defer instantiation to subclasses, and
which are just specialized Template methods.

e Builder separates the construction of a complex object from its representation
so that the same construction process can create different representations.
This pattern has the same status as Abstract Factory.

2.3 Data Type Transformation Design Patterns

Among the design patterns in [GHJV95], some induce a global and uniform
transformation of every object produced by a class or a set of classes. The essence
of these patterns consists of transforming existing types and their values. Ac-
cordingly, they can be applied to the ADT world too:

e Proxy provides a surrogate or placeholder for another object to control ac-
cess to it. This pattern amounts to uniformly modifying or controlling the
behavior of the values of a type. For instance, a virtual Proxy creates ex-
pensive objects on demand only, that is, on their first access. This behavior
is obtained by including some laziness in the object instantiation. Here is
a straightforward way of obtaining this property with generic modular pro-
gramming (Lazy is a module in the standard library of OCaml handling

laziness):

module type SUBJECT = module Proxy (X : SUBJECT) : SUBJECT =

sig struct
type t type t = X.t lazy_t
val make_t : unit —> t let make_t () = lazy (X.make_t ())
val use_t : t —> unit let use_t x = X.use_t (Lazy.force x)
[(o]

end end

Every implementation of SUBJECT becomes lazy after the application of
Proxy. Note that the two properties of the original pattern have been pre-
served: the interface of Proxy is identical to the “real subject” X (so that
substitution can take place), and Proxy explicitly refers to the real subject.

10

e Decorator (or Wrapper) attaches additional responsibilities to an object dy-
namically. Based on a recurrent delegation to a superclass C, this pattern
allows one to compose different actions coming from possibly different ob-
jects, all being of type defined by C. As a consequence, one may transparently
enrich the behavior of a given object. Generalizing this idea, and giving up
the dynamical possibilities, a Decorator can be seen as a construction over
a type which enriches its behavior without changing its interface (ensuring
transparency and decoration composition). Thus, the same generic modular
programming technique as used in Proxy can be applied. Note that Deco-
rators have also been discussed for C++ templates (see e.g. [CE00]).

e Singleton is a simple design pattern whose intent is to ensure that a class
only has one instance, and provide a global point of access to it. In fact, Sin-
gleton amounts to transforming a class into a module: unique in a program,
its single instance centralizes some data and behavior. From this point-of-
view, modular programming would seem to need no new particular pattern
since every module is necessarily unique [BLR98]. However, Singleton often
acts as an instance of a type. In other words, its intent can also be inter-
preted as a control over the global behavior of the instantiation of a type:
one unique instance must be created. As a result, the same generic modular
technique as for Proxy can be applied.

e Visitor (see p. 8) is often used to extend the possibilities of a type. Therefore,
it can also belong to the data type transformation patterns.

3 Design Patterns and Functional Programming

3.1 Comparing OOP and Functional Programming

At first, OOP seems quite different from functional programming. However, there
are at least two similarities between these two paradigms:

1. (Functional Closures). One comparison point between OOP and functional
programming lies in the structure of their characteristic values. Indeed, ob-
jects contain states, i.e. private environments as well as (possibly implicit)
references to methods; functions in functional programming are represented
by closures, that is, private environments associated with function code, mak-
ing possible for them to be first-class citizen values. In other words, closures
are a special kind of simple objects. Note that when a functional language
includes imperative features, closures may be used to emulate object sys-
tems (see e.g. [FWH92]). As a result, when the implementation of some OO
design pattern relies on single method encapsulation or transmission, basic
functional programming techniques can be applied instead. This paradigm
shift may simplify the architecture by avoiding some class or object con-
structs. Note however that even if closures are encapsulating units, they are
a priori not at the same structuring level as modules, classes or objects. The
following possible pattern equivalences must therefore be understood in a
more general setting than just as a one-to-one mapping from classes/objects

11

to functions. Occurrences of first-class functions have to be inserted into the
code.

2. (Inductive Types). There exists another connecting point between OOP and
functional programming. Indeed, typed functional programming like in ML
or Haskell provides the programmer with a kind of union types called in-
ductive types. Instances of these types take the form of function composi-
tions, giving them their functional programming flavor. These types define
structures which are similar to class hierarchies. For instance, a linked list
structure may be based on the following similar definitions (see e.g. [PJ98]):

List

type ’'a list = [Nil } [Cons }
| Nil

| Cons of ’a x ’a list

class Nil:List class Cons:List

let length 1 match 1 with {

| Nil —> []: int length() int length()
| Coms (x, xs) —> [...] [...] [...]

As illustrated in this example, these two constructions induce two implemen-
tation styles of collecting data cases and function cases. This is a well-known
fact, discussed e.g. in [Rey75,FF99]. The inductive type style generally im-
plies full type safety, difficult type extensions, and easier associated function
set extensions. OOP style generally implies weaker type safety, easy type
extensions, and more difficult function set extensions. Because of this un-
comfortable balance, attempts were made to combine the advantages of both
styles: some recent languages include some of the inductive type style into
OOP (see e.g. [0de07]). Also, inductive types constructions were designed
to involve more flexibility (see e.g. [Gar00]).

Let us now present in more detail the subsets of OOP patterns which have
translations into functional programming.

3.2 Simple Functional Patterns

First, some design patterns in [GHJV95] are based on encapsulating and trans-
mitting methods, and may be replaced by functional closures:

e Command encapsulates a request as an object, thereby letting you parame-
terize clients with different requests. A “request” is here just an operation
considered as a first-class value. This pattern is clearly a way of emulating
functional closures with objects (see e.g. [Kiith99,SM00,MS04]). Indeed, a
Command generally involves one single method — classically called execute
— with a simple environment. Recall that C++4 offers a specific construction
to obtain objects resembling to functional closures by overloading the func-
tion call operator “()”. Using these C++-functors for Commands is not as
convenient as using functional closures (see e.g. [Ale01]).

12

e Strategy lets an algorithm vary independently from clients that use it. Based
on object delegation, we already have seen that Strategy can be implemented
by generic modular programming (cf. p. 8). However, being specifically as-
sociated with algorithms, functional decoupling can be very localized and
reduced to single operations. In this case, functional programming can be
fruitfully applied, preserving the dynamic properties of the OO pattern. For
instance, in [Mar03], one can find Strategies very similar to some functional
programming examples given in [CMP00,Nar05]. The same is true for Tem-
plate method, and thus to some extent for Factory Methods too.

v

e Chain of Responsibility is a pattern that chains the receiving objects and
pass the request along the chain until an object handles it. This pattern has
a relationship with a functional programming technique called continuation
passing style (see e.g. [SF90,FWH92,App97,FS99]). Indeed, a continuation
is a function which indicates how a computation is carried on. As first-class
functions, continuations can be passed as arguments or built within the initial
function in order to have an effect on the overall computation. For instance,
if a function cannot fully compute its result, it can make use of one of its
continuations to handle it in some other way.

3.3 Functional Type Patterns

We have seen that inductive types show direct similarities with class hierarchies.
In fact, any OO class-based architecture could be translated into a set of induc-
tive types. However, the encapsulation level and the composition mechanisms
of inductive types are too weak, and most OOP design patterns could not be
satisfactorily be represented by inductive types. Nevertheless, there are at least
two design patterns in [GHJV95] which are specifically about defining recursive
types, and which have a corresponding natural form using inductive types:

e Composite (see above, p. 9) can readily be translated into an inductive
functional type by the following kind of definitions:
type component =

| Axiom_1

| Axion_n

| Composite of component 1list
Compared to the generic modular Composite, this functional version has
less encapsulating power, but allows one to compose the different cases. As
already said, compared to the OOP initial pattern, it induces more type
safety, but difficult case extensions.

e Interpreter, seen as a specialized kind of Composite (cf. p. 9), may also
be implemented by using inductive types. The dilemma between the dif-
ferent existing implementations of Interpreter has been much debated in
particular under the name of the “expression problem” or “extensibility prob-
lem” [Wad98,App97,Bru03,ZM05,CMLCO06]. Note that the different versions
of Visitors are also related to this dilemma (see e.g. [PJ98]).

13

4 Design Patterns and OO Programming

4.1 Irreducible Properties of OOP

Some OO design patterns in [GHIJV95] are not so easily translated into other
paradigms. Indeed, there is at least one feature characteristic to the OO paradigm:
first-class citizen values with individual mutable states and possibly complex in-
dividual behavior, that is, objects. Note that we just have discussed about func-
tional closures as being objects, but these are only specialized and restricted
kind of objects. In modular programming, module with private states can also
be found when static permanent definitions are available, e.g. in C, C++, ML.
This is a common technique in ML (see e.g. [Dre05]). For instance:

module M = struct
let state = ref [...]
let set_state st = (state := st)
let £ () = [...] !state [...]
end

However, modules are generally not first-class citizens, definitely reducing their
possibilities. Note that this situation is not inherent to modular programming,
e.g., Moscow ML [RRS00] where almost first-class modules are available. Eval-
uation of the power of these modules has still to be done. By contrast, OCaml
includes a complete OO system [LDG106], and as soon as first-class components
are needed, a programmer shifts opportunistically to OOP.

Therefore, according to the object characteristics, there are at least two sub-
sets of design patterns which appear irreducible to OOP. We describe them next.

4.2 State-Oriented OO Design Patterns

A first kind of design patterns in [GHIJV95] stresses the role of individual and
autonomous states for objects:

e State allows an object to alter its behavior when its internal state changes.
Even if this pattern is based on object delegation, its dynamic behavior
intent is too important to be dropped.

e Memento: Without violating encapsulation, it captures and externalizes an
object’s internal state so that the object can be restored to this state later.

e Observer defines a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and updated auto-
matically. The relationships between states is at the root of this design pat-
tern. However, some functional programming can be sometimes applied to
simplify it. Indeed, this pattern consists of organizing a set of “observers”
bound to a “subject”. When the state of the subject changes, update func-
tions of the observers are called. If first-class functions are available, dealing
with the update functions can be made easier [SM00].

e Mediator defines an object that encapsulates how a set of objects interact.

e Flyweight uses sharing to support large numbers of fine-grained objects ef-
ficiently.

14

4.3 Object Independent Behavior Design Patterns

A second kind of design patterns in [GHJV95] stresses the implementation inde-
pendence of each object of the same type. In other words, these patterns allow
one to make easier substitutions of objects with different behavior:

e Abstract Factory, Factory Method, and Builder have already been dis-
cussed as data type definition design patterns, and as having possible coun-
terparts for modular ADTs (cf. p. 10). However, when created objects are ex-
plicitly expected to be of different implementation while being substitutable,
the modular versions would be unable to express this property.

e Prototype specifies the kinds of objects to create using a prototypical in-
stance, and create new objects by copying this prototype. This pattern can
only be meaningful when objects have independent implementation. This
pattern is an emulation of the idea of OO languages based on prototypes,
e.g. Self [US87].

5 Discussion

This proposed classification of the OO design patterns in [GHIJV95] (see Fig. p. 4)
may probably be discussed and refined further. Still, one can already make sev-
eral firm observations about this multiparadigmatic study of the OO patterns:

1. Many classic OO design pattern intents are meaningful in a more general
setting than OOP. The knowledge we already have about them justifies the
idea they are good candidates for comparing paradigms (and not only the In-
terpreter or the Visitor, already recognized as such). In particular, we have
discussed differences with respect to encapsulation, type safety, flexibility,
and extensibility.

2. Many comparison points are possible between OOP and generic modular pro-
gramming, in particular from the point-of-view of interfaces, inheritance, and
delegation. The important differences lie in the dynamic or static-oriented
behavior, and thus in terms of type information precision too (see e.g. the
case of Composite in p. 9). Nevertheless several OO design patterns have
been satisfactorily translated into generic modular programming. As a by-
product, these translations provide some candidates of patterns in generic
modular programming, a context where they have not often been discussed
(see however [BHLO1,Nar05] for ML, and [Ale01] for C++).

3. Some OOP design patterns are sometimes related to single operation encap-
sulation and transmission. When this is the case, functional programming
can be used to simplify these patterns. Indeed, functional closures are just
light specialized objects, showing that the functional paradigm has its place
within the OO paradigm (a fact already discussed, e.g. [Kith99,SM00,MS04]).

4. Some OO design patterns seem definitely associated with the OO paradigm,
stressing its intrinsic properties, in particular with respect to the object con-
cept. Each time a design pattern is based on first-class values with individual
states and behavior, it probably belongs to the OO world in an exclusive way.

15

References

[AIST7]
[Ale01]
[App97]

[BCC™95]

[BHLO1]

[BLROS]

[Bru03]
[CE00]

Ch. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language. Oxford
Univ. Press, 1977.

A. Alexandrescu. Modern C++ Design. Generic Programming and Design
Patterns Applied. Addison-Wesley, 2001.

A.W. Appel. Modern Compiler Implementation in ML, Java, C. Cambridge
Univ. Press, 1997.

K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. T.
Leavens, and B. Pierce. On binary methods. In Theory and Practice of
Objects Systems. John Wiley and Sons, Inc., 1995.

E. Biagioni, R. Harper, and P. Lee. A network protocol stack in Standard
ML. Higher Order Symbol. Comput., 14(4):309-356, 2001.

G. Baumgartner, K. Laufer, and V.F. Russo. On the interaction of object-
oriented design patterns and programming languages. Technical Report
CSD-TR-96-020, Purdue University, 1998.

K. Bruce. Some challenging typing issues in object-oriented languages, 2003.
K. Czarnecki and U. W. Eisenecker. Generative Programming. Addison
Wesley, 2000.

[CMLCO06] C. Clifton, T. Millstein, G.T. Leavens, and C. Chambers. Multijava: De-

[CMPOO]
[Cop92]
[Cra02]
[CS95]
[Dre05]

[FF99)

[FS99]
[FWH92]
[Gab96]
[Gar00]
[GHIV95]

[HPO5)]

[Kith99]

sign rationale, compiler implementation, and applications. ACM Trans.
Program. Lang. Syst., 28(3):517-575, 2006.

E. Chailloux, P. Manoury, and B. Pagano. Developing application with
OCaml. O’Reilly, 2000.

J.O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-
Wesley, 1992.

1. Craig. The Interpretation of Object-Oriented Programming Languages.
Springer-Verlag, 2002.

J. 0. Coplien and D. C. (Eds.) Schmidt. Pattern Languages of Program
Design. Addison-Wesley, 1995.

D. Dreyer. Understanding and Fvolving the ML Module System. PhD thesis,
CMU, May 2005. Technical Report CMU-CS-05-131.

R. B. Findler and M. Flatt. Modular object-oriented programming with
units and mixins. In Proceedings of the ACM SIGPLAN Intl. Conference
on Functional Prog. (ICFP ’98), volume 34(1), pages 94-104, 1999.

M. Felleisen and A. Sabry. Continuations in programming practice: Intro-
duction and survey. Rice University and University of Oregon, 1999.

D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming
Languages. MIT Press, 1992.

R. Gabriel. Patterns of Software: Tales from the Software Community.
Oxford Univ. Press, 1996.

J. Garrigue. Code reuse through polymorphic variants. In Workshop on
Foundations on Software Engineering, 2000. Sasaguri, Japan.

E. Gamma, R. Helm, R. Jonhnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

R. Harper and B. C. Pierce. Design considerations for ML-style module
systems. In B. C. Pierce, editor, Advanced Topics in Types and Programming
Languages, pages 293-345. MIT Press, 2005.

Th. Kiithne. A Functional Pattern System for Object-Oriented Design. Ver-
lag Kovac, 1999.

16

[LDGT06] X. Leroy, Doligez D., J. Garrigue, Rémy D., and Vouillon J. The Objective

[Mac86]

[Mar03]
[MS04]

[Nar05]
[Nor96]
[0de07]
[Par72]
[PJ9S]

[Rea89)

[Rey75]

[RRS00]

[Sco00]
[SF90]

[SGMO02]
[SM00]
[Tor04]
[US87]
[VJ03]

[Wad98]
[ZMO5]

Caml System. Documentation and User’s Manual. INRIA, December 2006.
D. MacQueen. Using dependent types to express modular structure. In
Proceedings of the 13rd ACM SIGPLAN-SIGACT Symp. on Principles of
Prog. Languages, pages 277286, 1986.

R. C. Martin. Agile Software Development (Principles, Patterns and Prac-
tices). Prentice Hall, 2003.

B. McNamara and Y. Smaragdakis. Functional programming with the
FC++ library. J. Funct. Program., 14(4):429-472, 2004.

Ph. Narbel. Programmation fonctionnelle, générique et objet (Une intro-
duction avec le langage OCaml). Vuibert, Paris, 2005.

P. Norvig. Design patterns in dynamic programming. Technical report,
Harlequin, Inc., 1996.

M. Odersky. The Scala Language Specification, Version 2.5. Programming
Methods Laboratory, EPFL, 2007.

D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053-1058, 1972.

J. Palsberg and C. B. Jay. The essence of the visitor pattern. In Computer
Software and Applications Conf., 1998. COMPSAC ’98, pages 9-15, 1998.
Ch. Reade. FElements of Functional Programming. International Computer
Science Series. Addison-Wesley, 1989.

J. C. Reynolds. User-defined types and procedural data structures as com-
plementary approaches to data abstraction. In New Directions in Algorith-
mic Languages, pages 157-168. INRIA, IFIP Working Group 2.1 on Algol,
1975. Schuman, A. editor.

S. Romanenko, C. Russo, and P. Sestoft. Moscow ML Owner’s Manual,
June 2000.

M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann, 2000.
G. Springer and D.P. Friedman. Scheme and the Art of Programming. MIT
Press, 1990.

C. Szyperski, D. Gruntz, and S. Murer. Component Software. Addison-
Wesley, 2002.

Y. Smaragdakis and B. McNamara. Bridging functional and object-oriented
programming, 2000. Georgia Tech CoC Tech. Report 00-37.

M. Torgersen. The expression problem revisited (four new solutions using
generics). In ECOOP 2004, LNCS 1628, pages 186-204. Springer, 2004.
David Ungar and Randall B. Smith. Self: The power of simplicity. SIGPLAN
Notices, 22(12):227-242, 1987.

D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison-Wesley,
2003.

Ph. Wadler. The expression problem. Java Genericity Mailing List, 1998.
M. Zenger and Odersky M. Independently extensible solutions to the expres-
sion problem. In FOOL’05, ACM SIGPLAN Intl. Workshop on Foundations
of OO Languages, 2005.

17

