Functional Programming at Work in

Object-Oriented Programming

Narbel

version 2010

Narbel Functional Programming at Work in Object-Oriented Programming

A Claim about Programming Styles

o Claim:

Adding functional programming capabilities
to an object-oriented language leads to
benefits in object-oriented programming

design.

Narbel Functional Programming at Work in Object-Oriented Programming

Existing Languages with a FP-OOP Mix

@ Some old and less old languages with FP+OOP

@ For instance, Smalltalk , Common Lisp (CLOS).
@ More recently, Python or Ruby.

Notations: FP, Functional programming; OOP,
Object-oriented programming,

Narbel Functional Programming at Work in Object-Oriented Programming

FP techniques emulated in OOP

@ Practices in OOP languages include emulations of
FP techniques :
@ C++ programmers: function pointers and
overloadings of the () operator , i.e.
“object-functions” or functors.

@ Java programmers: anonymous classes and
introspection/reflexion

Narbel Functional Programming at Work in Object-Oriented Programming

Existence of FP-OOP Comparison Points

@ The idea of using FP to enrich OOP is old, see e.g.
the discussions about the problem of the
user-defined datatype extension

@ User-defined types and procedural data
structures as complementary approaches to data
abstraction . Reynolds. 1975.

@ The Expression Problem . Wadler. 1998.

Narbel Functional Programming at Work in Object-Oriented Programming

A Trend: FP Extensions for OO Languages

@ A recent trend: to propose and include typed
FP extensions in mainstream static OO
languages .
o Extensions for C++ (see e.g. Laufer, Striegnitz,
McNamara, Smaragdakis), and work in progress in
the C++ standard committees.

@ Java 7 expected to include FP constructs.
@ C# offers FP constructs (even more in its 3.0 version).

@ Also in modern research languages with
sophisticated typed frameworks: e.g., OCaml, Scala.

Narbel Functional Programming at Work in Object-Oriented Programming

Purpose of the talk

@ Mix of FP with OOP not so much practiced.

@ = Purpose of this talk : a practical synthesis about
what a programer can expect when FP is available in

OOP (using C# 3.0).

Functional Programming at Work in Object-Oriented Programming

Narbel

Some References

Narbel

Structure and Interpretation of Computer Programs
Abelson, Sussman. MIT Press, 1985.

Synthesizing Object-Oriented and Functional Design
to Promote Re-Use . Krishnamurthi, Felleisen, Friedman.
1998.

Essentials of Programming Languages . Friedman,
Wand, Haynes. MIT Press, 1992.

CLOS: integrating object-oriented and functional
programming . Gabriel, White, Bobrow. 1991.

Bridging Functional and Object-Oriented
Programming (FC++) . Smaragdakis, McNamara. 2000.

Confessions of a used programming language
salesman . Meijer. OOPSLA'07.

C# 3.0 Design Patterns . J. M. Bishop. O’Reilly, 2008.

Functional Programming at Work in Object-Oriented Programming

@ Specific points discussed in this talk

@ Criteria to check that FP techniques are possible

@ Idiomatic and architectural effects of having FP
capabilities in OOP.

© FP analysis of some classic OO design patterns

Narbel Functional Programming at Work in Object-Oriented Programming

Criteria for FP techniques

Criterion:

First-Class Values . Functions/methods should be
first-class citizens.

Rule:

When Criterion 1 holds, most FP techniques can be
applied.

Remark: First-class functions generally = anonymous
functions .

Narbel Functional Programming at Work in Object-Oriented Programming

Criteria for FP techniques

Criterion:

Closures . First-class functions/methods should be
implemented as closures, i.e. they should be associated
with specific private environments.

Rule:

When Criterion 2 only holds with non-complete closures,
most nice properties due to pure FP are expected to be
lost. However, FP techniques can still be applied.

Narbel Functional Programming at Work in Object-Oriented Programming

Granularity Mismatch

@ FP and OOP operate on different design
granularity levels
@ Functions/methods : “programming in the small”
level.
@ Classes/objects/modules : “programming in the
large” level,

@ = At least two questions :
@ Where do we locate the source of individual functions
in an OOP architecture?
@ How do we relate such individual functions to an OOP
architecture?

@ = design granularity mismatch

Narbel Functional Programming at Work in Object-Oriented Programming

Criteria for FP techniques

Criterion:

FP-OOP interrelation tools : Standalone
functions/methods should be explicitly relatable to the
class/object level.

Rule:

When Criterion 3 holds, it helps solving some of the
FP-OOP design granularity mismatch problem.

Narbel Functional Programming at Work in Object-Oriented Programming

Criteria for FP techniques

Criterion:

FP Support : The FP-oriented features should be
reinforced by related constructs, predefined definitions,
occurrences in standard libraries, etc.

Rule:

When Criterion 4 holds, an OOP language acknowledges
the fact that FP is one of its fully integrated tool.

Narbel Functional Programming at Work in Object-Oriented Programming

An Object-Oriented FP Construct: the

Delegates

@ C# offers a FP feature called delegates :

delegate string StringFunType(string s); //declaration

string Gi(string s) {// a method whose type matches StringFunType
return "some string” + s;

}

StringFunType £1; // declaration of a delegate variable
fl1 = G1; /1 direct method value assignment
f1("some string”); /l application of the delegate variable

@ Delegates are first-class values

Narbel Functional Programming at Work in Object-Oriented Programming

1. Delegates as First-Class Values

@ Delegate types can type method parameters , and
delegates can be passed as arguments as any
other values:

string Gf1i(StringFun f, string s) { [...] }
// delegate f as a parameter
WritelLine (Gf1(G1l, "some string”)); I/ call

Narbel Functional Programming at Work in Object-Oriented Programming

2. Delegates as First-Class Values

@ Delegates can be returned as a computation of a
method. For instance, assuming G is a method of type
string => string and implemented in SomeClass:

StringFun Gf2() { //delegate as a return value

[.

return (new SomeClass ()).G;

}

WriteLine (Gf2()("some string”)); [//call

Narbel Functional Programming at Work in Object-Oriented Programming

3. Delegates as First-Class Values

@ Delegates can take place into data structures

var 1 = new LinkedList<StringFun >();
Il list of delegates
[...1]

1.AddFirst (G1); /l insertion of a delegate in the list
WriteLine (|.First.Value(”"some string”));
/1 extract and call

Narbel Functional Programming at Work in Object-Oriented Programming

Anonymous delegates

@ C# delegates may be anonymous :

delegate (string s) { return s + "some string”; };

@ Anonymous delegates can look even more like
lambda expressions

(s => { return s + ”"some string”});
s => s + "some string”;

Narbel Functional Programming at Work in Object-Oriented Programming

Closures

@ No strict closures in C# (intrinsically “impure FP”):

StringFun f1, £f2;

int counter = 1000;

f1 s => s + counter.ToString();
£2 s => s + counter.ToString();

@ = Usual enclosing technique in impure FP:

StringFun F() {
int _counter = 1000;
return s => { return s + _counter.ToString(); };

Narbel Functional Programming at Work in Object-Oriented Programming

An Interrelation FP/OOP: the Extension

Methods

@ Extension methods : enable a programmer to add
methods to existing classes without creating new
derived classes:

static int SimpleWordCount (this String str) {
return str.Split(new char [] { ' ' }).Length;
}

String s1 = "aaa bb cccc”;
String sl = "some chain”;

sl.SimpleWordCount (); I/ usable as a String method
SimpleWordCount (sS1); I/l also usable as a standalone method

Narbel Functional Programming at Work in Object-Oriented Programming

An Interrelation FP/OOP: the Extension

Methods

@ Another classic example of extension method:

static IEnumerable<T> MySort<T>(this IEnumerable<T> obj)
where T : IComparable<T> {
[...1]

}

List<int > somelList = [...];
someList .MySort ();

Narbel Functional Programming at Work in Object-Oriented Programming

An Interrelation FP/OOP: the Extension

Methods

@ Functions/methods implemented for delegates
are often defined as extension methods

@ Extension methods: related to “open-classes ” (see
e.g., CLOS, Ruby, Multijava).

@ Extension methods have harsh constraints in C#:
@ Only static !
@ Not polymorphic (not virtual) !

@ For Java 7, closure conversions are proposed.

@ In Groovy, explicit closure conversions exist.

Narbel Functional Programming at Work in Object-Oriented Programming

FP Integration in C#

@ Basic Delegates Predefinitions . C# offers
functional and procedural generic delegate
predefined types for arity up to 4... (respectively
under the name Func and Action):

delegate TResult Func<TResult >();

delegate TResult Func<T,TResult>(T al);

delegate TResult Func<T1,T2,TResult>(T1 al, T2 a2);
delegate void Action<T>(T al);

[..-1]

@ NB: overloading applies for generic delegates too.

Narbel Functional Programming at Work in Object-Oriented Programming

FP Integration in C#

@ First-Class Multiple Invocation and Multicasting
A delegate may itself contain an “invocation list ” of
delegates.

@ When such delegate is called, methods of the
included delegate are invoked in the order in which
they appear in the list.

@ The result value is determined by the last method
called in the list.

@ Management of multicasting: + and - are overloaded
to act on these invocation lists:

menulteml.Click += [...]; // some delegate

Narbel

Functional Programming at Work in Object-Oriented Programming

FP Integration in C#

@ Function Marshalling and Serialization . C# allows
lambda expressions to be represented as data
structures called expression trees:

Expression<Func<int ,int>> expression = x => x + 1;

var d = expression.Compile ();
d.Invoke (2);

@ As such, they may be stored and transmitted

Narbel Functional Programming at Work in Object-Oriented Programming

General FP Techniques in OOP

@ Some idiomatic and technical effects of
having FP capabilities in OOP:

@ Code factoring at a function/method granularity level,
@ Generic iterator and loop operations

© Operation compositions (and sequence
comprehensions).

@ Function partial applications and currying.

Narbel Functional Programming at Work in Object-Oriented Programming

Code Abstraction at a Function/Method Level

@ A simple code:

float M(int y) {
int xt = [...]; int x2 = [...];

[---1]
[...code...]; //some code using x1, x2, y
[---1]

@ With functional abstraction

public delegate int Fun(int x, int y, int z);
float MFun(Fun f, int x2, int y) {

int xt = [...];

[---1]

f(x1, x2, vy);

[---1]
}

int z1
int z2

MFun(F1, 1, 2);
MFun(F2, 3, 4);

@ = No local duplications + separation of concerns

Narbel Functional Programming at Work in Object-Oriented Programming

Generic Iterator and Loop Operations

Narbel

@ A simple and effective application of the functional
abstraction: generic higher-order iterated
operations over data

@ For instance, the internal iterators (Maps):

IEnumerable<T2>

Map<T1, T2>(this IEnumerable<T1> data, Func<T1l, T2> f) {
foreach (T1 x in data)
yield return f(x);

someList .Map(i => i * i);

Functional Programming at Work in Object-Oriented Programming

Operation Co sitio

@ FP = Easy operation compositions

@ An initial method code:

public static void PrintWordCount (string s) {
String[] words = s.Split(’ ');
for (int i = 0; i < words.Length; i++)
words[i] = words[i]. ToLower ();
var dict = new Dictionary<string , int >();
foreach (String word in words)
if (dict.ContainsKey (word))
dict[word]++;
else dict.Add(word, 1);
foreach (KeyValuePair<String, int> x in dict)
Console.WriteLine ("{0}: {1}", x.Key,
x.Value.ToString ()));

Narbel Functional Programming at Work in Object-Oriented Programming

Operation Compositions

@ A first factoring using higher-order functions

public static void PrintWordCount (string s) {
String[] words = s.Split(’ ');
String[] words2 =
(String[]) Map(words, w => w.ToLower ());
Dictionary<String, int> res =
(Dictionary<String, int>) Count(words2);
App(res, x => Console.WriteLine ("{0}: {1}",
x.Key, x.Value.ToString())));

Narbel Functional Programming at Work in Object-Oriented Programming

Operation Compositions

@ A second factoring using extension methods

public static void PrintWordCount (string s) {

s.Split(’)
.Map(w => w.ToLower ())
.Count()

.App(x => WriteLine("{0}: {1}",
x.Key, x.Value.ToString())));

@ = Increased readability

Narbel Functional Programming at Work in Object-Oriented Programming

Operation Compositions

@ In C#, such operation compositions are often used
with the “Language Integrated Query ” (LINQ) —
defined to unify programming with relational data or
XML, e.g. (Meijer):

var q = programmers
.Where(p => p.Age > 20)
.OrderByDescending (p => p.Age)
.GroupBy (p => p.Language, p.Name)
.Select(g => new{ Language = g.Key,
Size = g.Count (), Names = g});

@ = Solve some of the “impedance mismatch”
between OOP and data base exploitation.

Narbel Functional Programming at Work in Object-Oriented Programming

Function Partial Applications and Currying

Narbel

@ With first-class functions, every n-ary function can

be transformed into a composition of n unary
functions, that is, into a curried function
Func<int , int, int> laml = (X, y) => X + y;
Func<int , Func<int, int>> lam2 = X => (y => X + y);

Func<int , int> lam3 = lam2(3); //partial application

Curryfying :

public static Func<T1l, Func<T2, TRes>>
Curry<Ti, T2, TRes> (this Func<T1, T2, TRes> f) {
return (x = (y => f(x, y)));

}

Func<int , int> lam4 = laml.Curry ()(3); //partial application

Functional Programming at Work in Object-Oriented Programming

Architectural FP Techniques in OOP

@ Some architectural effects of having FP
capabilities in OOP:

© Reduction of the number of object/class definitions.
© Name abstraction at a function/method level.

© Operation compositions (and sequence
comprehensions).

@ Function partial applications and currying.

Narbel Functional Programming at Work in Object-Oriented Programming

Limitation of the Number of Object/Class

Definitions

@ Functional abstraction = Avoid cluttering the OO
architecture with new classes

interface IFun{ int F(int x, int y, int z);}

class F1 : IFun {

public int F(int x, int y, int z) { [...]1 } }
class F2 : IFun {

public int F(int x, int y, int z) { [...]1 } }

float M(IFun funobj, int x2, int y) {
int x1 = [...vall...]

[...]
funobj .F(x1, x2, y);
[...]
}
int z1t = M(new F1(), 1, 2);
int z2 = M(new F2(), 3, 4);

Narbel Functional Programming at Work in Object-Oriented Programming

Name Abstraction at a Method Level

@ Using first-class methods allows parameters to be
instantiated by any method satisfying their
declared types.
interface IStringFun{ string F1(string s); }

IStringFun objl = [...];
[...] obji.F1 [...]

@ = Name abstraction .

@ = Induce some “structuralness” into
nominal-oriented OOP , i.e. flexibility .

Narbel Functional Programming at Work in Object-Oriented Programming

Name Abstraction at a Method Level

@ Example of name abstraction with a Bridge :

@ The initial code:

public class Window {
private WindowSys _imp;
void DrawFigure ([...]) {
_imp .DeviceFigure ([...]);

}
@ With delegates:

public delegate void DeviceFigureFun([...]);
public class Window {

private DeviceFigureFun _devfig;

void DrawFigure ([...]) {

_devfig ([...1);
}

@ Without delegates: must use Adapters (see e.g.
ActionListener in Java).

Narbel Functional Programming at Work in Object-Oriented Programming

Name Abstraction at a Method Level

@ Another example of name abstraction with an
Abstract Factory
@ The initial code:

public interface Maze{[...]};
public interface Wwall{[...]};
public interface Room{[...]};
public interface MazeFactory

Maze MakeMaze ();

Wall MakeWall ();

Room MakeRoom ();

{

}

@ With delegates:

public delegate Maze MakeMazeFun();
public delegate Wall MakeWallFun();
public delegate Room MakeRoomFun();

public abstract class MazeFactoryFun {
MakeMazeFun MakeMaze ;
MakeWallFun MakeWall;
MakeRoomFun MakeRoom ;

Narbel Functional Programming at Work in Object-Oriented Programming

Name Abstraction at a Method Level

@ Name abstraction = More flexibility .

@ But also = More looseness and problems of
architecture organization

Narbel Functional Programming at Work in Object-Oriented Programming

FP Design Granularity Mismatch

@ Where do we put the sources of the standalone
methods? :

@ Solution with Basic Modules : functions as static
methods in some utility class or module.
= Not easily extensible, and does not mix so well
with class hierarchy

@ Solution with anonymous constructs : function
implementations of function directly into the calls:

int z1
int z2

MFun((x1, x2, x3) => [...<Fl1 code>...], 1, 2);
MFun((x1, x2, x3) => [...<F2 code>...], 3, 4);

= Spread the code all over the calls, and may
lead to no reusability.

Narbel Functional Programming at Work in Object-Oriented Programming

Some classic OOP Design Patterns with FP

@ Some of the classic OOP Design Patterns
can be considered under FP influence...:

© Strategy, Command.
© Observer.

© Proxy.
Q Visitor.

Narbel Functional Programming at Work in Object-Oriented Programming

Strategy

Narbel

independently of clients that use it

Context

Contaxtintarfaca}

@ A Strategy pattern is to let an algorithm vary

Sirategy Strategy
Algarithminterface])
ConcreteSirategyA ConcreteStrategyB ConcreteStrategyC

Algorithminterface()

Adgarithminterface)

Algorithminterface)

(The pattern figures are taken from the GoF book.)

Functional Programming at Work in Object-Oriented Programming

Strategy with FP

@ A Strategy : just a case of abstracting code at a
method level (= No need of OO encapsulation
and new class hierarchies).

@ For instance in the .NET Framework:

public delegate int Comparison<T>(T x, T vy)
public void Sort(Comparison<T> comparison)

public delegate bool Predicate<T>(T obj)
public List<T> FindAll(Predicate<T> match)

Narbel Functional Programming at Work in Object-Oriented Programming

Strategy with FP

Narbel

Context

strategy

Contaxtintarfacal)

Strategy

%‘: rithminterface(}

ConcreteStrategyA

¢reN5rmleg}h

ConcreteStrategyC

Algor nhmhtelfacy

Algorithminterface)

g ithminterface])

bV

N

Functional Programming at Work in Object-Oriented Programmil

@ The Command pattern encapsulates requests
(method calls) as objects so that they can easily be
transmitted, stored, and applied.

@ =- Same as Strategy .
@ For instance, menu implementations

public delegate void EventHandler(Object sender, EventArgs e)
public event EventHandler Click

private void menulteml_Click (object sender, System.EventArgs e) {
OpenFileDialog fd = new OpenFileDialog ();
fd.DefaultExt = "#.x"; fd.ShowDialog ();

public void CreateMyMenu () {
MainMenu mainMenul = new MainMenu ();
Menultem menulteml = new MenulItem ();
[...1]

menulteml.Click += new System.EventHandler (menultem1_Click);

Narbel Functional Programming at Work in Object-Oriented Programming

Command with FP

Narbel

Application

Add(Documsnt}

——mel Beniu

ool ariten Jo———— Nammani
command

AddiMenultam)

Clicksdi) @
1
1

Document

Cipend)
Clos=])
Cutly

Copyl}
Paste{}

¢
command-=Execula(} -/: \-

Functional Programming at Work in Object-Oriented Programmil

Observer

@ The Observer pattern: a one-to-many dependency
between objects so that when one object changes
state, all its dependents are notified and updated.

Subject observers Observer
Attach({Obsenvar) Upaats(}
Deraﬂ.jlobgéme'] fer all & in chservers |b-
Matityi) & -----1 --| o—sUpdata() ZLF\‘

Z\\r\‘ ConcreteObserver

subje o sarvarsl -

ConcreteSubject B | Update() o--f- 3“;3;2;}?}3 T
GetStale} ©-—-f— .] chserverSlale
SatStata-'.] return subjectState
subjectStats

Narbel Functional Programming at Work in Object-Oriented Programming

Classic Observer

public interface Observer<S> {
void Update(S s);

}

public abstract class Subject<S> {
private List<Observer<S>> _observ = new List<Observer<S>>();

public void Attach(Observer<S> obs) {
_observ.Add(obs);

public void ©Notify(s s) {
foreach (Observer<S> obs in _observ) {

obs.Update(s);
}

Functional Programming at Work in Object-Oriented Programming

Narbel

Observer with FP

@ FP = Observer with functional values as
updaters :
public delegate void UpdateFun<S>(S s);

public abstract class Subject<S> {
private UpdateFun<S> _updateHandler;

public void Attach(UpdateFun f) {
_updateHandler += f;

public void ©Notify (S s) {
_updateHandler(s);
}

@ = No need of observer classes with methods
called UpdateQ).

Narbel Functional Programming at Work in Object-Oriented Programming

Observer with FP

Subject observers Observer
Attach(Observer] \Q:ra:s.-:-
Drstach{Obssrver)

R for all o in ohservers |h
Moyl o -----1 - o-sUpdatai) R
1
ZF ConcreteObse

oot Sl y— N\ | observerstate =

subjact-=GetStats()
obsarva%e

Coner

GelState(} @---r-—
SetStatel)

raturn subjectSia

subjectStata

Functional Programming at Work in Object-Oriented Programming

Virtual Proxy

@ The Virtual Proxy pattern: placeholders for other
objects such that their data are created/computed

only when needed .

Subject

Requestf)

A

realSubject |

RealSubject Proxy]

raalSubjecl-=Requsasi{);

Requesti) Request) O

Functional Programming at Work in Object-Oriented Programming

Narbel

Classic Virtual Proxy

public class SimpleProxy : I {
private Simple _simple;
private int _arg;
protected Simple GetSimple () {
if (_simple == null)
this._simple = new Simple(this._arg);
return _simple;

public SimpleProxy (int i) { this ._arg = i; }
public void Process() {
GetSimple () .Process ();

Narbel Functional Programming at Work in Object-Oriented Programming

Virtual Proxy with FP Lazyness

@ FP = Less need of specific Proxy classes

public class SimpleLazyProxy : I {
private Lazy<Simple> _simpleLazy;
public SimpleLazyProxy (int i) {
this . _simpleLazy =
new Lazy<Simple>(() => new Simple(i));

public void Process() {
this . _simpleLazy.Value.Process ();
}

Narbel Functional Programming at Work in Object-Oriented Programming

@ The Visitor pattern: lets you define new
operations without changing the classes of the
elements on which they operate

@ Without Visitors, each subclass of a hierarchy has to
be edited or derived separately.

@ NB: Visitors are at the crux of many of the
programming design problems

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor

= IIELI Visitor

VisitConcretetlementdfConcretelismentd)
VisitConcratatlementBiConcretaCiemeants)

A

ConcreteVisitor! ConcreteVisitor2

YisitConcreteElementd{ConcreteElament) VisitConcreteElementdiConcratsElementd)
VisitConereteE lementB| Cancrate ElernentB] WisitConcreteElementBiConcrateElementB)

o

Accspt Visitor)

A
[|

CencreteElementA ConcreteElementB

OparaticnAll OperationB()

AcceptiVisitor v) = AcceptVisitor v) =4

v—>\a"|ailCnnc:rB1eEIamamA[1hi5)H | v—>\|'iaitConcrulaElamanlEl{1his]H

Narbel

Functional Programming at Work in Object-Oriented Programmil

Classic Visitor

public interface IFigure {
String GetName ();
void Accept<T>(IFigureVisitor<T> v);

public class SimpleFigure : IFigure {
private String _name;
public SimpleFigure (String name) { this ._name = name; }
public String GetName () { return this ._name; }
public void Accept<T>(IFigureVisitor<T> v) {
v.Visit(this);
}

public class CompositeFigure : IFigure {
private String _name;
private IFigure[] _figureArray;
public CompositeFigure (String name, IFigure[] s) {
this . _name = name; this ._figureArray = s;
}

public String GetName () { return this ._name; }
public void Accept<T>(IFigureVisitor<T> v) {
foreach (IFigure f in _figureArray)
f.Accept(v);
v. Visit(this);

Narbel Functional Programming at Work in Object-Oriented Programming

Classic Visitor

public interface IFigureVisitor<T> {
T GetVisitorState ();
void Visit(SimpleFigure f);
void Visit(CompositeFigure f);

public class NameFigureVisitor : IFigureVisitor<string > {
private string _fullName = "”";
public string GetVisitorState () { return _fullName; }
public void Visit(SimpleFigure f) {
_fullName += f.GetName() + " ";

}

public void Visit(CompositeFigure f) {
_fullName += f.GetName() + "/";

}

Narbel Functional Programming at Work in Object-Oriented Programming

Weaknesses of Visitors

@ Some well-known weaknesses of Visitors
@ Refactoring Resistance . A Visitor definition is
dependent on the set of client classes on which it
operates.

@ Staticness . A Visitor is static in its implementation
(type-safety but less flexibility).

@ Invasiveness . A Visitor needs that the client classes
anticipate and/or participate in making the selection
of the right method.

@ Naming Inflexibility . A Visitor needs that all the
different implementations of the visit methods be
similarly named.

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor and Extension Methods

@ An attempt to solve Visitor problems with
extension methods (cf. “open classes” — but not ok
in C#):

public interface IFigure {
String GetName (); /1 no Accept method required
}

[-..]
public static class NameFigureVisitor {
public static void NameVisit(this SimpleEFigure f)

{ _state = f.GetName() + " " + _state; }

static void NameVisit(this CompositeFigure f) {

_fullName = f.GetName() + ":” + _fullName,;
foreach (IFigure g in f.GetFigureArray ())
g.NameVisit(); // !'!! dynamic dispatch required...

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor with FP

@ FP = Visitors can be functions

public delegate T VisitorFun<V, T>(V f);

public interface IFigureF {
String GetName ();
T Accept<T>(VisitorFun<IFigureF, T> v);

public class SimpleFigureF : IFigureF {
private String _name;
public SimpleFigureF (String name) { this ._name = name; }
public String GetName () { return this ._name; }
public T Accept<T>(VisitorFun<IFigureF, T> v) {
return v(this);
}

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor with FP

public class CompositeFigureF : IFigureF {
private String _name;
private IFigureF[] _figureArray;
public CompositeFigureF (String name, IFigureF[] s) {
this . _name = name; this ._figureArray = s;
}

public String GetName () { return this ._name; }
public T Accept<T>(VisitorFun<IFigureF, T> v) {
foreach (IFigureF f in _figureArray) {
f.Accept(v);

return v(this);

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor

P

fi

irConcretetlemeantAfConcral antd)
Wiz cratetlemantBiiCn eFlementB)

)

ConcreteVisitor]

rete\isitor2

oncreteElementi)

VisitConcretzElerment
B CancrataElemantH)

WisnConcreteE

WigitCon

nc lementiiConcreteElementd)
VisitConereta i BConcratalE lementB)

~N

Element

oo |———

AccepliVisitor)

A

ConcreteElaments

ConcreteElementB

Accapt\izitor v)
Oparationa(]

¢

Accept\isitor v)
OperationB()

w=>\isitConcrate EIemerﬂA[Ihis_\\E‘i

| I4-'-:>\\"isitEI{:-nc:r\ehBEItamsn1EI-:1his]¥**1

Functional Programming at Wor

kin

bject-Oriented Programming

Functional Visitors

@ A simple functional Visitor

public static VisitorFun<IFigureF, String>
MakeNameFigureVisitorFun () {

string _state = "";

return obj => {
if (obj is SimpleFigureF)

_state += f.GetName() + " "; else
if (obj is CompositeFigureF)

_state += f.GetName() + "/";
return _state;

b

@ But = Ad-hoc explicit selection needed...

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor with Functional Data-Driven

Programming

@ A Visitor with functional data-driven programming
made of:
@ Dictionaries of pairs in the form (type, method).
@ Generic “accept” able to exploit these dictionnaries
and call the right method corresponding to a given

type.

@ = Explicit generic selection mechanism

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor with Functional Data-Driven

Programming

@ Use of data-driven oriented Visitor

var dictl =
new Dictionary<System.Type, VisitFun<IFigureF, String>>();

dictl.Add (typeof (SimpleFigureF),

(f, s) = s + f.GetName () + " ");
dictl.Add (typeof (CompositeFigureF),

(f, s) => s + f.GetName () + "/");

var nameFigureFunVisitorl =
MakeVisitorFun<IFigureF, String>(dictl);

Narbel Functional Programming at Work in Object-Oriented Programming

Visitor with Functional Data-Driven

Programming

@ FP = Data-driven Functional Visitors

@ = Less refactoring resistance, less name rigidity,
and less staticness .

@ But =
@ Possible type incoherences
@ Syntax intricacies ...

Narbel Functional Programming at Work in Object-Oriented Programming

Summing Up

@ In order to get flexible code in classic OOP at a
method level , essentially two ways:

Narbel Functional Programming at Work in Object-Oriented Programming

Summing Up

@ In order to get flexible code in classic OOP at a
method level , essentially two ways:

@ Method encapsulation in objects (rich but heavy).

Narbel Functional Programming at Work in Object-Oriented Programming

Summing Up

@ In order to get flexible code in classic OOP at a
method level , essentially two ways:

@ Method encapsulation in objects (rich but heavy).
@ Method management by introspection/reflection
and plug-in capabilities (flexible but type unsafe and
technically cumbersome).

Functional Programming at Work in Object-Oriented Programming

Narbel

Summing Up

@ In order to get flexible code in classic OOP at a
method level , essentially two ways:

@ Method encapsulation in objects (rich but heavy).
@ Method management by introspection/reflection
and plug-in capabilities (flexible but type unsafe and
technically cumbersome).

@ = A possible answer is to include a typed
first-class method granularity level

Functional Programming at Work in Object-Oriented Programming

Narbel

Summing Up

@ OOP with FP granularity level =
@ Code Abstraction at a function/method level.
@ Convenient generic iterator/loop implementations.

@ Operation compositions , sequence/query
comprehensions.

@ Function partial applications

o Limitations of the number of object/class
definitions.

@ Name abstractions at a function/method level.

@ And :
@ Lazyness emulations (used e.g. in Virtual Proxies).

@ Data-driven or table-driven programming (used
e.g. in Visitors).

Narbel Functional Programming at Work in Object-Oriented Programming

@ FP + OOP =
@ Architecture simplifications
@ Increased flexibility

Narbel Functional Programming at Work in Object-Oriented Programming

@ FP + OOP =
@ Architecture simplifications
@ Increased flexibility

@ But = Design granularity mismatch (functions at a
finer design level than classes/objects/modules) =

@ Architecture inhomogeneity
@ Lack of type coherence
@ no easy reusability .

Narbel Functional Programming at Work in Object-Oriented Programming

@ FP + OOP =
@ Architecture simplifications
@ Increased flexibility

@ But = Design granularity mismatch (functions at a
finer design level than classes/objects/modules) =

@ Architecture inhomogeneity
@ Lack of type coherence
@ no easy reusability .

@ Some partial solutions of granularity mismatch:
@ Specific modular organizations
@ Anonymous constructs
@ Interrelation means like “extension methods”.

Narbel Functional Programming at Work in Object-Oriented Programming

A Claim about Programming Styles

® The Claim:

Adding functional programming capabilities to an
object-oriented language leads to benefits in
object-oriented programming design.

Narbel Functional Programming at Work in Object-Oriented Programming

A Claim about Programming Styles

® The Claim:

Adding functional programming capabilities to an
object-oriented language leads to benefits in
object-oriented programming design.

@ OK, but without being a silver bullet...

Narbel Functional Programming at Work in Object-Oriented Programming

A Claim about Programming Styles

@ The Claim:
Adding functional programming capabilities to an

object-oriented language leads to benefits in
object-oriented programming design.
@ OK, but without being a silver bullet...

@ Remark: anyway, FP is expected in Java, C++, Sprutch...

Narbel Functional Programming at Work in Object-Oriented Programming

