
Functional Programming at Work in
Object-Oriented Programming

Narbel

version 2010

Narbel Functional Programming at Work in Object-Oriented Programming 1

A Claim about Programming Styles

Claim:
Adding functional programming capabilities

to an object-oriented language leads to
benefits in object-oriented programming

design.

Narbel Functional Programming at Work in Object-Oriented Programming 2

Existing Languages with a FP-OOP Mix

Some old and less old languages with FP+OOP :

For instance, Smalltalk , Common Lisp (CLOS).

More recently, Python or Ruby .

Notations: FP, Functional programming; OOP,
Object-oriented programming,

Narbel Functional Programming at Work in Object-Oriented Programming 3

FP techniques emulated in OOP

Practices in OOP languages include emulations of
FP techniques :

C++ programmers: function pointers and
overloadings of the () operator , i.e.
“object-functions” or functors.

Java programmers: anonymous classes and
introspection/reflexion .

Narbel Functional Programming at Work in Object-Oriented Programming 4

Existence of FP-OOP Comparison Points

The idea of using FP to enrich OOP is old, see e.g.
the discussions about the problem of the
user-defined datatype extension :

User-defined types and procedural data
structures as complementary approaches to data
abstraction . Reynolds. 1975.

The Expression Problem . Wadler. 1998.

Narbel Functional Programming at Work in Object-Oriented Programming 5

A Trend: FP Extensions for OO Languages

A recent trend: to propose and include typed
FP extensions in mainstream static OO
languages .

Extensions for C++ (see e.g. Laufer, Striegnitz,
McNamara, Smaragdakis), and work in progress in
the C++ standard committees.

Java 7 expected to include FP constructs.

C# offers FP constructs (even more in its 3.0 version).

Also in modern research languages with
sophisticated typed frameworks: e.g., OCaml , Scala .

Narbel Functional Programming at Work in Object-Oriented Programming 6

Purpose of the talk

Mix of FP with OOP not so much practiced.

⇒ Purpose of this talk : a practical synthesis about
what a programer can expect when FP is available in
OOP (using C# 3.0).

Narbel Functional Programming at Work in Object-Oriented Programming 7

Some References
Structure and Interpretation of Computer Programs .
Abelson, Sussman. MIT Press, 1985.

Synthesizing Object-Oriented and Functional Design
to Promote Re-Use . Krishnamurthi, Felleisen, Friedman.
1998.

Essentials of Programming Languages . Friedman,
Wand, Haynes. MIT Press, 1992.

CLOS: integrating object-oriented and functional
programming . Gabriel, White, Bobrow. 1991.

Bridging Functional and Object-Oriented
Programming (FC++) . Smaragdakis, McNamara. 2000.

Confessions of a used programming language
salesman . Meijer. OOPSLA’07.

C# 3.0 Design Patterns . J. M. Bishop. O’Reilly, 2008.
Narbel Functional Programming at Work in Object-Oriented Programming 8

Main Points

Specific points discussed in this talk :

1 Criteria to check that FP techniques are possible .

2 Idiomatic and architectural effects of having FP
capabilities in OOP.

3 FP analysis of some classic OO design patterns .

Narbel Functional Programming at Work in Object-Oriented Programming 9

Criteria for FP techniques

Criterion:
First-Class Values . Functions/methods should be
first-class citizens.

Rule:
When Criterion 1 holds, most FP techniques can be
applied.

Remark: First-class functions generally ⇒ anonymous
functions .

Narbel Functional Programming at Work in Object-Oriented Programming 10

Criteria for FP techniques

Criterion:
Closures . First-class functions/methods should be
implemented as closures, i.e. they should be associated
with specific private environments.

Rule:
When Criterion 2 only holds with non-complete closures,
most nice properties due to pure FP are expected to be
lost. However, FP techniques can still be applied.

Narbel Functional Programming at Work in Object-Oriented Programming 11

Granularity Mismatch

FP and OOP operate on different design
granularity levels :

Functions/methods : “programming in the small”
level.
Classes/objects/modules : “programming in the
large” level,

⇒ At least two questions :
Where do we locate the source of individual functions
in an OOP architecture?
How do we relate such individual functions to an OOP
architecture?

⇒ design granularity mismatch .

Narbel Functional Programming at Work in Object-Oriented Programming 12

Criteria for FP techniques

Criterion:
FP-OOP interrelation tools : Standalone
functions/methods should be explicitly relatable to the
class/object level.

Rule:
When Criterion 3 holds, it helps solving some of the
FP-OOP design granularity mismatch problem.

Narbel Functional Programming at Work in Object-Oriented Programming 13

Criteria for FP techniques

Criterion:
FP Support : The FP-oriented features should be
reinforced by related constructs, predefined definitions,
occurrences in standard libraries, etc.

Rule:
When Criterion 4 holds, an OOP language acknowledges
the fact that FP is one of its fully integrated tool.

Narbel Functional Programming at Work in Object-Oriented Programming 14

An Object-Oriented FP Construct: the
Delegates

C# offers a FP feature called delegates :

delegate s t r ing StringFunType (s t r ing s) ; / / dec l a ra t i on

s t r ing G1 (s t r ing s) { / / a method whose type matches StringFunType
return ”some s t r i n g ” + s ;

}

StringFunType f1 ; / / dec l a ra t i on o f a delegate v a r i a b l e
f1 = G1; / / d i r e c t method value assignment
f1 (”some s t r i n g ”) ; / / a p p l i c a t i o n o f the delegate v a r i a b l e

Delegates are first-class values .

Narbel Functional Programming at Work in Object-Oriented Programming 15

1. Delegates as First-Class Values

Delegate types can type method parameters , and
delegates can be passed as arguments as any
other values:

s t r ing Gf1 (Str ingFun f , s t r ing s) { [. . .] }
/ / de legate f as a parameter

WriteLine (Gf1 (G1 , ” some s t r i n g ”)) ; / / c a l l

Narbel Functional Programming at Work in Object-Oriented Programming 16

2. Delegates as First-Class Values

Delegates can be returned as a computation of a
method. For instance, assuming G is a method of type
string => string and implemented in SomeClass:

Str ingFun Gf2 () { / / de legate as a re tu rn value
[. . .]
return (new SomeClass ()) . G ;

}

WriteLine (Gf2 () (”some s t r i n g ”)) ; / / c a l l

Narbel Functional Programming at Work in Object-Oriented Programming 17

3. Delegates as First-Class Values

Delegates can take place into data structures :

var l = new LinkedList<Str ingFun > () ;
/ / l i s t o f delegates

[. . .]
l . AddFirst (G1) ; / / i n s e r t i o n o f a delegate i n the l i s t
WriteLine (l . F i r s t . Value (” some s t r i n g ”)) ;

/ / e x t r a c t and c a l l

Narbel Functional Programming at Work in Object-Oriented Programming 18

Anonymous delegates

C# delegates may be anonymous :

delegate (s t r ing s) { return s + ”some s t r i n g ” ; } ;

Anonymous delegates can look even more like
lambda expressions :

(s => { return s + ”some s t r i n g ” }) ;
s => s + ”some s t r i n g ” ;

Narbel Functional Programming at Work in Object-Oriented Programming 19

Closures

No strict closures in C# (intrinsically “impure FP”):

StringFun f1 , f2 ;
i n t counter = 1000;
f1 = s => s + counter . ToString () ;
f2 = s => s + counter . ToString () ;

⇒ Usual enclosing technique in impure FP:

StringFun F () {
i n t counter = 1000;
return s => { return s + counter . ToString () ; } ;

}

Narbel Functional Programming at Work in Object-Oriented Programming 20

An Interrelation FP/OOP: the Extension
Methods

Extension methods : enable a programmer to add
methods to existing classes without creating new
derived classes:

s ta t i c i n t SimpleWordCount (t h i s String str) {
return str . Split (new char [] { ’ ’ }) . Length ;

}

String s1 = ” aaa bb cccc ” ;

String s1 = ”some chain ” ;
s1 . SimpleWordCount () ; / / usable as a St r i ng method
SimpleWordCount (s1) ; / / a l so usable as a standalone method

Narbel Functional Programming at Work in Object-Oriented Programming 21

An Interrelation FP/OOP: the Extension
Methods

Another classic example of extension method:

s ta t i c IEnumerable<T> MySort<T>(t h i s IEnumerable<T> obj)
where T : IComparable<T> {
[. . .]

}

List<in t > someList = [. . .] ;
someList . MySort () ;

Narbel Functional Programming at Work in Object-Oriented Programming 22

An Interrelation FP/OOP: the Extension
Methods

Functions/methods implemented for delegates
are often defined as extension methods .

Extension methods: related to “open-classes ” (see
e.g., CLOS, Ruby, Multijava).

Extension methods have harsh constraints in C#:
Only static !

Not polymorphic (not virtual) !

For Java 7, closure conversions are proposed.

In Groovy, explicit closure conversions exist.

Narbel Functional Programming at Work in Object-Oriented Programming 23

FP Integration in C#

Basic Delegates Predefinitions . C# offers
functional and procedural generic delegate
predefined types for arity up to 4... (respectively
under the name Func and Action):

delegate TResult Func<TResult> () ;
delegate TResult Func<T , TResult>(T a1) ;
delegate TResult Func<T1 , T2 , TResult>(T1 a1 , T2 a2) ;
delegate void Action<T>(T a1) ;
[. . .]

NB: overloading applies for generic delegates too.

Narbel Functional Programming at Work in Object-Oriented Programming 24

FP Integration in C#

First-Class Multiple Invocation and Multicasting .
A delegate may itself contain an “invocation list ” of
delegates.

When such delegate is called, methods of the
included delegate are invoked in the order in which
they appear in the list.

The result value is determined by the last method
called in the list.

Management of multicasting: + and - are overloaded
to act on these invocation lists:

menuItem1 . Click += [. . .] ; / / some delegate

Narbel Functional Programming at Work in Object-Oriented Programming 25

FP Integration in C#

Function Marshalling and Serialization . C# allows
lambda expressions to be represented as data
structures called expression trees:

Expression<Func<in t , in t >> expression = x => x + 1;

var d = expression . Compile () ;
d . Invoke (2) ;

As such, they may be stored and transmitted .

Narbel Functional Programming at Work in Object-Oriented Programming 26

General FP Techniques in OOP

Some idiomatic and technical effects of
having FP capabilities in OOP:

1 Code factoring at a function/method granularity level,

2 Generic iterator and loop operations

3 Operation compositions (and sequence
comprehensions).

4 Function partial applications and currying.

Narbel Functional Programming at Work in Object-Oriented Programming 27

Code Abstraction at a Function/Method Level

A simple code:
f l o a t M (i n t y) {

i n t x1 = [. . .] ; i n t x2 = [. . .] ;
[. . .]
[. . . code . . .] ; / / some code using x1 , x2 , y
[. . .]

}

With functional abstraction :
public delegate i n t Fun (i n t x , i n t y , i n t z) ;
f l o a t MFun (Fun f , i n t x2 , i n t y) {

i n t x1 = [. . .] ;
[. . .]
f (x1 , x2 , y) ;
[. . .]

}

i n t z1 = MFun (F1 , 1 , 2) ;
i n t z2 = MFun (F2 , 3 , 4) ;

⇒ No local duplications + separation of concerns .
Narbel Functional Programming at Work in Object-Oriented Programming 28

Generic Iterator and Loop Operations

A simple and effective application of the functional
abstraction: generic higher-order iterated
operations over data .

For instance, the internal iterators (Maps):

IEnumerable<T2>

Map<T1 , T2>(th is IEnumerable<T1> data , Func<T1 , T2> f) {
foreach (T1 x in data)

y i e l d return f (x) ;
}

someList . Map (i => i ∗ i) ;

Narbel Functional Programming at Work in Object-Oriented Programming 29

Operation Compositions

FP⇒ Easy operation compositions .

An initial method code:

public s ta t i c void PrintWordCount (s t r ing s) {
String [] words = s . Split (’ ’) ;
fo r (i n t i = 0; i < words . Length ; i++)

words [i] = words [i] . ToLower () ;
var dict = new Dictionary<str ing , in t > () ;
foreach (String word in words)

i f (dict . ContainsKey (word))
dict [word]++ ;

else dict . Add (word , 1) ;
foreach (KeyValuePair<String , in t > x in dict)

Console . WriteLine (” {0} : {1} ” , x . Key ,
x . Value . ToString ())) ;

}

Narbel Functional Programming at Work in Object-Oriented Programming 30

Operation Compositions

A first factoring using higher-order functions :

public s ta t i c void PrintWordCount (s t r ing s) {
String [] words = s . Split (’ ’) ;
String [] words2 =

(String []) Map(words , w => w . ToLower ()) ;
Dictionary<String , in t > res =

(Dictionary<String , in t >) Count (words2) ;
App (res , x => Console . WriteLine (” {0} : {1} ” ,

x . Key , x . Value . ToString ()))) ;
}

Narbel Functional Programming at Work in Object-Oriented Programming 31

Operation Compositions

A second factoring using extension methods :

public s ta t i c void PrintWordCount (s t r ing s) {
s . S p l i t (’ ’)

.Map(w => w . ToLower ())

. Count ()

. App (x => WriteLine (” {0} : {1} ” ,
x . Key , x . Value . ToString ()))) ;

}

⇒ Increased readability .

Narbel Functional Programming at Work in Object-Oriented Programming 32

Operation Compositions

In C#, such operation compositions are often used
with the “Language Integrated Query ” (LINQ) –
defined to unify programming with relational data or
XML, e.g. (Meijer):

var q = programmers

. Where(p => p . Age > 20)

. OrderByDescending (p => p . Age)

. GroupBy (p => p . Language , p . Name)

. Se lec t (g => new{ Language = g . Key ,
Size = g . Count () , Names = g }) ;

⇒ Solve some of the “impedance mismatch”
between OOP and data base exploitation.

Narbel Functional Programming at Work in Object-Oriented Programming 33

Function Partial Applications and Currying

With first-class functions, every n-ary function can
be transformed into a composition of n unary
functions, that is, into a curried function :

Func<in t , in t , in t > lam1 = (x , y) => x + y ;

Func<in t , Func<in t , in t >> lam2 = x => (y => x + y) ;

Func<in t , in t > lam3 = lam2 (3) ; / / p a r t i a l a p p l i c a t i o n

Curryfying :

public s ta t i c Func<T1 , Func<T2 , TRes>>

Curry<T1 , T2 , TRes> (th is Func<T1 , T2 , TRes> f) {
return (x => (y => f (x , y))) ;

}

Func<in t , in t > lam4 = lam1 . Curry () (3) ; / / p a r t i a l a p p l i c a t i o n

Narbel Functional Programming at Work in Object-Oriented Programming 34

Architectural FP Techniques in OOP

Some architectural effects of having FP
capabilities in OOP:

1 Reduction of the number of object/class definitions.

2 Name abstraction at a function/method level.

3 Operation compositions (and sequence
comprehensions).

4 Function partial applications and currying.

Narbel Functional Programming at Work in Object-Oriented Programming 35

Limitation of the Number of Object/Class
Definitions

Functional abstraction⇒ Avoid cluttering the OO
architecture with new classes :

in te r face IFun{ i n t F (i n t x , i n t y , i n t z) ;}

class F1 : IFun {
public i n t F (i n t x , i n t y , i n t z) { [. . .] } }

class F2 : IFun {
public i n t F (i n t x , i n t y , i n t z) { [. . .] } }

f l o a t M (IFun funob j , i n t x2 , i n t y) {
i n t x1 = [. . . val1 . . .]
[. . .]
funob j . F (x1 , x2 , y) ;
[. . .]

}
i n t z1 = M (new F1 () , 1 , 2) ;
i n t z2 = M (new F2 () , 3 , 4) ;

Narbel Functional Programming at Work in Object-Oriented Programming 36

Name Abstraction at a Method Level

Using first-class methods allows parameters to be
instantiated by any method satisfying their
declared types.

in te r face IStringFun { s t r ing F1(s t r ing s) ; }

IStringFun obj1 = [. . .] ;
[. . .] ob j1 . F1 [. . .]

⇒ Name abstraction .

⇒ Induce some “structuralness” into
nominal-oriented OOP , i.e. flexibility .

Narbel Functional Programming at Work in Object-Oriented Programming 37

Name Abstraction at a Method Level
Example of name abstraction with a Bridge :

The initial code:

public class Window {
pr iva te WindowSys imp ;
void DrawFigure ([. . .]) {

imp . DeviceFigure ([. . .]) ;
}

With delegates:

public delegate void DeviceFigureFun ([. . .]) ;
public class Window {

pr iva te DeviceFigureFun d e v f i g ;
void DrawFigure ([. . .]) {

_ dev f i g ([. . .]) ;
}

Without delegates: must use Adapters (see e.g.
ActionListener in Java).

Narbel Functional Programming at Work in Object-Oriented Programming 38

Name Abstraction at a Method Level
Another example of name abstraction with an
Abstract Factory :

The initial code:
public in te r face Maze { [. . .] } ;
public in te r face Wall { [. . .] } ;
public in te r face Room { [. . .] } ;
public in te r face MazeFactory {

Maze MakeMaze () ;
Wall MakeWall () ;
Room MakeRoom () ;

}

With delegates:
public delegate Maze MakeMazeFun () ;
public delegate Wall MakeWallFun () ;
public delegate Room MakeRoomFun() ;

public abstract class MazeFactoryFun {
MakeMazeFun MakeMaze ;
MakeWallFun MakeWall ;
MakeRoomFun MakeRoom ;

}
Narbel Functional Programming at Work in Object-Oriented Programming 39

Name Abstraction at a Method Level

Name abstraction ⇒ More flexibility .

But also⇒ More looseness and problems of
architecture organization .

Narbel Functional Programming at Work in Object-Oriented Programming 40

FP Design Granularity Mismatch

Where do we put the sources of the standalone
methods? :

Solution with Basic Modules : functions as static
methods in some utility class or module.
⇒ Not easily extensible, and does not mix so well
with class hierarchy .

Solution with anonymous constructs : function
implementations of function directly into the calls:

i n t z1 = MFun ((x1 , x2 , x3) => [. . . < F1 code > . . .] , 1 , 2) ;
i n t z2 = MFun ((x1 , x2 , x3) => [. . . < F2 code > . . .] , 3 , 4) ;

⇒ Spread the code all over the calls, and may
lead to no reusability.

Narbel Functional Programming at Work in Object-Oriented Programming 41

Some classic OOP Design Patterns with FP

Some of the classic OOP Design Patterns
can be considered under FP influence...:

1 Strategy, Command.

2 Observer.

3 Proxy.

4 Visitor.

Narbel Functional Programming at Work in Object-Oriented Programming 42

Strategy

A Strategy pattern is to let an algorithm vary
independently of clients that use it .

(The pattern figures are taken from the GoF book.)

Narbel Functional Programming at Work in Object-Oriented Programming 43

Strategy with FP

A Strategy : just a case of abstracting code at a
method level (⇒ No need of OO encapsulation
and new class hierarchies).

For instance in the .NET Framework:

pub l i c delegate i n t Comparison<T>(T x , T y)
public void Sort (Comparison<T> comparison)

pub l i c delegate bool Predicate<T>(T ob j)
public List<T> FindAll (Predicate<T> match)

Narbel Functional Programming at Work in Object-Oriented Programming 44

Strategy with FP

Narbel Functional Programming at Work in Object-Oriented Programming 45

Command

The Command pattern encapsulates requests
(method calls) as objects so that they can easily be
transmitted, stored, and applied.

⇒ Same as Strategy .

For instance, menu implementations :

public delegate vo id EventHandler (Object sender , EventArgs e)
public event EventHandler Click

pr iva te void menuItem1 Click (object sender , System . EventArgs e) {
OpenFileDialog fd = new OpenFileDialog () ;
fd . DefaultExt = ” ∗ .∗ ” ; fd . ShowDialog () ;

}
public void CreateMyMenu () {

MainMenu mainMenu1 = new MainMenu () ;
MenuItem menuItem1 = new MenuItem () ;
[. . .]
menuItem1 . Click += new System . EventHandler (menuItem1 Click) ;

}

Narbel Functional Programming at Work in Object-Oriented Programming 46

Command with FP

Narbel Functional Programming at Work in Object-Oriented Programming 47

Observer

The Observer pattern: a one-to-many dependency
between objects so that when one object changes
state, all its dependents are notified and updated.

Narbel Functional Programming at Work in Object-Oriented Programming 48

Classic Observer

public in te r face Observer<S> {
void Update (S s) ;

}

public abstract class Subject<S> {
p r i v a t e L i s t <Observer<S>> observ = new L i s t <Observer<S>>();

public void Attach (Observer<S> obs) {
_observ . Add (obs) ;

}
public void Notify (S s) {

foreach (Observer<S> obs in _observ) {
obs . Update (s) ;

}
}

}

Narbel Functional Programming at Work in Object-Oriented Programming 49

Observer with FP

FP⇒ Observer with functional values as
updaters :

public delegate void UpdateFun<S>(S s) ;

public abstract class Subject<S> {
pr iva te UpdateFun<S> updateHandler ;

public void Attach (UpdateFun f) {
updateHandler += f ;

}
public void Notify (S s) {

updateHandler (s) ;
}

}

⇒ No need of observer classes with methods
called Update().

Narbel Functional Programming at Work in Object-Oriented Programming 50

Observer with FP

Narbel Functional Programming at Work in Object-Oriented Programming 51

Virtual Proxy

The Virtual Proxy pattern: placeholders for other
objects such that their data are created/computed
only when needed .

Narbel Functional Programming at Work in Object-Oriented Programming 52

Classic Virtual Proxy

public class SimpleProxy : I {
pr iva te Simple _simple ;
pr iva te i n t _arg ;
protected Simple GetSimple () {

i f (s imp le == n u l l)
t h i s . s imp le = new Simple (t h i s . a rg) ;

re tu rn s imp le ;
}
public SimpleProxy (i n t i) { th is . _arg = i ; }
public void Process () {

GetSimple () . Process () ;
}

}

Narbel Functional Programming at Work in Object-Oriented Programming 53

Virtual Proxy with FP Lazyness

FP⇒ Less need of specific Proxy classes :

public class SimpleLazyProxy : I {
pr iva te Lazy<Simple> simpleLazy ;
public SimpleLazyProxy (i n t i) {

th is . _simpleLazy =
new Lazy<Simple > (() => new Simple (i)) ;

}
public void Process () {

th is . s impleLazy . Value . Process () ;
}

}

Narbel Functional Programming at Work in Object-Oriented Programming 54

Visitor

The Visitor pattern: lets you define new
operations without changing the classes of the
elements on which they operate

Without Visitors, each subclass of a hierarchy has to
be edited or derived separately.

NB: Visitors are at the crux of many of the
programming design problems ...

Narbel Functional Programming at Work in Object-Oriented Programming 55

Visitor

Narbel Functional Programming at Work in Object-Oriented Programming 56

Classic Visitor
public in te r face IFigure {

String GetName () ;
void Accept<T>(IFigureVisitor<T> v) ;

}
public class SimpleFigure : IFigure {

pr iva te String _name ;
public SimpleFigure (String name) { th is . _name = name ; }
public String GetName () { return th is . _name ; }
public void Accept<T>(IFigureVisitor<T> v) {

v . V i s i t (t h i s) ;
}

}
public class CompositeFigure : IFigure {

pr iva te String _name ;
pr iva te IFigure [] _figureArray ;
public CompositeFigure (String name , IFigure [] s) {

th is . _name = name ; th is . _figureArray = s ;
}
public String GetName () { return th is . _name ; }
public void Accept<T>(IFigureVisitor<T> v) {

foreach (IFigure f in _figureArray)
f . Accept (v) ;

v . V i s i t (t h i s) ;
}

}Narbel Functional Programming at Work in Object-Oriented Programming 57

Classic Visitor

public in te r face IFigureVisitor<T> {
T GetVisitorState () ;
void V i s i t (SimpleFigure f) ;
void V i s i t (CompositeFigure f) ;

}

public class NameFigureVisitor : IFigureVisitor<str ing > {
pr iva te s t r ing _fullName = ” ” ;
public s t r ing GetVisitorState () { return _fullName ; }
public void V i s i t (SimpleFigure f) {

_fullName += f . GetName () + ” ” ;
}
public void V i s i t (CompositeFigure f) {

_fullName += f . GetName () + ” / ” ;
}

}

Narbel Functional Programming at Work in Object-Oriented Programming 58

Weaknesses of Visitors

Some well-known weaknesses of Visitors :
Refactoring Resistance . A Visitor definition is
dependent on the set of client classes on which it
operates.

Staticness . A Visitor is static in its implementation
(type-safety but less flexibility).

Invasiveness . A Visitor needs that the client classes
anticipate and/or participate in making the selection
of the right method.

Naming Inflexibility . A Visitor needs that all the
different implementations of the visit methods be
similarly named.

Narbel Functional Programming at Work in Object-Oriented Programming 59

Visitor and Extension Methods

An attempt to solve Visitor problems with
extension methods (cf. “open classes” – but not ok
in C#):

public in te r face IFigure {
String GetName () ; / / no Accept method requ i red

}

[. . .]

public s ta t i c class NameFigureVisitor {
public s ta t i c void NameVisit (t h i s SimpleEFigure f)

{ _state = f . GetName () + ” ” + _state ; }

s ta t i c void NameVisit (t h i s CompositeFigure f) {
_fullName = f . GetName () + ” : ” + _fullName ;
foreach (IFigure g in f . GetFigureArray ())

g . NameVisi t () ; / / ! ! ! dynamic d ispa tch requ i red . . .
}
[. . .]

}

Narbel Functional Programming at Work in Object-Oriented Programming 60

Visitor with FP

FP⇒ Visitors can be functions :

pub l i c delegate T Vis i to rFun <V, T>(V f) ;

public in te r face IFigureF {
String GetName () ;
T Accept<T>(V is i to rFun <IF igureF , T> v) ;

}
public class SimpleFigureF : IFigureF {

pr iva te String _name ;
public SimpleFigureF (String name) { th is . _name = name ; }
public String GetName () { return th is . _name ; }
public T Accept<T>(V is i to rFun <IF igureF , T> v) {

return v (th is) ;
}

}
[. . .]

Narbel Functional Programming at Work in Object-Oriented Programming 61

Visitor with FP

public class CompositeFigureF : IFigureF {
pr iva te String _name ;
pr iva te IFigureF [] _figureArray ;
public CompositeFigureF (String name , IFigureF [] s) {

th is . _name = name ; th is . _figureArray = s ;
}
public String GetName () { return th is . _name ; }
public T Accept<T>(V is i to rFun <IF igureF , T> v) {

foreach (IFigureF f in _figureArray) {
f . Accept (v) ;

}
return v (th is) ;

}
}

Narbel Functional Programming at Work in Object-Oriented Programming 62

Visitor with FP

Narbel Functional Programming at Work in Object-Oriented Programming 63

Functional Visitors

A simple functional Visitor :

public s ta t i c VisitorFun<IFigureF , String>

MakeNameFigureVisitorFun () {
s t r ing _state = ” ” ;
return obj => {

i f (ob j i s SimpleFigureF)
_state += f . GetName () + ” ” ; else

i f (ob j i s CompositeFigureF)
_state += f . GetName () + ” / ” ;

return _state ;
} ;

}

But⇒ Ad-hoc explicit selection needed...

Narbel Functional Programming at Work in Object-Oriented Programming 64

Visitor with Functional Data-Driven
Programming

A Visitor with functional data-driven programming
made of:

Dictionaries of pairs in the form (type, method).

Generic “accept” able to exploit these dictionnaries
and call the right method corresponding to a given
type.

⇒ Explicit generic selection mechanism .

Narbel Functional Programming at Work in Object-Oriented Programming 65

Visitor with Functional Data-Driven
Programming

Use of data-driven oriented Visitor :

var d i c t 1 =
new Dictionary<System . Type , VisitFun<IFigureF , String >>();

d i c t 1 . Add (typeof (SimpleFigureF) ,
(f , s) => s + f . GetName () + ” ”) ;

d i c t 1 . Add (typeof (CompositeFigureF) ,
(f , s) => s + f . GetName () + ” / ”) ;

var nameFigureFunVisitor1 =
MakeVisitorFun<IFigureF , String>(d i c t 1) ;

Narbel Functional Programming at Work in Object-Oriented Programming 66

Visitor with Functional Data-Driven
Programming

FP⇒ Data-driven Functional Visitors .

⇒ Less refactoring resistance, less name rigidity,
and less staticness .

But⇒
Possible type incoherences ...

Syntax intricacies ...

Narbel Functional Programming at Work in Object-Oriented Programming 67

Summing Up

In order to get flexible code in classic OOP at a
method level , essentially two ways:

Narbel Functional Programming at Work in Object-Oriented Programming 68

Summing Up

In order to get flexible code in classic OOP at a
method level , essentially two ways:

Method encapsulation in objects (rich but heavy).

Narbel Functional Programming at Work in Object-Oriented Programming 68

Summing Up

In order to get flexible code in classic OOP at a
method level , essentially two ways:

Method encapsulation in objects (rich but heavy).

Method management by introspection/reflection
and plug-in capabilities (flexible but type unsafe and
technically cumbersome).

Narbel Functional Programming at Work in Object-Oriented Programming 68

Summing Up

In order to get flexible code in classic OOP at a
method level , essentially two ways:

Method encapsulation in objects (rich but heavy).

Method management by introspection/reflection
and plug-in capabilities (flexible but type unsafe and
technically cumbersome).

⇒ A possible answer is to include a typed
first-class method granularity level .

Narbel Functional Programming at Work in Object-Oriented Programming 68

Summing Up

OOP with FP granularity level ⇒

Code Abstraction at a function/method level.

Convenient generic iterator/loop implementations.

Operation compositions , sequence/query
comprehensions.

Function partial applications .

Limitations of the number of object/class
definitions.

Name abstractions at a function/method level.

And :
Lazyness emulations (used e.g. in Virtual Proxies).

Data-driven or table-driven programming (used
e.g. in Visitors).

Narbel Functional Programming at Work in Object-Oriented Programming 69

Summing up

FP + OOP⇒
Architecture simplifications .

Increased flexibility .

Narbel Functional Programming at Work in Object-Oriented Programming 70

Summing up

FP + OOP⇒
Architecture simplifications .

Increased flexibility .

But⇒ Design granularity mismatch (functions at a
finer design level than classes/objects/modules)⇒

Architecture inhomogeneity .

Lack of type coherence .

no easy reusability .

Narbel Functional Programming at Work in Object-Oriented Programming 70

Summing up

FP + OOP⇒
Architecture simplifications .

Increased flexibility .

But⇒ Design granularity mismatch (functions at a
finer design level than classes/objects/modules)⇒

Architecture inhomogeneity .

Lack of type coherence .

no easy reusability .

Some partial solutions of granularity mismatch:
Specific modular organizations .

Anonymous constructs .

Interrelation means like “extension methods”.

Narbel Functional Programming at Work in Object-Oriented Programming 70

A Claim about Programming Styles

The Claim :

Adding functional programming capabilities to an
object-oriented language leads to benefits in

object-oriented programming design.

Narbel Functional Programming at Work in Object-Oriented Programming 71

A Claim about Programming Styles

The Claim :

Adding functional programming capabilities to an
object-oriented language leads to benefits in

object-oriented programming design.

OK, but without being a silver bullet...

Narbel Functional Programming at Work in Object-Oriented Programming 71

A Claim about Programming Styles

The Claim :

Adding functional programming capabilities to an
object-oriented language leads to benefits in

object-oriented programming design.

OK, but without being a silver bullet...

Remark: anyway, FP is expected in Java, C++, Sprutch...

Narbel Functional Programming at Work in Object-Oriented Programming 71

