
Network softwarization Lab session 2: OS Virtualization

Networking

Nicolas Herbaut David Bourasseau Daniel Negru

December 16, 2015

1 Introduction

1.1 Discovering docker

1.1.1 Installation

Please launch the provided Virtual Machine with Virtual Box. Docker is already installed.
Check that everything works with

$ docker run hello-world

1.2 Basic command line

This is a quick description of the docker command line. If you don’t know docker, go through
these explanations. You will use them in the rest of the lab.

Download a pre-built image

Download an ubuntu image

$ docker pull ubuntu

Running an interactive shell

$ docker run -i -t ubuntu /bin/bash

1

RE350 Network Softwarization ENSEIRB-MATMECA

The -i flag starts an interactive container. The -t flag creates a pseudo-TTY that attaches
stdin and stdout.

To detach the tty without exiting the shell, use the escape sequence Ctrl-p + Ctrl-q. The
container will continue to exist in a stopped state once exited. To list all containers, stopped
and running, use the docker ps -a command.

Selecting the name of the containers

by default, containers have an ID (hex string) and an auto-generated name. You can force a
particular name for convenience.

$ docker run --name containerX -i -t ubuntu /bin/bash

Starting a long-running worker process

Start a very useful long-running process

$ JOB=$(docker run -d ubuntu /bin/sh -c "while true;\

 do echo Hello world; sleep 1; done")

Collect the output of the job so far

$ docker logs $JOB

Kill the job

$ docker kill $JOB

Listing containers

$ docker ps # Lists only running containers

$ docker ps -a # Lists all containers

Controlling containers

Start a new container

$ JOB=$(docker run -d ubuntu /bin/sh -c "while true; \

do echo Hello world; sleep 1; done")

Stop the container

$ docker stop $JOB

Start the container

$ docker start $JOB

Restart the container

$ docker restart $JOB

SIGKILL a container

$ docker kill $JOB

Remove a container

Page 2

RE350 Network Softwarization ENSEIRB-MATMECA

$ docker stop $JOB # Container must be stopped to remove it

$ docker rm $JOB

Running a command an existing container image

$ docker exec -ti container_id /bin/sh

attaching to a running container

$ docker attach container_id

2 Docker Networking

2.1 Default Bridge Network

1. (1 point) Docker installed a Linux bridge docker0 in your system.

(a) What is its mac address?

(b) its IP address?

(c) The subnet it belongs to?

2. (1 point) Inspect the bridge with the network command

$ docker network inspect bridge

By default, containers are attached to this default bridge. Launch 2 containers named
container1 and container2 with an ubuntu image.

(a) Can the two containers ping each other using their IPs?

(b) Can the two containers ping each other using their host names (you can find the
container’s host names within the container by typing ’echo $HOSTNAME’?)

(c) Give the commands or tools you used to find out.

3. (1 point) stop and delete container2. Relaunch it with with the following command.

$ docker run -ti --name container2 --link container1 ubuntu

(a) try to ping container1 from container2 using container1 hostname (eg.). What’s the
result?

$container2 > ping container1

(b) what mechanism does docker use to make container2 aware of container1?

(c) what are the limitations of this technique?

Page 3

RE350 Network Softwarization ENSEIRB-MATMECA

2.2 Exposing ports

1. (3 points) launch the following command and explain what it does.
(a)

while true;do echo salut $HOSTNAME |nc -l 8080; done;

(b) launch the following container image and connects on the 8080 port of the container.

docker run --name container1 -d ubuntu /bin/bash -c ’while true;\

do echo salut $HOSTNAME |nc -l 8080; done;’

give the output of docker ps. From the host, can I establish a TCP connection to this
container on port 8080? How?

(c) launch the following container image,

docker run -p 8080 --name container1 -d ubuntu /bin/bash -c \

’while true; do echo salut $HOSTNAME |nc -l 8080; done;’

give the output of docker ps. What’s the difference? On which port of the localhost is
the container reachable?

(d) launch the following container image.

docker run -p 8080:8080 --name container1 -d ubuntu /bin/bash -c \

’while true; do echo salut $HOSTNAME |nc -l 8080; done;’

give the output of docker ps. What’s the difference? On which port of the localhost is
the container reachable?

(e) How does docker configure port forwarding? (Hint: you studied this tool in the very
first lab session)

2.3 None Network

1. (1/2 point) what option of the ”docker run” command allow specifying the network for the
container?

2. (1 point) launch a container with the ”none” configuration. Describe its network connec-
tivity

2.4 Custom Bridged Network

It’s possible to create isolated networks on which the containers will be attached.

$ docker network create --driver bridge network1

more info on the network can be retreive with the inspect command

$docker network inspect network1

[

{

"Name": "network1",

"Id": "7009786ffb94f650eb1a71395cac3b28f68bbdcb9112662b6bedb0",

"Scope": "local",

"Driver": "bridge",

"IPAM": {

"Driver": "default",

Page 4

RE350 Network Softwarization ENSEIRB-MATMECA

"Config": [

{}

]

},

"Containers": {},

"Options": {}

}

]

1. (1/2 point) create 2 new bridged networks named network1 and network2. Create container1
on network1 and container2 on network2. Give the commands.

2. (3 points) (a) Can container1 access internet? Can container2 access internet?

(b) Can container1 access container2?

(c) What system tool (that you studied in this course) allows docker to enforce isolation
of network1 and network2 as well as internet access for container

(d) Show the configuration of this tool, explain the most important lines.

2.5 Host Network

1. (1 point) launch a container with the ”host” configuration. Is the container network stack
still segregated from the host networking? What are the issue with this configuration?

3 Build your own docker image

In this section, we explain briefly how to create docker images and run them. Go through
section 3.1 to section 3.3, then answer the questions.

3.1 Write a Dockerfile

In this step, you use your favorite text editor to write a short Dockerfile. A Dockerfile describes
the software that is “baked” into an image. It isn’t just ingredients tho, it can tell the software
what environment to use or what commands to run. Your recipe is going to be very short.

• Go back to your terminal window.

• Make a new directory by typing mkdir mydockerbuild and pressing RETURN.

mkdir mydockerbuild

This directory serves as the “context” for your build. The context just means it contains
all the things you need to build your image.

• Change to your new directory.

$ cd mydockerbuild

Right now the directory is empty.

• Create a text file called Dockerfile in your current directory. You can use emacs, vi or
leafpad (graphical) to do this.

• Open your Dockerfile file.

Page 5

RE350 Network Softwarization ENSEIRB-MATMECA

• Add a line to the file like this:

FROM ubuntu

The FROM keyword tells Docker which image your image is based on. Here you start
from an ubuntu distribution.

• Now, add the fortunes program to the image.

RUN apt-get -y update && apt-get install -y iperf

iperf is a program that compute the available bandwidth between a client and a server.
By default, it uses TCP.

• Once the image has the software it needs, you instruct the software to run when the image
is loaded.

CMD iperf -s

• Check your work, your file should look like this:

FROM ubuntu

RUN apt-get -y update && apt-get install -y iperf

CMD iperf -s

• Save and close your Dockerfile

At this point, you have all your software ingredients and behaviors described in a Dockerfile.
You are ready to build a new image.

3.2 Build an image from your Dockerfile

• Now, build your new image by typing the docker build -t iperf-server . command in your
terminal (don’t forget the . period).

docker build -t iperf-server .

Sending build context to Docker daemon 1.253 MB

Step 1 : FROM ubuntu

---> 89d5d8e8bafb

Step 2 : RUN apt-get -y update && apt-get install -y iperf

---> Using cache

---> ec78def14644

Step 3 : CMD iperf -s

---> Using cache

---> cf4bc851405c

Successfully built cf4bc851405c

The command takes several seconds to run and reports its outcome.

3.3 Run your new iperf-server

In this step, you verify the new images is on your computer and then you run your new image.

• If it isn’t already there, place your cursor at the prompt in your terminal window.

Page 6

RE350 Network Softwarization ENSEIRB-MATMECA

• Type docker images and press RETURN.

docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

iperf-server latest cf4bc851405c 3 minutes ago 210.4 MB

ubuntu latest 89d5d8e8bafb 7 days ago 187.9 MB

• Run your new image by typing docker run -ti iperf-server and pressing RETURN.

docker run -ti iperf-server

3.4 Using docker images

Hint

It’s possible to pass variable from your host to the image with the -e option, for example:

$ docker run -ti -e FOO=BAR ubuntu

$ root@5b8fad1552de:/# echo $FOO

$ BAR

Hint

You can code a if statement in bash on one line

a=1 ; b=2 ; if [$a -eq $b] ; then echo "equal" ; else echo "not equal" ; fi

1. (1 point) launch an iperf-server docker image.

(a) what is the IP of the image?

(b) checkout iperf man page and run an iperf client from your host. What is the result of
the test?

2. (1 point) compare the performances of the iperf-server docker image with its native coun-
terpart. Is there a difference? what could explain it?

3. (2 points) create 2 dockerfiles in two different folders. One is an iperf-server, the other is
an iperf-client that connects to the server. You should be able to run them as follow.

$ docker run -d -e MODE="tcp" --name perfsvr iperf-server

$ docker run -ti -e MODE="tcp" --link perfsvr iperf-client

(a) give the dockerfile for the server

(b) give the dockerfile for the client

4. (1 point) compare the iperf UDP performances when (1) both iperf server and client being
run on the host (2) both iperf server and client being run from containers.

Page 7

RE350 Network Softwarization ENSEIRB-MATMECA

4 OpenVSwitch

In this section, we learn how to program openvswitch using the command line. Mininet uses
openvswitch to handle l2 and l3 routing.

For this section, login as the root user (sudo su) and type

echo "alias ovs-ofctl=’ovs-ofctl -O OpenFlow13’" >> ~/.bashrc

source ~/.bashrc

1. (3 points) launch td01’s mininet dash topology. We will not use ryu this time, so press
enter without starting ryu.

/home/re350/re350/td01/dash/mdc --vid

(a) can we see the video? explain why

(b) on top of mininet, you can display the topology with openvswitch

ovs-vsctl show

unbind the controller from each bridge using

ovs-vsctl del-controller <<switch_name>>

now we are going to set each ovs instance as a learning switch

ovs-ofctl add-flow <<switch_name>> actions=normal

Can you access the video? what is the issue if every switch is connected in the network?

(c) We can solve this issue by destroying some link

ovs-vsctl del-port <<port_name>>

(Hint: you are doing the job of the ST protocol)

Give the command you issued to make the network usable and the video available.

(d) what is the option allowing ovs-vsctl to remove a bridge?

(e) remove s101 bridge. What’s the impact on the video quality? explain why.

(f) remove every ports linking iperf host to aggregation switches. What’s the impact on
the video quality? explain why.

Page 8

RE350 Network Softwarization ENSEIRB-MATMECA

5 Bonus OVS+DOCKER

• Create 1 container image that exposes ports 8080 and 8081 (see Section 2.2).

• connect 3 instances (D1, D2, D3) of this image to an openvswitch (ovs-docker)

• implement the following rules using openflow.

– D1, D2 and D3 can ping each other

– D1 can create a TCP connection to D2’s 8080 port

– D3 can create a TCP connection to D2’s 8081 port

– no other TCP communication should be

1. (5 points) give the ovs-ofctl commands you used to configure the openvswitch.

Hint

The following command creates the new interface eth0 in the container container1 with the ip
10.10.10.10 on the open vswitch bridge named ovs-br.

ovs-docker add-port ovs-br eth0 container1 --ipaddress=10.10.10.10/24

Hint

some usefull ovs-ofctl commands:

#switch acts as a learning switch for arp queries

ovs-ofctl add-flow ovs-br0 arp,actions=normal

#switch acts as a learning switch for icmp queries

ovs-ofctl add-flow ovs-br0 icmp,actions=normal

#drop traffic from D2 to D1 on tcp for port 9999

ovs-ofctl add-flow ovs-br0 ip,tcp,tcp_dst=9999,actions=drop

#display port number of a bridge

ovs-ofctl add-flow ovs-br0 show <<bridge_name>>

#send tcp packet arriving to port 1 to port 2

ovs-ofctl add-flow ovs-br0 ip,tcp,in_port=1,actions=output:2

Page 9

